
UNIVERSITÉ JOSEPH FOURIER

GRENOBLE 1

and

SCUOLA NORMALE SUPERIORE

PhD THESIS

RAFFAELLO FERONE

THERMOELECTRIC TRANSPORT IN

DISORDERED MESOSCOPIC SYSTEMS

18 April 2006

Board of examiners:

Dr. Ines SAFI Examiner

Prof. Maura SASSETTI Examiner

Prof. Fabio BELTRAM Examiner

Prof. Roberto RAIMONDI Examiner

Dr. Stephan ROCHE Examiner

Prof. Rosario FAZIO Advisor

Prof. Frank HEKKING Advisor





Contents

INTRODUCTION xi

Quantum wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Granular metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 FROM CLASSICAL THEORY TO QUANTUM EFFECTS 1

1.1 Independent particles and Drude conductivity . . . . . . . . . . . . . . 2

1.2 Landau hypothesis and Boltzmann equation . . . . . . . . . . . . . . . 4

1.2.1 Independent particles and fermionic quasi-particles . . . . . . . 5

1.2.2 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Low temperatures and low-dimensional systems: quantum effects . . . . 11

1.3.1 Non-interacting quantum particles: theory and experiments . . 15

1.3.2 Thermo-electric transport at finite temperature . . . . . . . . . 17

PART I: DISORDERED QUANTUM WIRES 23

2 LUTTINGER LIQUID THEORY 25

2.1 1D Fermi gas and Luttinger liquid Hamiltonian . . . . . . . . . . . . . 26

2.2 Interaction Hamiltonian and diagonalization . . . . . . . . . . . . . . . 29

2.3 Hamiltonian in term of bosonic operators in real space . . . . . . . . . 32

2.3.1 LL Hamiltonian from semi-classical equation of motion . . . . . 33

2.4 Spin-1/2 fermions and spin-charge separation . . . . . . . . . . . . . . 35



iv CONTENTS

3 QUANTUM WIRES AND LORENZ NUMBER 41

3.1 Clean quantum wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Electrical and thermal conductance . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Electrical conductance . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Thermal conductance . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Equation of motion for a clean wire . . . . . . . . . . . . . . . . . . . . 50

3.4 Results for a clean quantum wire . . . . . . . . . . . . . . . . . . . . . 53

3.5 Corrections induced by disorder . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Correction to gcw and generalised equation of motion . . . . . . . . . . 57

3.6.1 First order corrections . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.2 Second order corrections . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Electrical conductance. Low temperature limit: T ≪ v/d . . . . . . . . 65

3.8 Electrical conductance. High temperature limit: v/d≪ T ≪ ωF . . . . 67

3.9 Correction to Kcw and diagrammatic approach . . . . . . . . . . . . . . 68

3.9.1 First-class diagram . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9.2 Second-class diagrams . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Lorenz number for a non-interacting system . . . . . . . . . . . . . . . 73

3.11 First-class contribution to thermal conductance in presence of interactions 75

3.11.1 Low temperature limit: T ≪ v/d . . . . . . . . . . . . . . . . . 75

3.11.2 High temperature limit: v/d≪ T ≪ ωF . . . . . . . . . . . . . 76

3.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

PART II: GRANULAR METALS 85

4 SUPERCONDUCTIVITY AND FLUCTUATIONS 87

4.1 BCS theory of superconductivity . . . . . . . . . . . . . . . . . . . . . 88

4.2 Superconducting fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Microscopic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



CONTENTS v

5 GRANULAR METALS 99

5.1 Normal granular metals . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Superconducting granular metals . . . . . . . . . . . . . . . . . . . . . 103

5.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Conductivity in normal granular metals . . . . . . . . . . . . . . . . . . 107

5.5 Electron coherence effects on transport . . . . . . . . . . . . . . . . . . 112

5.5.1 Vertex correction . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.2 Cooper pair fluctuation propagator . . . . . . . . . . . . . . . . 114

5.6 Superconducting fluctuation corrections . . . . . . . . . . . . . . . . . . 120

5.6.1 Density of states correction . . . . . . . . . . . . . . . . . . . . 120

5.6.2 Maki-Thompson correction . . . . . . . . . . . . . . . . . . . . . 122

5.6.3 Aslamazov-Larkin correction . . . . . . . . . . . . . . . . . . . . 123

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7.1 High temperature regime: ǫ≫ gT δ/Tc . . . . . . . . . . . . . . 127

5.7.2 Low temperature regime: ǫ≪ gT δ/Tc . . . . . . . . . . . . . . . 128

5.7.3 Régime des hautes temperatures: ǫ≫ gT δ/Tc . . . . . . . . . . 130

5.7.4 Régime des basses températures: ǫ≪ gTδ/Tc . . . . . . . . . . . 131

APPENDICES 135

A LL Hamiltonian: semi-classical approach 137

B Thermal conductance for a clean wire 139

C Equation of motion for the Green’s function 143

D Green’s function in a clean wire 147

E Generalised equation of motion 149

F Second order correction in the perturbative potential 153



vi CONTENTS

G Fluctuation propagator with tunneling 157

H Analytical evaluation of effective action 163

I DOS correction without tunneling 167

J Maki-Thompson correction 173

K Aslamazov-Larkin correction 175

BIBLIOGRAPHY 183



List of Figures

1 Quantum wire region in a AlGaAs/GaAs heterostructure . . . . . . . . xviii

2 Granular film composed of Al grains on amorphous Ge background . . xx
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INTRODUCTION

In this PhD thesis we will discuss the transport properties of charge and heat

in two different disordered mesoscopic systems. This first statement contains a lot of

concepts, and some questions arise spontaneously: why should one be interested in the

transport properties? What is a mesoscopic system and why could it be interesting

to study disordered mesoscopic systems? What is the framework which these systems

could be studied in?

Many other questions could arise, but for the moment we stop here, and we try

to get an answer at least for some of them. The other ones will find their own answers

in the remaining pages of this manuscript.

Since the dawning of theoretical and experimental exploration of the proper-

ties of condensed matter systems, particularly of metals, scientists supposed that the

abilities of some systems to transfer charge and heat were profoundly bound to their

deepest nature. For example, just three years after Thomson’s discovery of the electron

in 1897, an important result was achieved thanks to Drude’s study on electrical conduc-

tivity, [Ashcroft87], confirming the strong connections existing between the transport

properties and the nature of the systems: understanding the way metals transfer the

charge and the heat means understanding how metals behave microscopically.

This is just a partial answer to the first question. Of course, the different theories

that followed one another brought, little by little, other bricks to the comprehension

of the problem, and then, of the microscopic nature of the condensed matter. Partic-

ularly, the birth of quantum mechanics completely changed the way to approach the

problem, and it gave the opportunity to correct many previous assumptions that the
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daily laboratory experience showed being false.

As we will see in the next chapter, until the seventies, most of the transport

properties of a bulk metal could be explained by means of the Landau theory of Fermi

liquids, [Abrikosov88]. It was originally conceived for 3He, but it was then extended

to several other fermionic systems. Its fundamental idea is that the electron gas in

a bulk system can still be described as formed of independent particles under the as-

sumption that the screening of interactions between two given electrons, due to the

presence of the other electrons, is strong. The particles in terms of which the sys-

tem is described are not real particles, but more complex quantities, generally called

quasi-particles, preserving their fermionic character, and representing the low-energy

long wavelength excitations of the interacting system. If the screening hypothesis is

satisfied, then the theory foresees that the charge and the energy are transported by

the same entities: the above-mentioned fermionic quasi-particles. The existence of such

a relationship between charge and heat transport is expressed in a very general way by

the Wiedemann-Franz (WF) law. It states that the ratio between thermal conductivity

κ and the electrical one σ depends linearly on temperature T , with a proportionality

constant which is more or less material independent. It can be expressed as

κ

Tσ
=

π2

3e2
= L0 , (1)

where e is the electron charge. Here, and in the rest of the the manuscript, we set

kB = ~ = 1. The constant of proportionality L0 is known as the Lorenz number and it

is one of the signatures of Fermi liquid behaviour. It plays a very important role, since

its value allows to understand whether or not the system is in a Fermi liquid state;

then, it allows to have an idea about the possible dominating charge and heat transfer

mechanism. In principle, if one could measure L0 experimentally, one could have some

information about the nature and the state of the system.

This kind of description is quite accurate for most of the so-called ohmic bulk

conductors; that is for all bulk conductors for which Ohm’s law holds. The latter reads

j = σE . (2)



INTRODUCTION xiii

Equation (4) is a local relation which connects the electrical field E which is

present at time t at the position r to the current density j at the same time and at

the same position. σ is the conductivity; it is constant and it is material dependent.

We stress the two inherent features of Eq. (4): its local character and the need that

the system is a bulk conductor. In the following, we will see that these two features

are tightly bound: in abscence of the bulk system assumption, the local character of

physical quantities concerning charge and heat transport will not always hold. This

will lead us to think transport properties over from a different point of view with re-

spect to the theories, as the aforementioned Landau theory, generally used to describe

macroscopic metals.

During the eighties, the technological development, as imagined by Feynman

even twenty years before, [Feynman59], allowed the fabrication of smaller and smaller

samples. Such systems were characterised by physical dimensions making possible a

description in terms of real one- or two-dimensional models. The new samples enabled

for the first time to investigate the limits of validity of Eq. (4), and then a different

interpretation of resistance at a microscopic level. For such samples, the assumption of

bulk metal, necessary in order for Eq. (4) to hold, is no longer adequate. In the next

chapter, we will see that Landau’s hypothesis of well-screened particles is no longer

valid under this condition. Consequently, a new kind of approach allowing a new and

correct description should be followed. As mentioned above, abandoning the bulk sys-

tem assumption will have deep consequences.

Following [Datta97], one could say that a conductor presents an ohmic behaviour

if its linear dimensions are larger than three typical lengths: de Broglie wavelength

2π/k, k being the electron wavevector, the elastic mean free path le, concerning elec-

trons static-impurities scattering, and the coherence length Lφ, that is the length along

which an electron can preserve the information concerning its quantum mechanical

phase. All these lengths will be defined more precisely in the next sections. They can

vary from one material to another, and can be influenced by external parameters, as

for instance the temperature. See Tab. 2 for some typical electronic values in two



xiv INTRODUCTION

(2DEG) GaAs/AlGaAs CNT Units

Fermi Wavelength λF = 2π/kF 40 0.74 nm

Fermi velocity vF = kF/m 2.7 8.1 105m/s

Mean Free Path l = vF τ 0.1 − 1 ∼ 2 µm

Phase Coherence Length Lφ ∼ 200 ∼ 200 nm

Table 1: Typical electronic properties for a 2DEG confined in GaAs/AlGaAs heterostructures
and for single-wall carbon nanotubes, CNT.

different systems.

When the linear dimensions of the sample are not larger than the three above-

mentioned lengths, a non-local spatial and time dependence of physical quantities arises.

We will see that the physical quantities, as for instance the electrical conductivity, be-

have differently; they contain and can reveal more information about the nature of the

sample. Particularly, we point out the role played by the coherence length Lφ which,

if comparable to the linear dimensions of the sample, drastically changes the physical

description. In the following chapter, we will better understand why. Here, we just

observe, that at low temperatures, as T → 0, all the scattering processes taking place

in the sample, first among electrons and phonons, then among electrons, become elas-

tic since the system goes into its ground state; then, a well defined phase correlation

before and after collisions exists. The ability for an electron to preserve information

about its phase, until a phase-breaking process occurs, confers to the physical quanti-

ties describing charge and heat transfer a non-local spatial and time dependence; on

the contrary, the Landau theory just gives rise to a strictly local dependence.

Such a non-local behaviour is observed for the low-energy properties of physical

systems having a typical size varying between some dozens of micrometers, (10−6m),

and some nanometers, (10−9m). These systems, whose size is between the macroscopic

scale and the atomic scale, and where the electron coherence length can largely exceed

the size of the sample, are generally called mesoscopic systems; this word was coined
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for the first time by Van Kampen in 1981, [Imry02]. We add that with respect to the

macroscopic systems, the existance of the coherence length Lφ, comparable to the size

of the samples, allows the observation of pure quantum mechanical interference effects.

In this thesis, we have studied two different mesoscopic systems: disordered

quantum wires and granular metals. In the rest of the introduction, we shortly give

a presentation of such systems and of our work. In both cases, some difficulties in

describing them in terms of Landau approach will arise, as we will see. Consequently,

a deviation from Fermi liquid behaviour can be expected.

Both for quantum wires and granular metals, the behaviour of electrical con-

ductance was already known, while the thermal transport was not yet studied. The

question which has driven our work is whether or not in such systems, under well

defined conditions, the charge and heat transfer can be still described as in a Fermi

liquid. This is the problem to which we have tried to give an answer for our two specific

systems, by evaluating the thermal conductance, and then the validity of WF law.

We point out that our work follows the wake of the long list of papers trying,

since many years, to investigate the behaviour of the Lorenz number, and then the

dominating transfer mechanisms, for many different systems, [Castellani87, Kane96,

Fazio98, Niven02, Beloborodov05, Biagini05, Ferone].

Quantum wires

In the first part of this thesis, we present the results about the thermal and

electrical conductance in disordered quantum wires that is in one-dimensional (1D)

conductors. Nowadays, it is possible to make samples with very strong confining

potential along two directions. Such systems behave as electronic waveguides, since

they present a strongly one-dimensional nature of conduction. Examples are the car-

bon nanotubes, [Tans97, Wildoer98, Odom98], or the AlGaAs/GaAs heterostructures,

[Tarucha95, Levy05].
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The study concerning 1D systems has been generally focused on electrical trans-

port, [Tarucha95, Safi95, Safi97, Maslov95, Maslov95b, VanWees88, Wharam88]. For

the thermal transport, experimentally, a measurement of thermal conductance requires

a means of detecting the heat flow through the constriction. This was done for the first

time in 1992, using quantum point contacts (QPC) as extremely accurate thermome-

ters, [Molenkamp92, Appleyard98]. From a theoretical point of view, only in 1998 the

expression for the thermal conductance for a one-dimensional system was theoretically

studied, [Fazio98, Krive98].

For these low dimensional systems, Landau’s assumptions are no longer valid

since there will be always at least one direction in space along which the Coulomb

interactions are not well screened. The need of a new approach arises.

This kind of systems is generally studied in the framework of the Luttinger liq-

uids (LL) theory. The fundamental ideas will be given explicitly in the next chapters.

Here, we content ourselves to claim that such a theory presents an exactly solvable

model for one-dimensional conductors to take correctely into account Coulomb inter-

actions. The eigenstates of such a system are no longer fermionic single quasi-particle

excitations, but collective modes that have bosonic character: charge and spin density

waves, which have linear spectra. In our work, we took into account the contribution

due to charge density waves.

The charge density waves, also called plasmons, can be seen as the responsible

modes for the heat transport, as the electrons are for charge transport. The scattering

properties of plasmons are very different from electronic ones, and this yields drastic

effects. Particularly, this makes one-dimensional wires extremely sensitive to the phys-

ical realization: an infinitely long wire will have different transport properties with

respect to a finite-size one connected to measuring metallic electrodes. The latter are

generally called reservoirs, and they play the role of source and drain.

The reservoirs play a fundamental role. The connections between the wire and

the electrodes, practically, introduce inhomogeneities in the systems, and then, possible

mechanisms of backscattering that strongly influence the transport. It is reasonable
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imagining that such inhomogeneities have a typical spatial size linh ≫ λF , λF being

the Fermi wavelength. If linh is the characteristic spatial scale of the disorder, then

such a presence will not affect electron propagation, being the characteristic spatial

scale of an electron of the order of λF . In other words, electrons, which can be seen as

responsible of charge transfer, will not perceive such a disorder. This is not the case for

the plasmons which can have a wavelength comparable to linh; then, they could suffer

backscattering and the thermal transport will be strongly affected, [Fazio98, Krive98].

For a clean quantum wire, that is a wire without impurities, connected to two

reservoirs, in absence of backscattering for electrons, electrical conductance is not renor-

malised by interactions. It is given by the universal value gcw = e2/h, [Safi95, Maslov95,

Maslov95b, VanWees88, Wharam88]. On the contrary, the thermal one is strongly

renormalized, and it causes a suppression of Lorenz number [Fazio98, Krive98]. The

latter is always, for any temperature and any value of interaction strength in the wire,

smaller than its non-interacting value L0. The non-interacting value is attained only in

the very low temperatures limit, T ≪ v/d; v/d is the characteristic energy scale of the

problem, v being the propagation velocity of plasmons in the wire, and d its length. If

the temperature becomes much higher than v/d, the Lorenz number changes slowly.

Again, we stress that the results are completely different if the wire is infinitely

long: the Lorenz number is always larger than L0. Particularly, if the interactions

inside the wire become very strong, it diverges as T → 0, [Kane96].

This is for an ideally clean quantum wire. The presence of at least a weak des-

order is, anyway, a general feature of the systems. For example, in [Levy05], see Fig.

3, the weak disorder is represented by the undulations on the side-walls of the wire of

the order of 10-20 nm.

It is licit to wonder what is the role played by the disorder on electrical and

thermal transport. Till now, the correction to electrical conductance is known, [Safi95,

Safi97, Maslov95, Maslov95b]. We are evaluating the correction due to disorder for

thermal transport; then, we will be able to evaluate the behaviour of the Lorenz num-

ber L.
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Figure 1: Image of a quantum wire region realised in a AlGaAs/GaAs heterostructure. Such
a region presents a weak disorder due to the undulations on the side-walls of the wire of the
order of 10-20 nm, [Levy05].

As we will see, the variation of Lorenz number depends on both the corrections

to electrical and thermal conductances. So far, at our knowledge, few works exist

which allow to determine the sign of the correction to Lorenz number, [Li02, Ferone].

In principle, it could be positive or negative, or the correction could even vanish. In

this case, the presence of disorder would affect in the same way the charge and heat

transport, as in a classical metal.

In our work, weak disorder has been modeled as a white noise (wn) poten-

tial, and the analytical expressions of the corrections will be presented in two different

regimes: at low, T ≪ v/d, and high, T ≫ v/d, temperatures.

The evaluation of the corrections to electrical and thermal conductance is strongly

different; it depends on the different nature of electrons, which are responsible of charge

transport, and plasmons, responsible for the energy transfer. As a consequence, the

contributions to charge and heat transport are not the same.

We reproduced the behaviour of the correction, due to disorder, to electrical

conductance at low and high temperatures. Of course, the presence of weak disorder

induces a negative correction, both at low and high temperatures.

For the thermal transport, at the moment, we recovered the expression of all

different diagrams contributing to heat transfer. Their expressions demand an accu-

rate analysis, and their analytical evaluation in presence of interactions has been not

completed yet. We have verified that in absence of interactions, the Wiedemann-Franz
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law is respected.

Granular metals

In the second part of this thesis, we have evaluated the corrections due to the

superconducting fluctuations to the thermal conductivity in a granular metal.

Often, in discussing superconductivity, one assumes that the system will be in

its ground state. It is, of course, the most probable possibility if T ≪ Tc. As the tem-

perature rises, close to Tc the presence of thermal energy of order ∼ T , (we remember

kB = ~ = 1), will allow the system to fluctuate in other states with a finite probability.

Such phenomena, known under the name of superconducting fluctuations, induce the

formation of Cooper pairs even in the normal phase in presence of a superconducting

(BCS) interaction. Particularly, at T & Tc, electrons can form Cooper pairs which have

a finite lifetime, the Ginzburg-Landau (GL) time, inversely proportional to the distance

from the critical temperature, τGL ∼ 1/(T − Tc), [Tinkham96, Larkin04]. Under these

conditions, particular phenomena appear since transport properties of the normal state

mix with the ones which are characteristic of the superconducting state, giving rise to

three different contributions to conductivity: the Aslamzov-Larkin (AL) contribution,

also called paraconductivity, the Maki-Thompson (MT) contribution, and the density

of state (DOS) contribution, [Larkin04]. They will be presented in more details in

the following chapters; for the moment, we just want to give an idea of the physical

phenomena they describe.

The AL term describes the contribution to charge and heat transport due to

the presence, at temperature T & Tc, of Cooper pairs. This contribution is generally

positive since it takes into account the aptitude of Cooper pairs to propagate easily

through the system. Electrons forming Cooper pairs will be no longer available for

single particle transport; then, such a presence implies a variation of the one-particle

density of state close to the Fermi level. This is exactly the contribution taken into
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Figure 2: Image of a granular film composed of Al grains on amorphous Ge background.
The typical size of the grains is ∼ 120 Å, [Shapira83].

account by the DOS term. Finally, there is a purely quantum mechanical contribution,

the MT contribution, which takes into account the coherent scattering of two electrons,

forming a Cooper pair, on the same elastic impurity, [Larkin04].

For bulk systems and for thermal transport, it has been shown that the DOS

and the MT contributions compensate exactly. The only surviving term is the AL

contribution which is non-singular in the temperature, [Niven02]. Consequently, in

bulk metals, no singular behaviour of the heat current is expected at the normal-

superconductor phase transition.

A granular metal can be thought of as a d-dimensional array of metallic grains

embedded in an insulating amorphous matrix, with impurities on the surface and inside

each grain. In Fig. 4 an experimental realization is presented. The different grains com-

municate among them by means of single-electron tunneling, and we suppose that the

dimensionless macroscopic tunnelling conductance gT is much larger than one, which is

equivalent to state that the system is a good metal. Of course, it is reasonable to imag-

ine that the presence of tunneling strongly influences the transport properties. Indeed,

depending on temperature regime, a different behaviour, with respect to the bulk case,

emerges. As we will see, the different contributions present a tunneling-dependent

behaviour; particularly, the AL and MT terms are of higher order in the tunneling

amplitude than the DOS one. This will result into two distinct regions: in the first

one, far from Tc, the tunneling among grains is not efficient and the granular structure

prevails. A 1/ǫ suppression is found, ǫ = (T − Tc)/Tc being the reduced temperature.
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Close to critical temperature, the tunneling is effective: a saturation of the correction

is found and the bulk general behaviour is recovered. In both regions, the sign of the

correction is not univocally defined, but it depends on the barrier transparency and on

the competition among the different contributions.

Outlook

The manuscript is organised as follows.

The following chapter is dedicated to the phenomenological foundations of trans-

port theory: from classical to quantum transport. We will show the successes of the

classical theory to describe most of the metals under ordinary conditions; then, its fail-

ure at low temperatures and for low dimensional systems. At the end of the chapter,

we will consider the need of a new mesoscopic approach to give a correct description

of non-local physical quantities. Step by step, we will analyse some important aspects;

then, we will see how they should be modified to get a more faithful description. In

this way, we will be able to build a coherent framework to study our own work.

The rest of the work is divided into two parts: the first one concerning the study

of thermal transport in a disordered quantum wire, the second concerns the evaluation

of thermal conductivity for a granular system.

For the quantum wires, first, we present the basic principle of Luttinger liquids

theory. We give the necessary elements to understand the principal features of such

1D systems. Then, we introduce our system, and we motivate our work on the bases

of experiences. We present the results for a clean quantum wire, then, we tackle the

problem for a disordered one, presenting our results for the two regimes which can be

studied analytically.

The same structure will be followed for the granular metals. In this case, we

will give a very short reminder of BCS theory, and then we will motivate our work.

Finally, we will present the known results and the ones we have found for the thermal
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transport.
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Dans ce manuscrit de thèse nous étudions les propriétés de transport de la charge

et de la chaleur dans deux différents systèmes mésoscopiques désordonnés. Cette pre-

mière phrase contient plusieurs concepts, et beaucoup de questions se posent spontané-

ment: pourquoi devrait-on être intéressé aux propriétés de transport? Qu’est-ce qu’un

système mésoscopique et pour quoi devrait-il être intéressant d’étudier les systèmes

mésoscopiques désordonnés? Dans quel contexte de tels systèmes pourraient-ils être

étudiés?

D’autres questions pourraient se poser, mais pour l’instant nous nous arrêtons

ici, et nous cherchons à donner des réponses au moins à quelques unes d’entre elles.

Les autres trouverons une réponse dans la suite de ce manuscrit.

Depuis l’aube de l’exploration théorique et expérimentale des propriétés de la

matière condensée, notamment des métaux, les scientifiques supposèrent que la capac-

ité de quelques systèmes de transporter la charge et la chaleur était profondément liée à

leur nature la plus intime. Par exemple, juste trois ans après la découverte de l’électron

par Thomson en 1897, un résultat très important fut obtenu par Drude dans l’étude

sur la conductivité électrique, [Ashcroft87], confirmant la relation très forte existante

entre les propriétés de transport et la nature du système: comprendre la façon dont les

métaux transfèrent la charge et la chaleur signifie comprendre comment ils se compor-

tent au niveau microscopique.

Cette dernière est juste une réponse partielle à la première question. Naturelle-

ment, les différentes théories qui se sont suivies, ont apporté, petit à petit, d’autres

briques à la compréhension du problème, et donc, de la nature microscopique de la
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matière condensée. En particulier, la naissance de la mécanique quantique changea

complètement la façon d’aborder le problème, et elle donna l’opportunité de corriger

plusieurs hypothèses que l’expérience quotidienne dans les laboratoires avait montré

être fausses.

Comme nous le verrons dans le prochain chapitre, jusqu’aux années soixante-dix,

la plupart des propriétés de transport d’un métal massif pouvaient être expliquées grâce

à la théorie de Landau des liquides de Fermi, [Abrikosov88]. Elle fut originairement

conçue pour étudier l’ 3He, puis elle fut généralisée à plusieurs systèmes fermioniques.

Son idée fondamentale est que le gaz électronique dans un système massif peut en-

core être décrit comme un ensemble de particules indépendantes, sous l’hypothèse que

l’écrantage des interactions entre deux électrons donnés, dû à la présence des autres

électrons, soit fort. Les particules en fonction desquelles le système est décrit ne sont

pas des particules réelles, mais des entités plus complexes, généralement appelées quasi-

particules, qui préservent leur caractère fermionique, et qui représentent les excitations

à basse énergie et grande longueur d’onde du système en interaction. Si l’hypothèse

d’écrantage est satisfaite, alors la théorie prévoit que la charge et la chaleur sont trans-

portées par les mêmes entités: les susdites quasi-particules fermioniques. L’existence

d’une telle relation entre le transport de la charge et de la chaleur est exprimée de façon

générale par la loi de Wiedemann-Franz (WF). Elle affirme que le rapport entre la con-

ductivité thermique κ et celle électrique σ dépend de façon linéaire de la température

T , la constante de proportionnalité étant indépendante du métal. Cette loi peut être

écrite de la façon suivante
κ

Tσ
=

π2

3e2
= L0 , (3)

où e est la charge de l’électron. Ici et dans le reste du manuscrit, nous utilisons des

unités de mesure telles que kB = ~ = 1. La constante de proportionnalité L0 est connue

sous le nom de nombre de Lorenz et elle représente la signature du comportement de

type Liquide de Fermi. Elle joue un rôle très important, car sa valeur permet de

comprendre si le système se trouve ou non dans un état type liquide de Fermi; donc,

elle permet d’avoir une idée sur le principal mécanisme de transport de la charge et
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de la chaleur. En principe, si on pouvait mesurer L0 expérimentalement, on pourrait

avoir des informations sur la nature et l’état du système.

Ce type de description est valable pour la plupart des conducteurs dits ohmique

et massifs; à savoir, tous les conducteurs massifs pour lesquels la loi de Ohm est valable.

Cette dernière s’écrit

j = σE . (4)

L’équation (4) est une relation locale qui relie le champ électrique E présent au

temps t à la position r à la densité de courant j au même instant et à la même position.

σ est la conductivité électrique; elle est constante mais elle varie d’un métal à l’autre.

Nous soulignons les deux caractéristiques inhérentes de l’Eq. (4): son caractère locale,

et la nécessité que le système soit massif. Plus tard, nous verrons que ces deux carac-

téristiques sont profondément liées: en l’absence de l’hypothèse de système massif, le

caractère local des grandeurs physiques concernant le transport de la charge et de la

chaleur ne sera plus verifié. Cela nous conduira à réfléchir aux propriétés de transport

d’un point de vue différent par rapport aux théories, telle que la susdite théorie de

Landau, généralement utilisée pour décrire les métaux macroscopiques.

Pendant les années quatre-vingt, le développement technologique, ainsi que

imaginé par Feynman même vingt ans auparavant, [Feynman59], permit la produc-

tion d’échantillon de plus en plus petits. De tels systèmes étaient caractérisés par des

dimensions physiques qui rendaient possible une description en termes de modèles à

une ou deux dimensions. Les nouveaux échantillons permirent pour la première fois

d’étudier les limites de validité de l’Eq. (4), et donc une interprétation différente au

niveau microscopique. Pour des tels échantillons, l’hypothèse de métal massif, néces-

saire afin que l’Eq. (4) soit valable, n’est plus adéquate. Dans le chapitre suivant,

nous verrons que l’hypothèse de Landau sur des particules bien écrantés n’est plus val-

able dans ces conditions. De fait, une nouvelle approche permettant une description

nouvelle et correcte devra être suivie. Comme nous l’avons mentionné, abandonner

l’hypothèse de métal massif aura des conséquences profondes.

D’après [Datta97], on pourrait dire qu’un conducteur présente un comportement



xxvi INTRODUCTION

(2DEG) GaAs/AlGaAs CNT Unités

Longueur d’onde de Fermi λF = 2π/kF 40 0.74 nm

Vitesse de Fermi vF = kF/m 2.7 8.1 105m/s

Libre parcours moyen l = vF τ 0.1 − 1 ∼ 2 µm

Longueur de cohérence de phase Lφ ∼ 200 ∼ 200 nm

Table 2: Propriétés électroniques typiques pour un 2DEG confiné dans des hétérostructures
GaAs/AlGaAs, et pour un nanotube de carbone à une seul parois, CNT.

ohmique si ses dimensions linéaires sont plus grands que trois longueurs typiques: la

longueur d’onde de de Broglie 2π/k, k étant le vecteur d’onde de l’électron, le libre

parcours moyen élastique le, concernant la diffusion des électrons à cause de la présence

d’impuretés statiques, et la longueur de cohérence Lφ, c’est à dire la longueur le long

de laquelle un électron peut conserver l’information concernant la phase. Toutes ces

longueurs seront definies plus précisément dans les paragraphes qui suivent. Elles peu-

vent varier d’un métal à un autre, et elles sont influencées par des paramètres externes,

comme par exemple la température. Voir le Tableau 2 pour des valeurs typiques pour

deux systèmes differents.

Quand les dimensions linéaires de l’échantillon ne sont pas plus grandes que les

susdites longueurs, une dépendance spatiale et temporelle non-locale apparâıt. Nous

verrons que les grandeurs physiques, comme par exemple la conductivité électrique, se

comportent différemment; elles contiennent et peuvent révéler plus d’informations sur

la nature de l’échantillon. En particulier, nous soulignons le rôle joué par la longueur

de cohérence Lφ qui, si comparable aux dimensions linéaires de l’échantillon, change

drastiquement la description physique. Dans le chapitre suivant, nous comprendrons

mieux la raison. Ici, nous observons qu’aux très basses températures, T → 0, tous les

processus de diffusion ayant lieu dans l’échantillon, d’abord entre les électrons et les

phonons, puis parmi les électrons, deviennent élastiques car le système est dans son

état fondamental; donc une corrélation de phase bien définie avant et après les colli-
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sions existe. La capacité d’un électron de conserver l’information sur la phase, jusqu’à

quand un processus de rupture de phase intervient, confére aux grandeurs physiques

une dépendance spatiale et temporelle non-locale; en revanche, la théorie de Landau

ne fait apparâıtre qu’une depandance strictement locale.

Un tel comportement non-local est observé pour les propriétés à basse-énergie

des systèmes physiques ayants une taille typique qui varie entre quelques dizaines de

micromètres (10−6m), et quelques nanomètres, (10−9m). Ces systèmes, dont la taille est

entre l’échelle macroscopique et l’échelle atomique, et où la longueur de cohérence peut

excéder la taille de l’échantillon, sont généralement appelés systèmes mésoscopiques; ce

mot fut utilisé pour la première fois par Van Kampen en 1981, [Imry02]. Nous ajoutons

que par rapport aux systèmes macroscopiques, l’existence de la longueur de cohérence

Lφ, comparable à la taille de l’échantillon, permet l’observation d’effets d’interférence

qui ont une origine purement quantique.

Dans cette thèse, nous avons étudié deux différents systèmes mésoscopiques: les

fils quantiques désordonnés et les métaux granulaires. Dans le reste de l’introduction,

nous présentons brièvement ces systèmes et notre travail. Dans les deux cas, quelques

difficultés pour les décrire en termes de la théorie de Landau apparâıssent. Par con-

séquant, une déviation du comportement type liquide de Fermi peut être attendu.

Le comportement de la conductance électrique pour des systèmes tels que les

fils quantiques et les métaux granulaires était déjà connu, alors que le transport ther-

mique n’avait pas encore était étudié. La question qui a guidé notre travail est si dans

de tels systèmes, sous des conditions bien définies, le transport de la charge et de la

chaleur peut être encore ou non décrit comme dans un liquide de Fermi. Celui-ci est le

problème auquel nous avons essayé de donner une réponse pour les deux systèmes en

question, en évaluant la conductance thermique, et puis vérifiant la validité de la loi

de WF.

Notre travail suit la vague de la longue liste de travaux qui cherchent, depuis

plusieurs années à étudier le comportement du nombre de Lorenz, et donc de compren-

dre le mécanisme de transport dominant, dans plusieurs systèmes différents, [Castel-
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lani87, Kane96, Fazio98, Niven02, Beloborodov05, Biagini05, Ferone].

Fils quantiques

Dans la première partie de cette thèse, nous présentons les résultats sur le trans-

port de charge et de chaleur dans les fils quantiques désordonnés, c’est à dire dans les

systèmes uni-dimensionnels. A nos jours, il est possible de fabriquer des échantillons

caractérisés par un potentiel de confinement très fort le long de deux directions. De

tels systèmes se comportent comme des guides d’ondes électroniques, car ils présentent

une conduction à la nature fortement uni-dimensionnel. Des exemples sont donnés par

les nanotubes de carbone, [Tans97, Wildoer98, Odom98], ou par les hétérostructures

AlGaAs/GaAs, [Tarucha95, Levy05].

L’étude concernant les systèmes 1D a été généralement focalisée sur le transport

électrique, [Tarucha95, Safi95, Safi97, Maslov95, Maslov95b, VanWees88, Wharam88].

En ce qui concerne le transport thermique, expérimentalement, une mesure de la con-

ductance thermique demande un moyen pour détecter le flux de chaleur à travers le fil.

Ceci fut fait pour la première fois en 1992, en utilisant des points quantiques (QPC)

comme des thermomètres extrêmement sensibles, [Molenkamp92, Appleyard98]. D’un

point de vue théorique, l’expression de la conductance thermique pour un système uni-

dimensionnel ne fut obtenue qu’en 1998, [Fazio98, Krive98].

Pour de tels systèmes, les hypothèses de Landau ne sont plus valables car il y a

toujours au moins une direction spatiale le long de laquelle les interactions coulombi-

ennes ne sont plus écrantées. La nécessité d’une nouvelle approche apparâıt.

De tels systèmes sont généralement étudiés dans le contexte de la théorie des

liquides de Luttinger (LL). Les idées fondamentales seront données explicitement dans

le chapitre suivant. Ici, nous disons juste que cette théorie présente un modèle ex-

actement soluble pour les conducteurs uni-dimensionnels pour prendre correctement

en compte les interactions coulombiennes. Les états propres d’un tel système ne sont
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plus les excitations de simples quasi-particules fermioniques, mais des modes collectifs

qui ont un caractère bosonique: les ondes de densité de spin et de charge, qui ont

une relation de dispersion linéaire. Dans notre travail, nous avons pris en compte la

contribution due aux ondes de densité de charge.

Les ondes de densité de charge, aussi appelés plasmons, peuvent être vus comme

les modes responsables du transport de chaleur, de même que les électrons le sont pour

le transport de la charge. Les propriétés de diffusion des plasmons sont très différentes

de celle des électrons, et cela a des conséquences très fortes. En particulier, cela rend

les fils uni-dimensionnels extrêmement sensible à la réalisation physique: un fil infin-

iment long aura des propriétés de transport différentes par rapport à un fil de taille

finie connecté à deux électrodes métalliques de mesure. Ces derniers sont généralement

appelés réservoirs, et jouent le rôle de la source et du drain.

Les réservoirs jouent un rôle fondamental. D’un point de vue strictement pra-

tique, les connections entre le fil et les électrodes introduisent des inhomogénéités dans

le système, et donc des possibles mécanismes de diffusion qui influencent fortement le

transport. Il est raisonnable d’imaginer que des telles inhomogénéités ont une taille

spatiale typique linh ≫ λF , λF étant la longueur d’onde de Fermi. Si linh est l’échelle

spatiale typique du désordre, alors, une telle présence n’affectera pas la propagation

des électrons, car l’échelle spatiale typique pour un électron est de l’ordre de λF . En

d’autres termes, les électrons, qui peuvent être vus comme les responsables du trans-

port de charge ne s’apercevront pas du désordre. Ceci n’est pas le cas des plasmons

qui peuvent avoir, eux, une longueur d’onde comparable à linh; alors, ils peuvent être

diffusés, et le transport thermique sera fortement affecté, [Fazio98, Krive98].

Pour un fil propre, c’est à dire un fil sans impuretés, connecté à deux réservoirs,

en absence de rétrodiffusion pour les électrons, la conductance électrique n’est pas

renormalisée par les interactions; elle est donnée par la valeur universelle gcw = e2/h,

[Safi97, Maslov95, Maslov95b, VanWees88, Wharam88]. En revanche, la conductance

thermique est fortement renormalisée, et cela engendre une suppression du nombre de

Lorenz, [Fazio98, Krive98]. Ce dernier est toujours, pour n’importe quelle température
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Figure 3: Image d’un fil quantique réalisé dans une hétérostructure AlGaAs/GaAs. Le fil
présente un faible désordre représenté par les ondulations le long des parois de l’ordre de
10-20 nm, [Levy05].

et valeur des interactions dans le fil, plus petit que la valeur en absence d’interactions,

L0. Une telle valeur est atteinte seulement à la limite de très basses températures,

T ≪ v/d; v/d est l’échelle d’énergie caractéristique de notre système, v étant la vitesse

de propagation des plasmons dans le fil, et d sa longueur. Si la température devient

beaucoup plus grande que v/d, le nombre de Lorenz change lentement.

A nouveau, nous soulignons le fait que les résultats sont completement differ-

ents si le fil est infiniment long: le nombre de Lorenz est toujours plus grand que L0.

Particulièrement, si les interactions dans le fils deviennent très fortes, il diverge pour

T → 0, [Kane96].

Tout cela vaut pour un fil propre. La présence d’un faible désordre est, en tout

cas, une caractéristique général du système. Par exemple, dans [Levy05], voir Fig. 3,

le faible désordre est représenté par les ondulations le long des parois du fil, qui ont,

elles, une longueur de l’ordre de 10-20 nm.

Il est naturel de se demander quelle est l’influence du désordre sur la conduc-

tivité électrique et thermique. Jusqu’ici, la correction à la conductivité électrique est

connue, [Safi95, Safi97, Maslov95, Maslov95b]. Nous sommes en train d’évaluer la cor-

rection due au désordre au transport thermique; puis, nous serons capables d’évaluer

le comportement du nombre de Lorenz L.

Comme nous le verrons, la variation du nombre de Lorenz dépend des correc-

tions aux conductances électrique et thermique. A présent, à notre connaissance, très
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peu de travaux existants qui permettent de determiner le signe de la correction au

nombre de Lorenz, [Li02, Ferone]. En principe, elle pourrait être positive ou négative,

ou elle pourrait même disparâıtre. Dans ce cas, la présence du désordre affecterait de la

même façon le transport de la charge et de la chaleur, comme pour un métal classique.

Dans notre travail, le faible désordre a été modelisé par un potentiel du type

bruit blanc (wn), et les expressions analytiques pour les corrections seront présentées

dans deux régimes différents: basses, T ≪ v/d, et hautes, T ≫ v/d, températures.

L’évaluation des corrections aux conductances électrique et thermique est très

différente; elle dépend de la nature différente des électrons, qui sont, eux, les respon-

sable pour le transport de la charge, et les plasmons, responsable pour le transport

d’énergie. Par conséquant, les contributions au transport de charge et de chaleur ne

sont pas les mêmes.

Nous avons reproduit le comportement de la correction due au désordre à la

conductance électrique à basses et à hautes températures. Naturellement, la présence

du désordre induit une correction négative dans les deux cas.

En ce qui concerne le transport thermique, pour l’instant, nous avons reproduit

l’expression de tout les différents diagrammes contribuant au transport. Leurs expres-

sions demandent une analyse précise, et leurs évaluations en présence des interactions

n’a pas encore été complétée. Nous avons verifié qu’en absence d’interactions, la loi de

Wiedemann-Franz est respectée.

Métaux granulaires

Dans la deuxième partie de cette thèse, nous avons étudié les corrections dues

aux fluctuations supraconductrices à la conductivité thermique dans un métal granu-

laire.

Souvent, en discutant de la supraconductivité, on suppose que le système est

dans son état fondamental. C’est, naturellement, la possibilité la plus probable si
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T ≪ Tc. Dès que la température monte, près de Tc, la présence de l’énergie thermique

de l’ordre de ∼ T , (nous rappelons kB = ~ = 1), permettra au système de fluctuer dans

d’autre états avec une probabilité finie. Ce phénomène, connu sous le nom de fluctua-

tions supraconductrices, induit la formation de paires de Cooper même dans la phase

normale en présence d’une interaction supraconductrice (BCS). En particulier, à une

température T & Tc, les électrons peuvent former des pairs de Cooper qui ont, eux, un

temps de vie fini, le temps de Ginzburg-Landau (GL), qui est inversement proportionnel

à la distance de la température critique, τGL ∼ 1/(T−Tc), [Tinkham96, Larkin04]. Sous

ces conditions, des phénomènes très particuliers peuvent apparâıtre car les propriétés

de transport de la phase normale se mélangent avec celles caractéristiques de la phase

supraconductrice, faisant apparâıtre trois différentes contributions à la conductivité: la

contribution Aslamazov-Larkin (AL), aussi appelée paraconductivité, la contribution

Maki-Thompson (MT), et la contribution dite densité d’états (DOS), [Larkin04]. Elles

seront présentées en details dans les chapitres suivants; pour l’instant, nous ne voulons

que donner une idée des phénomènes physiques qu’elles décrivent.

Le terme AL décrit la contribution au transport de la charge et de la chaleur

due à la présence, à des températures T & Tc, de paires de Cooper. Cette contribution

est généralement positive car elle prend en compte l’aptitude des paires de Cooper à

se propager facilement au travers du système. Les électrons qui forment des paires

de Cooper ne seront plus disponibles pour le transport en tant que particules simples;

donc, la présence des paires de Cooper implique une variation de la densité d’états à

une particule près du niveau de Fermi. Il s’agit exactement de la contribution prise en

compte par le terme DOS. Finalement, il y a une contribution purement quantique, la

contribution MT, qui prend en considération la diffusion cohérente de deux électrons,

qui forment un paire de Cooper, sur la même impureté élastique, [Larkin04].

Pour des systèmes massifs, il a été montré que les contributions DOS et MT se

compensent exactement pour le transport thermique. Le seul terme qui survit est la

contribution AL qui a un comportement non singulier en fonction de la température,

[Niven02]. Par conséquant, dans les métaux massifs, aucun comportement singulier du
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Figure 4: Image d’un film granulaire composé par des grains d’aluminium déposés sur un
fond de Germanium amorphe. La taille typique des grains est de ∼ 120 Å, [Shapira83].

courant thermique n’est attendu à la transition d’état normale-supraconducteur.

Un métal granulaire peut être imaginé comme un vecteur d-dimensionnel de

grains métalliques renfermés dans une matrice d’isolant amorphe, avec des impuretés

sur la surface et dans chaque grain. Sur la Fig. 4 une réalisation expérimentale est

montrée. Les grains communiquent entre eux grâce au tunnelling à une particule,

et nous supposons que la conductance tunnelling macroscopique sans dimension gT

est beaucoup plus grande que un, qui est equivalent à affirmer que le système est un

bon métal. Naturellement, c’est raisonnable d’imaginer que la présence du tunnelling

influence fortement les propriétés de transport. En effet, selon la température, un com-

portement différent, par rapport au cas massif, est observé. Comme nous le verrons, les

différentes contributions présentent un comportement dépendant du tunnelling; en par-

ticulier, les termes AL et MT sont d’ordres supérieurs dans l’amplitude de tunnelling

à celui de la contribution DOS. Cela donnera lieu à deux régions distinctes: dans la

première, loin de Tc, le tunnelling entre les grains n’est pas efficace, et la structure

granulaire prévaut. Une suppression du type 1/ǫ est retrouvée, ǫ = (T − Tc)/Tc étant

la température réduite. Près de la température critique, le tunnelling est efficace: une

saturation de la correction est trouvée et le comportement massif est retrouvé. Dans les

deux régimes, le signe de la correction n’est pas défini de façon univoque, mais dépend

de la transparence de la barrière et de la compétition entre les différentes contributions.
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Plan

Le manuscrit est organisé de la façon suivante.

Le prochain chapitre est dédié au principes phénoménologiques fondamentaux

de la théorie du transport: du transport classique au transport quantique. Nous mon-

trerons les succès de la théorie classique pour décrire la plupart des métaux dans des

conditions ordinaires; puis, ses limites à basse température et pour des systèmes à

dimension réduite. A la fin du chapitre, nous considérerons la nécessité d’une nou-

velle approche pour donner une description fidèle et correcte des grandeurs physiques

non-locales. De cette façon, nous allons bâtir un contexte cohérent où présenter notre

propre travail.

Le reste du manuscrit est divisé en deux parties: la première concerne l’étude

du transport thermique dans un fil quantique désordonné, la deuxième l’évaluation de

la conductivité thermique pour un système granulaire.

Pour les fils quantiques, d’abord, nous présentons les principes de base de la

théorie des liquides de Luttinger. Nous montrons les éléments nécessaires à la com-

préhension des propriétés pour un système uni-dimensionnel. Puis, nous présentons

notre système, et motivons notre travail sur la base des expériences. Les résultats pour

un fil propre sont présentés, puis le problème en présence d’impuretés est abordé.

La même structure sera suivie pour les métaux granulaires. Dans ce cas, nous

allons donner un rappel de la théorie BCS, et puis les motivations pour notre travail.

Finalement, nous présentons les résultats déjà connus, et ceux que nous avons trouvés

concernant le transport thermique.



Chapter 1

FROM CLASSICAL THEORY TO

QUANTUM EFFECTS

In this chapter, we want to discuss some fundamental aspects of the first for-

mulated theories concerning the charge and heat transport in metals. Particularly, we

will consider the ones who marked for different reasons this field. We will indicate a

logical and historical development, presenting the most important achievements in the

phenomenological and analytical understanding. Step by step, a coherent framework

where presenting our own work will be built up.

After showing the classical foundations of the transport theory, we will see how

deeply the quantum mechanics changed the way to approach such a problem in order

to obtain a more faithful description. A new fundamental theory, taking partially into

account the interactions among particles, was proposed by Landau. This theory, as al-

ready mentioned, is correct to describe bulk materials, where the transport properties

can still be described by means of a semi-classical approach.

In the last section, we will discuss low-dimensional systems at low temperatures,

where the quantum mechanical nature of particles can be no longer neglected.



2 FROM CLASSICAL THEORY TO QUANTUM EFFECTS

Figure 1.1: In accordance with Drude theory, collisions change drastically the velocity and
the propagation direction of electrons. In absence of external fields, they propagate ballisti-
cally, and velocities before and after collisions have no correlations.

1.1 Independent particles and Drude conductivity

One of the first theories proposed to study the electrical conductivity in metals

was the Drude model. In accordance with this theory, the metals are made up by heavy

ions in well fixed positions, and an electron sea, to which each atom contributes with

its valence electrons. The latter are not strongly bound to the nucleus, and they can

propagate through the whole system.

To formulate his theory, Drude used the kinetic theory of gases, describing the

above-mentioned electrons as identical hard spheres. As for a classical gas, he imagined

that the interactions among electrons and among electrons and ions, between two

subsequent collisions, were completely negligible. Under this assumption one speaks

of independent electron approximation and free electron approximation, respectively. A

consequence of the lack of any interaction is that the electron is supposed to move

ballistically between two following shocks, see Fig. 1.1. The absence of interactions is

one of the fundamental points of Drude theory; it will be also one of the first points to be

changed when we shall consider the description of the analogous quantum mechanical

system.

In accordance with the kinetic theory of gases, Drude considered collisions as

sudden events able to change drastically the velocity and then the propagation direction

of electrons, as shown in Fig. 1.1. Even if he guessed that the collisions were caused

mostly by interactions with ions, he did not make any hypothesis about their nature.

He just supposed that several diffusion mechanisms were present. Besides, in agreement
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with the kinetic theory, he supposed that there were no correlations between velocities

before and after shocks, [Ashcroft87]. The most important consequence of the lack of

any correlations is that the state of the particle at time t does not depend on history.

One speaks of relaxation-time approximation.

The latter is the second aspect that will be profoundly modified when we will

consider the particle as a quantum mechanical object with its own quantum mechanical

phase.

Drude was able to get not only qualitative, but also quantitative results. His

most famous achievement is the evaluation of electrical conductivity. He found

σ =
ne2τ

m
, (1.1)

where n is the density of charge carriers, e is the electron charge, and m is their mass.

τ is the mean free time, and it plays an importante role to characterise the disorder in

the system. The knowledge of conductivity allows an estimate of such a disorder as a

function of τ . Generally, such a disorder is measured in terms of the so-called mobility,

that is defined as µ = eτ/m. The higher is the mobility, the less disordered the system.

Notwithstanding the fact that Drude theory was not able to explain correctly the

discrepancies between experimental and theoretical values of some physical quantities,

as the specific heat and the thermopower, it was for long time accepted. Particularly for

explaining, at least phenomenologically, the WF law; it states that the ratio between

the thermal and electrical conductivity depends on temperature by a constant which

is more or less material-independent. It can be expressed as

κ

Tσ
=

π2

3e2
= L0 , (1.2)

where e is the electron charge. The constant of proportionality L0 is known as the

Lorenz number.

Observing the properties of conductors and insulators, Drude assumed that the

energy should be carried by the same conduction electrons which are responsible of

charge transport and that are absent in the insulator. The relation of proportionality
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in Eq. (1.2) would be nothing else but the transcription of the aforementioned Drude’s

statement.

In the following section, we will see that this proportionality is conserved even

considering interactions between electrons as foreseen by Landau theory.

1.2 Landau hypothesis and Boltzmann equation

In 1928, Davisson and Germer proved the wave nature of electrons by means of

interference phenomena experiments, [Schwabl92]; the results were in agreement with

de Broglie hypothesis of 1923, where he supposed that to each particle could be assigned

a frequency ω = E/~ and a wavelength λ = 2π~/p; E being the energy of particle, and

p its momentum.

Quantum mechanics allows the description of electrons as a wave packet obtained

by the superposition of plane waves

ψ(r, t) =

∫

dp

(2π)3
up(r) exp [i (p · r − ε(p)t)] . (1.3)

up(r) is the function that modulates the plane waves, and it can be, for example, a

Bloch periodic function for electrons propagating in a periodic potential in bulk met-

als. The wave packet has its maximum value for r ≈ (∂ε/∂p)t, and it propagates with

velocity v = ∂ε/∂p.

Quantum mechanics replaces the hard spheres of Drude model with more com-

plex objects having a well defined quantum mechanical phase. It is the existance of

such a quantum mechanical phase that gives rise to the interference phenomena which

we will speak of below. Of course, these quantum particles feel the mutual interactions,

and a complete description of such interacting electrons gas is a complicated task.

Nevertheless, the formulation of a new theory taking into account, at least par-

tially, the interactions among electrons was strongly wanted. A very important step

was represented by the Landau theory of Fermi liquids.

It represents a deep evolution of Drude approach since it takes into account the
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quantum mechanical nature of particles and, partially, the interactions among them,

which were completely neglected until that moment. Since the first theories, scientists

wanted to understand the limit of validity of independent particles assumption. Par-

ticularly, they wondered how successful this hypothesis could be in the presence of a

dense electron gas as, for instance, in bulk metals, where particles interact by means

of long range Coulomb forces.

Landau has shown that it is still possible to describe the system in terms of in-

dependent particles; the latter are no longer the real electrons, but a more complicated

quantities, which nevertheless conserve the fermionic nature. Then, one can find for

different physical quantities exactly the same expression as for an ideal Fermi gas, but

with renormalised parameters.

In the following section, we show the fundamental phenomenological ideas of

Landau theory, and how they allow the description of an interacting electronic gas. Of

course, we do not want to present the theory in details, for which there are several text-

books, [Abrikosov88, Akkerman94, Pines89], but just to stress some important points

that have been cornerstones in transport theory.

1.2.1 Independent particles and fermionic quasi-particles

The Landau theory of Fermi liquids bases itself on the properties of an ideal

Fermi gas. We begin by reminding briefly some important points for a non-interacting

fermionic particles system.

For a non-interacting and translationally invariant system, the single particles

eigenstates are plane waves, whose energy is quantized, and it is equal to εk = k2/2m.

The ground state of N particles is the Fermi sea and the energy of the last occupied

state is the Fermi energy EF = k2
F/2m. The elementary excitations for such a gas are

• Adding a particle with wave vector k. It is demanded |k| > kF , and the energy

of excitation is εk − µ > 0, µ being the chemical potential.
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E

0 kk2 F

Figure 1.2: Particle-hole spectrum for system with dimension D = 2. There is a continuum
of states different from 1D systems where it is not possible to have low-energy axcitations
between 0 and 2kF , see Fig. 2.1(b).

• Annihilation of a particle with wave vector k, or, equivalently, creation of a hole.

In this case it is demanded |k| < kF , and the energy of excitation is µ− εk > 0.

The previous kinds of excitations change the total number of particles. To build a

state conserving the number, one has to take a particle with wave vector k, such that

|k| < kF , and move it in state with wave vector k′, with |k′| > kF . This kind of

excitation, of particle-hole type, is characterised by the two quantum numbers {k,k′}
and they form a continuum of states as shown in Fig. 1.2.

The fundamental idea of Landau theory, [Abrikosov88, Akkerman94, Pines89],

is the existance of one-to-one correspondence between the eigenstates of the system

without interactions, and the eigenstates of the same system supposed to be made up

of interacting particles. Landau postulated that the ideas of Drude theory could be

still used, but considering the systems to be formed of the above-mentioned interacting

particles that are generally called quasi-particles. In other words, the spectrum of quasi-

particles in a Fermi liquid with interactions between the particles can be constructed

in the same way as for the ideal gas.

Let |0, N〉 be the ground state of N non-interacting fermions; let us imagine to

add a particle with momentum |p| > kF ; we will indicate the new state as |p, N +1〉 =

a†p|0, N〉, a†p being the creation operator for a particle with momentum p. Let us

suppose, now, to switch on the interactions. If the system is translationally invariant,



1.2 Landau hypothesis and Boltzmann equation 7

interactions will conserve the total momentum, and the new state will always have the

same momentum p. For the energy, it is more complicated. Interactions among the

added particle and the ones making up the Fermi sea, and the interactions among the

electrons already present, will modify the distribution in the k-space, and they will

change the energy of the state. The ensemble made up by the particle with momentum

p and the perturbated distribution of the others is the so-called quasi-particle.

The limit in using the concept of quasi-particle is represented by the need that

it has a well defined life-time. It is possible to show that it is finite for each quasi-

particle; particularly, for excitations close to kF , the relaxation time behaves as 1/τ ∝
(ε−EF )2 +T 2. Then, the quasi-particles are well defined close to Fermi energy and for

relatively low temperatures. From the latter expression, one realises that the Landau

theory is useful for phenomena which happen on an energy scale much smaller than

the Fermi energy.

The energy of a single quasi-particle can be easily evaluated.

Let us consider the ground state made up by the ensemble of quasi-particles and

that is characterised by the following distribution

n0(k) =







1 : |k| < kF

0 : |k| > kF

(1.4)

The variation in the occupation number for a quasi-particle can be written

as n0(k) → n0(k) + δn(k), where δn(k) = 1 corresponds to the creation of a quasi-

particle, while δn(k) = −1 of a quasi-hole. At the lowest order in k, since we are mainly

interested in phenomena in the vicinity of kF , the energy of a single quasy-particle in

the system can be written as

ε0
k =

kF

m∗ (|k| − kF ), (1.5)

where m∗ is the effective mass, and it takes into account the renormalization due to

interactions in the electron gas.

Because of the interactions, if one adds a particle, a work shall be done, and the

energy of an added particle will be no longer simply given by Eq. (1.5), but by a more
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complicated expression depending on the form of interactions between quasi-particles,

[Akkermans94],

εk ∝ ε0
k +

∑

k′

f(k,k′)δn(k′). (1.6)

ε0
k is defined in Eq. (1.5), while f(k,k′) takes into account the presence of the others

quasi-particles, and the interactions between them; see [Akkermans94] for a more de-

tailed discussion on the expression of the f -function.

In accordance with Landau hypothesis, since the non-interacting particles obey

Fermi-Dirac statistics, the quasi-particles will obey to the same statistics, too; then,

the occupation probabilty is,

n(k) =
1

eβεk + 1
, (1.7)

where εk is the energy of an added quasi-particle and not the bare energy ε0
k given

in Eq. (1.5). By means of Eq. (1.7), one can evaluate all the physical quantities.

The difference that will arise with respect to the values for non interacting particles,

is that some parameters as the mass will be renormalised because of the interactions.

At higher temperatures, higher order corrections are demanded; anyway, in this case,

the lifetime of particles is no longer well defined.

Landau theory was originally formulated for the 3He, and then extended to other

systems, as for example, the conduction electrons of a metal.

Quantitave calculations using Landau theory are not always correct, since it

does not take into account some possible phenomena as electron-phonon interactions,

for instance. This is not the case for Coulomb interactions which are correctely taken

into account, including screening effects, as shown by Abrikosov by means of Green’s

functions, [Abrikosov75].

To conclude, if we can describe the metallic systems in terms of non-interacting

(quasi-)particles, we can use a semi-classical equation, as the Boltzmann equation, to

describe the transport.
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1.2.2 Boltzmann equation

Quasi-classical theory of transport foresees the use of a non-equilibrium distribu-

tion function g(r,k, t) able to describe the average occupation number of quasi-particles

per state and energy; it is defined such that the quantity g(r,k, t)drdk/4π3 represents

the number of electrons at time t, in the phase space in the element of volume drdk

centered in (r,k). At equilibrium, g(r,k, t) corresponds to the Fermi distribution in Eq.

(1.7). Generally, in the quasi-classical distribution, it is demanded that the character-

istic length of spatial variation in the system is much larger than the Fermi wavelength.

Let us consider a bulk metal to which a small gradient of potential and tempera-

ture are applied. After a while, in the system a stationary regime state will be reached;

that is, there will be a balance between the external gradient which tends to perturb

the system and the diffusion processes which oppose to the perturbation. There is a

competition between these two phenomena. The distribution function g(r,k, t) satisfies

the Boltzmann equation

∂g

∂t
+ v

∂g

∂r
+ F

∂g

∂k
= −g − f

τ
, (1.8)

where F is the force on each quasi-particle, which generally depends on the applied

external fields, and v = ṙ is the velocity of the particles. From Eq. (1.8), it is

possible to obtain all the information concerning the evolution of the system and of the

quantities that allow its description. If we apply an electrical field E and a temperature

gradient ∇T , for the electrical and thermal current densities the following expressions

hold, [Ashcroft87]

j = L11~E + L12(−∇T ) , (1.9a)

q = L21 ~E + L22(−∇T ) , (1.9b)

where Lij are the so-called transport coefficients that can be found from Eq. (1.8).

We stress that the previous densities are local quantities, exactly as in Eq. (4) in the

Introduction. Eqs. (1.9a) and (1.9b) link the external fields with the charge and heat

density currents at the same time in the same position. This is a crucial point, since,
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as we will see, for mesoscopic systems there will be no longer a local dependence.

For the transport coefficients, one gets the following results

L11 =
ne2τ

m
≡ σ, L21 = TL12 = −(πT )2σ′

3e
, L22 =

π2T

3e2
σ ≡ κ , (1.10)

where σ′ = ∂σ(ε)/∂ε|ε=εF
and

σ(ε) = e2τ(ε)

∫

dk

4π3
δ(ε− ε(k))v(k)v(k) . (1.11)

The expression for electrical conductivity coincides with the one found by Drude. The

existance of such an equality represents a further proof that Landau image of the

electron sea made up by independent quasi-particles is correct. The expression of L22

shows the existance of a relation of proportionality between σ and κ, which is exactly

the Wiedemann-Franz (WF) law, mentioned before and generally written as

κ

σT
=

π2

3e2
= L0 , (1.12)

where L0 is the Lorenz number. The latter plays a very important role, since it is a

signature of the Fermi liquid behaviour, and then the signature of well defined transport

properties. The validity of Eq. (1.12) has been confirmed in the case of arbitrary

impurity scattering, [Chester61]

Being able to evaluate for a system, under well defined conditions, the behaviour

of Lorenz number means understanding whether or not a Fermi liquid description for

charge and heat transfer is appropriate. On the contrary, the possible deviation gives

a measure of how much the system is far from a Fermi liquid state.

This is the reason why, in the last years, more and more works investigated the

behaviour of the Lorenz number and its possible variations for various systems, to test

its robustness in very different conditions, [Castellani87, Kane96, Fazio98, Niven02,

Beloborodov05, Biagini05, Ferone].

Drude claimed that the charge and heat carriers were the same, and this was

proved by the WF law. Now, in accordance with the Landau theory, we can state that

the carriers are the same, and they are the Landau fermionic quasi-particles.
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Figure 1.3: In low-dimensional systems, there is always a direction along which the strong
Coulomb interactions are no longer negligible. For example, in the figure, for a 2D-gas, along
the z-direction no screening effect can be imagined, unless a gate electrode is used along the
surface of the gas.

1.3 Low temperatures and low-dimensional systems:

quantum effects

The theories we have presented treat the electrons, more or less, as non-interacting

hard spheres. We want to go beyond such a description.

There are particular situations where the Landau theory would produce wrong

results; particularly, in many cases, the phenomenological foundations are no longer

valid.

In the previous sections, we stated that the Landau theory was originally for-

mulated for 3He which is characterised by short-range interactions. With respect to its

original formulation, the theory was then extended to several different systems, par-

ticularly the conduction electrons in metals. The problem was then solved for such a

system, taking into account the Coulomb interactions, which are long-range interac-

tions. That was possible, considering the screening effects due to the presence of the

electron sea.

For low-dimensional systems, the screening effects change drastically, as simply

shown in Fig. 1.3. In this case, along z-direction, it is not possible to consider any

screening effect, except in presence of a possible gate electrode. Phenomenologically,

the Landau theory is no longer appropriate to still describe the systems as composed

by non interacting quasi-particles.

If the Landau theory is no longer useful, one may expect different dominating

transport properties in the sample. Particularly, one can wonder whether the WF
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A

B

Figure 1.4: In a real cristal, impurities and defects are randomly distributed. The length for
various trajectories from a point A to a point B is different, and non-constructive interference
effects can rise.

law is still valid, or, on the contrary, the charge and heat transfer is now differently

characterised. In principle, different mechanisms could contribute separately to their

transfer.

The strongly reduced screening for low-dimensional systems is the first point

that makes the Landau theory not useful in some conditions. It is not the only one.

When we have discussed the Drude model, we pointed out that before and af-

ter each collision, there were no correlations between the velocities of ingoing (i) and

emerging (f) particle; that is 〈vfvi〉 = 0, in agreement with the kinetic theory of gases.

We wonder what happens for the quantum mechanical phase of a particle.

Let us consider all the possible trajectories for a particle propagating from a

point A to a point B in a quasi-1D or in a higher dimensional system, as shown in Fig.

1.4.

In a very general way, the intensity of transport from point A to point B can

be written as

I(A→ B) =
∑

i,j

uiu
∗
j =

∑

i

|ui|2 +
∑

i6=j

uiu
∗
j , (1.13)

where u is a generic propagating amplitude.

The first term on the rhs of Eq. (1.13) corresponds to the contribution of

each trajectory, while the second one represents the interference effects between the

trajectories. In a real crystal, different sources of scattering exist: impurities or defects

randomly distributed, phonons, interactions with the other electrons. Two different

cases should be considered:
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• Diffusive processes are caused by static elements, as impurities or defects.

• Diffusive processes are caused by dynamical elements, as lattice vibrations (phonons),

and other electrons.

In the first case, the processes are always elastic, and a well defined relationship con-

cerning the phase difference between the two different patterns exists. This difference

can conserves for a long time, and such a time is called the coherence time τφ.

In the second case, because of the dynamic of diffusing processes, the phase dif-

ference changes randomly in time; then, the coherence is destroyed, and no interference

effects can rise.

Let us suppose, now, that the temperature goes to zero; then, the system tends

to go into its ground state. All the dynamical processes strongly reduce; the vibra-

tional lattice modes freeze, and even the electron-electron interactions diminish, with

a relaxation time which behaves as ∼ T 2, as mentioned in Section 1.2.1. Indeed, the

diffusion rate depends on the energy of the electron with respect the Fermi one; this

difference is small, because of the low temperatures, then, the diffusion rate lowers,

since the most of the states will be already occupied. Then, at low temperatures,

even the electron-electron diffusions, which represent the most important contribution

in this regime, become less and less important. We point out that electron-electron

interactions can modify τφ, but not the mean free path le, since the Coulomb forces do

not change the total momentum.

Then, at low temperatures, since the system is in its ground state, all the pro-

cesses become elastic and the dynamical contributions, the only ones which could de-

stroy the information about the phase, disappear.

If the scattering processes are elastic, then a well defined phase correlation exists

before and after the collisions. The length along which an electron is able to conserve

information about its phase is generally called coherence length Lφ.

If we are in a regime where the phase-relaxation time τφ is of the same order as
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the mean free time τe, as in the high-mobility semiconductors, then

Lφ = vF τφ , (1.14)

vF being the Fermi velocity. In the opposite limit τφ ≫ τe, electron undergoes several

collisions, each of them after an average time τe, before loosing the phase. After each

collision, the velocity is completely randomised. If vF τe is the average path between

two following collisions, then the root mean squared distance along the θ-direction is

L2
φ =

τφ
τe

(vF τe)
2〈cos2 θ〉 , (1.15)

where the ratio τφ/τe represents the number of collisions in the time τφ. From the

previous equation,

L2
φ =

1

2
v2

F τeτφ . (1.16)

Since D = v2
F τe/2 defines the diffusion constant, the coherence length reads

Lφ =
√

Dτφ . (1.17)

The existance of the coherence length introduces a non-local dependence of the

physical quantities, since, their state at time t depends on all previous moments, that

is on history. Then, the relaxation-time approximation used in Drude model and char-

acterizing Landau theory too, can be no longer used.

Today, the technological development allows to make samples whose size is of

the order of some micrometer. These kind of systems, which can be really clean, are

often characterised, at very low temperatures, by a coherence length Lφ which largely

exceeds the size of the sample. These systems are generally called mesoscopic systems.

In the macroscopic world, the size of the systems is generally much larger than

Lφ, and the quantum effects are not visible. To understand why it happens, one

can think, for such bulk systems, of a sample divided in several microscopic domains,

each of them characterised by a coherence length producing independent interference

patterns. By averaging over the whole sample, quantum effects disappear, and the

electrical conductivity, just to give an example, is determined by the Drude value. One
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Figure 1.5: The current in a conductor can be evaluated in the framework of Landauer
approach, where each particle has an average probability T to propagate through the con-
ductor. Under the assumption that such a probability is one for an open transport channel,
the conductance is quantised and it reads G = 2e2/h for a one-mode conductor.

speaks then of self-averaging systems. This is no longer the situation for a mesoscopic

system, where interference effects can be well visible since L < Lφ.

One of the most common effects of the mesoscopic regime, are, for example,

the universal conductance fluctuations, [Imry02]. These phenomena have been called

universal since the observed fluctuations for electrical conductance are independent

from the size of the system, from the nature of the disorder, and from the dimen-

sion of the sample. Evaluating the root mean square of the conductivity fluctuations,

δg =
√

〈g2〉 − 〈g〉2, for N samples which are characterised by a different realization of

the disorder, one finds that the amplitude of the fluctuations does not depend on the

details of the system, as mentioned above. We stress that this is strictly true just for

the amplitude. One finds that such fluctuations take up a value of the order ∼ e2/h.

Of course, for each sample, the interference patterns will be different depending on the

disorder configuration. Then, the mesoscopic samples are not self-averaging systems.

1.3.1 Non-interacting quantum particles: theory and experi-

ments

In the seventies, Landauer proposed an approach to describe mesoscopic systems

which revealed very useful, [Landauer70]. In term of this approach, the current prop-
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agating through a conductor is written in function of the average probability electrons

have to diffuse through it. The fundamental idea is quite simple and we show some

details, because of the importance of such theory in treating the mesoscopic transport.

Refering to Fig. 1.5, we want to evaluate the current through a conductor which

is characterised by an average probability T that an electron propagate through it. Let

the conductor be connected to two reservoirs, characterised by distribution functions

f1 and f2, by means of two ballistic leads L1 and L2. We suppose that the leads are

reflectionless; it means that the probability to be reflected for a particle coming out

from the lead to the reservoir is negligeable, [Datta97]. Let µ1 and µ2 be the Fermi level

in the two reservoirs, with µ1 > µ2, and let us suppose that we are at zero temperature.

In this case, since no energy fluctuations can be present, the transport will take place

just in the energy range µ2 < E < µ1.

Let I+
1 be the current transmitting from lead L1 into the conductor; then, if T

is the average transmission probability, the current in the lead L2 will be I+
2 = TI+

1 ,

while the current reflected in L1 is I−1 = (1 − T )I+
1 . In each moment, the net current

flowing in the system is I = I+
1 − I−1 = I+

2 = TI+
1 . Then all the problem is to evaluate

I+
1 .

Since the contacts are reflectionless, the current from left reservoir in lead L1

will be carried by particles characterised by a positive wave vector +kx. Such a current

can be written as

I+ =
e

L

∑

k

vkf1(Ek) =
e

L

∑

k

∂E

∂k
f1(Ek) , (1.18)

where envk is the current for an electron gas with electron density n ∝ L−1, and

where each particle propagates with velocity vk. L is the length of the conductor.

At zero temperature, the distribution will not depend on temperature, but it will be

characterised just by the value µ, that is by the applied voltage. Then, the net current

will read

I+
1 = I+ − I− =

2e

h

∫ ∞

−∞
M(E) [f1(E) − f2(E)] dE , (1.19)
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where M(E) is the number of mode contributing to the transport, that is the number

of energy levels involved in the transport, and inclused in the energy window µ1 − µ2.

In the following, a more formal definition of modes will be given. At zero temperature,

and if the number of modes is supposed to be constant between µ2 and µ1, Eq. (1.19)

will read as

I+
1 =

2e2

h
M
µ1 − µ2

e
. (1.20)

Finally, the net current in the conductor in Fig. 1.5 is

I =
2e

h
MT (µ1 − µ2) , (1.21)

and the conductance reads

G =
2e2

h
MT . (1.22)

In terms of resistance, the latter equation can be written as

G−1 =
h

2e2M

1

T
= G−1

C +G−1
S , (1.23)

where G−1
C is the contact resistance and G−1

S reads

G−1
S =

h

2e2M

1 − T

T
, (1.24)

and it represents the resistance due to the presence of the scatterers inside the conduc-

tor.

1.3.2 Thermo-electric transport at finite temperature

In the same context, but with a more general hypothesis about temperature,

the problem of thermo-electric transport of non-interacting quantum particles has been

solved by Sivan and Imry, [Sivan86]. They have considered a disordered sample con-

nected to two reservoirs which present a very small potential and temperature gradient,

δµ and δT respectively, between them. In the sample, all the scattering processes are
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elastic, while the inelastic ones take place only in the reservoirs. They evaluate the

electrical and heat current between the two reservoirs, finding

(

J

Q

)

∝
∫

dE

(

e

E

)

T (E)[fl(E) − fr(E)] , (1.25)

where e and E represent the electronic charge and the heat transported, while T (E)

is the transmission coefficient. The latter depends on the energy transported through

the different channels, and fl and fr are the Fermi distributions for the left and right

reservoirs. The charge and heat current, in terms of the external field, read

J = G
δµ

e
+ βδT , (1.26a)

Q = −βT δµ
e

+ ZδT . (1.26b)

Eqs. (1.26a) and (1.26b) are formally the same we have found before, Eqs. (1.9a) and

(1.9b), but they are non-local, that is the current depends on the electric field not in

the same point, but upon integration on all the possible points. The currents do not

depend on positions as in the previous ones. In Eq. (1.25), they show a dependence

on the global quantities characterizing the system. The transport coefficients in Eqs.

(1.26a) and (1.26b) can be evaluated, and in the linear regime, they read

G =
2e2

h
T (EF ), β =

2π2eT

3h
T (EF ), Z =

2π2T

3h
T (EF ) , (1.27)

If we suppose that the transmission coefficient is constant over the energy range

where the transport occurs, then T (EF ) ∼ T , and one finds the expression in Eq.

(1.22) for a one-mode conductor. By writing the total transmission coefficient as the

sum over the single mode transmission coefficient Ti, one observes that for a single

channel, the conductance is quantised in unity of 2e2/h, where the factor two takes

into account the spin degeneracy.

In 1988, the conductance of a quantum point contact (QPC) made by means of

a 2D electron gas confined at the interface of GaAs/AlGaAs heterostructure has been

measured, [Vanwees88]. The point contacts were defined by electrostatic depletion of

the gas underneath a gate electrode. The maximum width of the device was about
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Figure 1.6: Quantised conductance of a ballistic quantum point contact. Each step repre-
sents the activation of a mode controlled by means of the gate electrode. The width of the
constriction is about ∼ 250nm, and the transport is completely ballistic, [Vanwees88].

∼ 250nm, while the mean free path was estimated being le = 8.5µm. The conductance

in function of the gate voltage is ploted in Fig. 1.6. The strong confining potential

is the cause of the quantization of transverse momentum in the contact constriction.

Such a strong confinement makes that just the electrons of lowest energy subbands

participate to transport. The other modes are separated by large energy gap of the

order of ∼ eV . They can be activated by means of a gate potential, exactly as they did

in the above-mentioned experiment. The above quantization can be seen as a special

case of the multichannel Landauer formula

G =
e2

π

N
∑

n,m=1

|Tnm|2, (1.28)

for transmission coefficients |Tnm|2 = δnm corresponding to ballistic transport with no

channel mixing. Then, in the QPC, just one mode per time can be activated to con-

tribute to the transport. The other modes can be controlled by means of the gate

potential. The same results were found simultaneously in [Wharam88].

If the electrical conductance is quantised, one can wonder what happens for the

thermal conductance. The WF law, that can be written in term of transport coeffi-

cients presented in Eq. (1.27), claims that such a quantization should be found for the
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Figure 1.7: Left: Experimental apparatus used to measure the thermal conductance of a
QPC. The central QPC is the one whose conductance has been measured, while the two lat-
eral adjoining QPC are used as real sensible thermometers. Right: Solid lines represent the
thermal conductance for different samples. They are quite well visible the steps of quantiza-
tion in correspondence of the jump of the electrical conductance (dotted line), [Molenkamp92]

thermal transport too. Indeed, it is what was found in 1992, [Molenkamp92].

They were able to measure the thermal conductance of a QPC, using two ad-

joining QPC as real sensible thermometers. The system they used, made by means

of a 2D gas confined in a AlGaAs/GaAs heterostructure, is presented in Fig. 1.7-left.

They used Ohmic contacts numbered as 3 and 4 as current source and drain. This

current caused the heating of the 2D electron gas at the right of the central QPC. The

temperature difference between the left and the right side of the central QPC gave rise

to a heat flow Q. The latter caused a small temperature rise in the left side of central

QPC, and this rise could be detected by means of the thermovoltage V5 − V1 which

is proportional to the thermal conductance. The measurements are plotted in Fig.

1.7-right. The classical steps are quite well visible, and they occur in correspondence

with the jump for electrical conductance.

After showing the most important achievements of the transport theories which

have been formulated in the last century, we can better understand the need of differ-

ent approach for particular systems, and then, their characteristic behaviour. Other

important elements will be given in the remaining chapters.



Résumé en français du chapitre 1

Le premier chapitre est dédié aux principes phénoménologiques fondamentaux

de la théorie de transport: du transport classique au transport quantique. Nous présen-

tons tout au long du chapitre, comment les différentes théories qui se sont succédées

ont apporté, petit à petit, les briques nécessaires à la compréhension des phénomènes

de transport, et donc de la nature microscopique des métaux.

D’abord, nous présentons les principes énoncées par Drude qui ne font pas du

tout intervenir la nature quantique de l’électron, qui, lui, fut traité, au début du XX

siècle, comme une sphère n’ayant pas d’interactions avec les autres électrons. Pour

étudier les propriétés de transport des électrons dans un métal, Drude n’utilisa que la

théorie cinétique des gaz. A l’aide de cette théorie Drude fut capable d’obtenir même

des résultats quantitatifs, dont notamment l’expression de la conductivité électrique,

qui porte aujourd’hui son nom. En observant les propriétés de transport des métaux et

des isolants, Drude imagina que la charge et la chaleur devaient être transportées par

les mêmes entités. Cette proportionnalité est exprimée par la loi de Wiedemann-Franz

qui lie les conductivités électrique et thermique.

Les résultats obtenus par Drude à l’aide d’une théorie purement classique furent

confirmés ensuite par la théorie de Landau; celle-ci prend en compte la nature quan-

tique de l’électron, et partiellement la présence des interactions parmi les électrons

dans un métal. Cependant, la théorie affirme qu’à condition que l’écrantage entre deux

électrons donnés soit fort, à cause de la présence des autres électrons, alors, le système

peut continuer à être décrit comme étant composé par des particules indépendantes,

mais qui ne sont plus les vrais électrons, mais des particules beaucoup plus complexes,
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appelés quasi-particules qui conservent leur caractère fermionique.

Les hypothèses de fort écrantage ne sont pas pertinantes pour les systèmes de

taille réduite. Cela comporte qu’une nouvelle approche doit être envisagée. En plus, à

très basse température, les systèmes sont caractérisés par une longueur ayant une nature

purement quantique, la longueur de cohérence, Lφ. La présence d’une telle longueur

change de façon drastique le comportement des grandeurs physiques décrivant le trans-

port dans l’échantillon, et la nature quantique des électrons; aussi, les interactions de

nature coulombiennes avec les autres électrons ne peuvent plus être négligés.

En fin de chapitre, d’importants résultats concernant le transport électrique et

thermique pour des particules quantiques sont présentés.



PART I

DISORDERED QUANTUM
WIRES





Chapter 2

LUTTINGER LIQUID THEORY

The inadequacy of Landau theory to describe low-dimensional systems forces to

consider new and more suitable models which can take into account the phenomena

that characterise them.

One of the most studied system which does not present a typical Fermi liquid

behaviour is the one-dimensional gas of interacting electrons (1DEG). In accordance

with a model proposed by Tomonaga and Luttinger, concerning spinless interacting

fermions, generally one speaks of Tomonaga-Luttinger liquids and Tomonaga-Luttinger

liquid theory, [Tomonaga50, Luttinger63, Mahan00].

In the following of this thesis, we will discuss particularly of the version proposed

in 1963 by Luttinger, and for a sake of simplicity, we will speak of Luttinger liquids

(LL). The first steps for a complete and correct solution were made in 1965 by Mattis

and Lieb, [Mattis65].

In the following sections, we will present the foundations of such a model, writing

the Hamiltonian and finding the eigenstates, pointing out the differences with respect

to a Fermi liquid. To better understand the characteristics of our system, we start

from the properties of a one-dimensional system. It presents some interesting and very

particular aspects. The description of such peculiarities will lead to the formal definition

of a Luttinger liquid. For detailed reviews, see [Mahan00, Schulz95, Haldane81, Voit94].
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Figure 2.1: 1D Fermi gas. Left: The Fermi surface reduces to two points and the ground
state is constituted by the particles included between −kF and kF . A particle-hole excitation
has bosonic character. Right: (a) Single particle spectrum. (b) Particle-hole spectrum. 1D
systems are characterised by the lack of low energy excitations for value of k included between
zero and 2kF .

2.1 1D Fermi gas and Luttinger liquid Hamiltonian

A 1D gas of non-interacting electrons presents some characteristics which are

different with respect to higher-dimensional systems, since the Fermi surface reduces

to two discrete points. Such a peculiarity can be observed in Fig. 2.1, where the

dispersion relations for a single particle and for a particle-hole pair are shown. From

Fig. 2.1-right(b), one observes the absence of low energy excitations for values of k

included between zero and 2kF . This is not the case, for instance, for 2D systems as

shown in Fig. 1.2.

For energies much smaller than the Fermi energy, the spectrum is divided into

two different regions, where the dispersion relation can be described as linear. This is

a very important point, since it allows the analytical solution of the problem. We will

use the opportunity to linearize the dispersion relation for the fermions to solve exactly

the model.

First of all, we observe that for a 1D system, the ground state is made up by

the ensemble of particles included between −kF and kF , as shown in Fig. 2.1-left. In

such a system, an excitation is equivalent to move an electron in one of the available

states characterised by a momenum |k| > kF . Such a process involves two fermionic

particles: a particle-hole pair, and then has a bosonic character. No transversal mode

can alter such an excitation. Consequently, one can expect a similar behaviour for the
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k

E

(+)(−)

E F

Figure 2.2: Single particle spectrum for a Luttinger liquid. The dispersion relation is lin-
earized; the darker area represents non-physical states added to the system to make it solvable.

wave function, too.

The hypothesis behind the Luttinger model is that the electronic system is

composed by two different kinds of fermions: the ones whose energy spectrum is given

by εk = kvF , generally called right-moving (+), and the left-moving (−), whose energy

spectrum reads εk = −kvF . In other words, the Hilbert space of a Luttinger liquid

is not the usual for an electronic system, but it is extended to include a portion of

positrons, too. They represent non-real physical states for the system, but they are

necessary to make the model mathematically solvable. From a physical point of view,

since such an excitation would require a large excitation energy, one can think they

will not influence the low-energy spectrum of the system. Finally, the single-particle

spectrum is given in Fig. 2.2.

At this point, we can write the non-interacting Hamiltonian; let a and b be the

fermionic operators for right-moving and left-moving particles, respectively; the free

Hamiltonian reads

H0 = vF

∑

k

k(a†kak − b†kbk) , (2.1)

where a and b satisfy the usual fermionic commutation relations

aαa
†
α′ + a†α′aα = δαα′ , aαaα′ + aα′aα = 0. (2.2)

Let us point out that we are, at the moment, considering spinless fermions; as

already said, in our work, we considered just charge density waves contribution. In the

following, we will see what the presence of spin indices would involve.
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We introduce the density operators for the two kinds of particles

ρ+(q) =
∑

k

a†k+qak , ρ+(−q) =
∑

k

a†kak+q , (2.3)

where q > 0, and equivalent expressions for operator b.

In order to write the Hamiltonian H0 in Eq. (2.1), in term of the density

operators defined in Eq. (2.3), we observe that they satisfy the following commutation

relations:

[ρ+(−q), ρ+(q′)] = [ρ−(q), ρ−(−q′)] = δqq′
qL

2π
, (2.4a)

[ρ+(q), ρ−(q′)] = 0 . (2.4b)

The evaluation of previous commutation relations is quite easy, except than for

the one in Eq. (2.4a), if q 6= q′. One finds

[ρ+(−q), ρ+(q)] =
∑

k

(n̂k−q − n̂k) . (2.5)

To evaluate the right-hand term, we consider a state with all the levels below a

given value k0 < kF occupied, but with a non-defined number of electron-hole excitated

pairs elsewhere, [Schulz95]. Then,

∑

k

(n̂k−q − n̂k) =

(

∑

k≥k0

+
∑

k<k0

)

(n̂k−q − n̂k)

=
∑

k≥k0

(n̂k−q − n̂k)

=
∑

k≥k0−q

n̂k −
∑

k≥k0

n̂k

=
∑

k0−q≤k<k0

n̂k =
Lq

2π
. (2.6)

Eqs. (2.4a) and (2.4b) define bosonic commutation relations, and they mirror

the bosonic character of the action of operators ρ. Let us explain better this point.

The operator ρ+(q), with q > 0, describes the destruction of one particle in the

state with wavevector k, and the creation of another particle in the state with wave
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vector k+q. Particularly, if k < kF and q+k > kF , then an electron-hole excitation with

momentum q and energy vF q has been created. Equivalently, the operator ρ−(−q), with

q > 0, will create bosonic excitations for the left-moving particles; it moves a particle

from the state with wave vector k + q > −kF to one with wave vector k < kF . The

excitations created by the two operators always have a bosonic character.

In a very similar way, one can evaluate the commutators of the density operators

with Hamiltonian H0:

[H0, ρ+(q)] = vF qρ+(q), [H0, ρ−(q)] = −vF qρ−(q) . (2.7)

Finally, in term of the density operators, the Hamiltonian H0 can be written as

H0 =
2πvF

L

∑

q>0

[ρ+(q)ρ+(−q) + ρ−(−q)ρ−(q)] . (2.8)

Starting from a Hamiltonian written in terms of fermionic operators, Eq. (2.1),

we came to an expression in function of bosonic operators in Eq. (2.8).

The density operators can be written directly, for the sake of simplicity, in terms

of creation and annihilation bosonic operators

ρ+(q) = c†1q

(

qL

2π

)1/2

, ρ+(−q) = c1q

(

qL

2π

)1/2

, (2.9a)

ρ−(q) = c2,−q

(

qL

2π

)1/2

, ρ−(−q) = c†2,−q

(

qL

2π

)1/2

. (2.9b)

As a function of bosonic operators c and c†, the Hamiltonian in Eq. (2.8) reads

H0 =
∑

q>0

qvF (c†1qc1q + c†2,−qc2,−q) . (2.10)

2.2 Interaction Hamiltonian and diagonalization

Hamiltonians in Eqs. (2.8) or (2.10) describe a non-interacting electron gas. In

real systems, electrons interact because of long-range Coulomb forces.

The model conserves perfectly solvable if one takes into account the possible
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interaction terms due to Coulomb interactions. Particularly, for spinless electrons,

interactions are represented by the two forward scattering processes

(kF ,−kF ) −→ (kF ,−kF ), (kF , kF ) −→ (kF , kF ) . (2.11)

The Hamiltonian describing such processes, in term of density operators, reads

Hint =
1

2L

∑

q

{V1q[ρ+(q)ρ+(−q) + ρ−(−q)ρ−(q)] + V2qρ+(q)ρ−(−q)} . (2.12)

The first term V1 describes processes where an excitation, no matter if one

speaks for right or left moving particles, is created, and another one, of the same

kind is distroyed to preserve the total momentum: second process in Eq. (2.11). The

second term V2 describes processes where two excitations are created: first process in

Eq. (2.11).

Finally, the total Hamiltonian is given by the sum of three terms

H = H0 + V1 + V2 , (2.13)

and, as a function of bosonic operators c, it reads

H =
∑

q>0

ε1(c
†
1qc1q + c†2,−qc2,−q) +

∑

q>0

ε2(c1qc2,−q + c†1qc
†
2,−q) , (2.14)

where, for the sake of simplicity, we set ε1 = q(vF + V1q/2π), and ε2 = qV2q/2π.

Eq. (2.14) can be diagonalised by means of the following Bogoliubov transfor-

mation

c1q = α∗
qγ1q − βqγ

†
2q , (2.15)

c†2,−q = −β∗
qγ1q + αqγ

†
2q . (2.16)

The first condition on coefficients αq and βq is given by the bosonic nature of

operators γ. In order to have the correct commutation relations for such operators, the

coefficients have to satisfy the condition

|αq|2 − |βq|2 = 1 . (2.17)
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The second condition is given by the cancellation of the non-diagonal terms

ε2(|αq|2 + |βq|2) − 2ε1αqβq = 0 , (2.18)

with a similar equation for the hermitian conjugate terms.

By solving with respect the modulus square, and by means of Eq. (2.17), one

finds for the coefficients αq and βq the following solutions

|αq|2 =
ε2
2

2ε2
2 − 2ε2

1 + 2ε1ω
, (2.19a)

|βq|2 =
2ε2

1 − ε2
2 − 2ε1ω

2ε2
2 − 2ε2

1 + 2ε1ω
, (2.19b)

with

ω = ωq = (ε2
1 − ε2

2)
1/2 . (2.20)

Finally, the diagonalised hamiltonian reads

H =
∑

q>0

ωq(γ
†
1qγ1q + γ†2qγ2q) , (2.21)

where ωq defines the spectrum, and it is given by Eq. (2.20), and can be written

explicitly as

ωq = |q|[(vF + V1q/2π)2 − (V2q/2π)2]1/2 . (2.22)

What is the nature of the eigenmodes of the system, whose spectrum is given

by the last equation?

The bosonic operators γ are linear combinations of density operators ρ±. Then,

the eigenmodes are collective oscillations of charge density. Their energy depends both

on the kinetic term and on the interactions between the particles, as shown in Eq.

(2.22).
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2.3 Hamiltonian in term of bosonic operators in

real space

Some of the properties we have shown in the previous sections can be reformu-

lated in a different way. In order to evaluate some important quantities, as the single

particle Green’s function which will be useful for the calculation of conductance, we

want to show how a fermionic operator, representing a single particle, can be written in

term of Bose operators by mean of bosonization technique. The mathematical formu-

lation of bosonization technique has solid foundations. We just want to discuss some

of their characteristics. For a detailed review, see [Vondelft98, Mahan00].

The bosonization technique allows to write a fermionic field operator ψη(x) in

function of bosonic field φη(x); the fermionic field is expressed as ψη ∼ Uηe
−iφη , where

Uη is the so called Klein factor which allows to raise or lower the number of fermions

and which assures that the fermionic operator satisfies the correct commutation rela-

tions. Physically, bosonization is simply justified by the bosonic nature of excitations

in 1D system, as mentioned before.

In order to write differently the Luttinger liquid Hamiltonian, we introduce the

two bosonic fields, [Schulz95, Haldane81, Voit94]

φ(x) = −iπ
L

∑

q 6=0

1

q
e−α|q|/2−iqx[ρ+(q) + ρ−(q)] −N

πx

L
, (2.23)

Π(x) =
1

L

∑

q 6=0

e−α|q|/2−iqx[ρ+(q) − ρ−(q)] + J/L , (2.24)

with N = N+ + N− and J = N+ − N−, N± being the number of added left or right-

moving particles, respectively, and α a small cut-off parameter. The operators φ and

Π satisfy the canonical commutation relation: [φ(x),Π(y)] = iδ(x− y).

In terms of φ and Π operators, the fermionic field operator reads

ψ± = lim
α→0

1√
2πα

U± exp[±ikFx∓ iφ(x) + iθ(x)] , (2.25)

with θ(x) = π
∫ x

−∞ Π(x′)dx′, and U± being the above-mentioned Klein factors.

The total Hamiltonian in Eq. (2.13) can be now written in terms of φ and Π
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operators:

H =

∫
[

πvgLL

2
Π2(x) +

v

2πgLL
(∂xφ)2

]

, (2.26)

where

v = [(vF +V1q/2π)2− (V2q/2π)2]1/2 , gLL =

[

2πvF + V1q − V2q

2πvF + V1q + V2q

]1/2

. (2.27)

The Hamiltonian in Eq. (2.26) is exactly the one describing an elastic string,

whose eigenmodes correspond to density fluctuations for the Luttinger liquid. The

spectrum is given by Eq. (2.22); v in Eq. (2.27) is the renormalised velocity of plas-

mons, and gLL gives the information about the interactions inside the conductor.

We stress again that there are no single particle excitations. This can be un-

derstood by thinking intuitively to what happens for a 1D systems. If one imagines

that a particle is slightly moved from its equilibrium position, it will start interacting

with its nearest neighbours, transferring part of its momentum to them. Its neigh-

bours will behave anologously with their neighbours, giving rise to the propagation

through the whole system of initial excitation. This is true only for 1D systems, since

for higher-dimensional ones, such propagating modes are accompained by transversal

modes demanding an appropriate description.

2.3.1 LL Hamiltonian from semi-classical equation of motion

In this section, we want to discuss, without presenting all the details which are

given in Appendix A, how it is possible obtaining the same expression as in Eq. (2.26),

starting from the semi-classical equation of motion, [Gramada97]. Such a discussion

will allow to understand, from a different point of view, the physical meaning of all the

terms in the Hamiltonian in Eq. (2.26).

The semi-classical equation of the motion in the wire, treated as a real liquid,

is given by the Euler equation

mn
d2u

dt2
= −enE − dP

dx
, (2.28)
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D 0

Gate

Gate

quantum wire

Figure 2.3: Experimentally, the conductor is never isolated. It is always screened by means
of a gate electrode at a distance D0 ≫ λF . In this way, only the the short-range interactions,
short with respect to the length of the wire, are selected. Then, the interaction potential in
the wire can be written as V (x, x′) = V0δ(x − x′).

where m is the mass of an electron; u(x, t) is the displacement in the fermionic system;

n(x, t) describes the electronic density: n(x, t) = n0(x) + n1(x, t), where n1 describes

the temporal fluctuations; E(x, t) = E0(x) + E1(x, t) is the electric field which we can

imagine to write as the sum of a static and a dynamic term; P = π2
~

2n3/3m is the

hydrostatic pressure.

As studied in the previous sections, there are two terms taking into account

the electron-electron interactions, as written in Eq. (2.12). Since the nature of these

interactions is the same, one can set V1q = V2q.

Let V (x) be the electron-electon interaction potential. Then, the dynamical

components of the electric field E1 can be thought as generated by the charge density

fluctuations represented by n1(x, t)

eE1 = − d

dx

∫

dx′V (x− x′)n1(x
′, t) . (2.29)

The problem in Eq. (2.29) is represented by the form of the interaction potential

V (x). From an experimental point of view, the conductor is never isolated. It is always

screened at a distance D0 ≫ λF , see Fig. 2.3. Such a physical constriction select just

some components of interactions, since the long range interactions will be cut-off. As

a result, one just conserves interactions which are short-ranged with respect to the

length of the wire d which is much larger than D0. This condition allows to write the
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interaction potential in the wire in the simple form

V (x, x′) = V0δ(x− x′) , (2.30)

with V1q = V2q = V0. Of course, one could imagine to work on different scales, but then

the potential in Eq. (2.30) would assume a more complicated form.

Under the previous assumption, the Eq. (2.29) is easily evaluable

eE1 = −V0
dn1(x, t)

dx
. (2.31)

Linearizing the equation of motion with respect to n1(x, t), and imposing the energy

conservation law, skipping all the details, presented in the Appendix A, one finds for

the Luttinger liquid Hamiltonian

H0 =

∫

dx

[

p̂2(x)

2mn(x)
+

1

2

(

V0 +
π2

m
n(x)

)

(~∇n(x)û)2

]

, (2.32)

where the displacement u(x) has been treated as an operator, and p̂ is its conjugate

momentum; they satisfy the canonical commutation relation [û(x), p̂(x′)] = i~δ(x−x′).
Eq. (2.32) is formally identical to Eq. (2.26); from Eq. (2.32), we see that the

Luttinger liquid Hamiltonian is made up of a pure kinetic term, and a potential term.

The latter can be identified as an harmonic potential describing the oscillations of a

particle around its equilibrium position.

2.4 Spin-1/2 fermions and spin-charge separation

We finish this chapter, by considering spin-1/2 fermions Luttinger liquid.

The Hamiltonian for a 1D interacting spin-1/2 fermions, together with the

charge density waves, has one more collective excitations: spin density waves. The

charge density waves respond to external perturbation as the electrical fields. The

spin density waves respond to magnetic perturbation. In 1965, Overhauser has shown

that the spectrum is completely described by the sum of the two different excitations,

[Mahan00].
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In the same way we have described the charge density waves, one can defines

again the density operators as follows

ρ+,s(q) =
∑

k

sa†k+q,sak,s , ρ+,s(−q) =
∑

k,s

sa†k,sak+q,s , (2.33)

where s = ± is the spin index; of course, there are equivalent relations for left-moving

particles.

For spin-1/2 fermions, it is not possible to write a backward scattering process

as a forward one for different indices: (kF , s;−kF , t) → (−kF , s; kF , t).

The Hamiltonian reads

H =
∑

s,q>0

ωq(c
†
1,s,qc1,s,q + c†2,s,−qc2,s,−q) +

∑

q>0

[

qV ′
1q

4π
(c†1,s,qc1,s,q + c†2,s,−qc2,s,−q)

+
qV1q

4π
(c†1,s,qc1,−s,q + c†2,s,−qc2,−s,−q)

+
qV2q

4π

∑

s′

(c1,s,qc2,s′,−q + c†2,s,−qc
†
1,s′,q)

]

. (2.34)

The exchange contribution is taken into account in the previous Hamiltonian,

since the interaction potentials are assumed different.

The Hamiltonian can be diagonalised by means of bosonic coordinates, Rq and

Σq, to describe the charge and spin oscillations, respectively. It can be written as the

sum of two terms

H = Hρ +Hσ , (2.35)

Hσ =
∑

q>0

[

ω̄2
q −

(

qV1q

4π

)2
]1/2

(Σ†
qΣq + Σ

†
qΣq) , (2.36)

Hρ =
∑

q>0

[(

ω̄q +
qV1q

4π

)

(R†
qRq +R

†
qRq) +

qV2q

2π
(RqRq +R†

qR
†
q)

]

, (2.37)

where ω̄q = qvF .

Hσ is diagonal, while Hρ can become diagonalised by means of a Bogoliubov
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transformation; then, one finds

Hρ =
∑

q>0

Eq(γ
†
1qγ1q + γ†2qγ2q) , (2.38)

Eq =

[

(

ω̄q +
qV1q

2π

)2

−
(

qV2q

2π

)2
]1/2

. (2.39)

In real space, the fermionic field can be written in a form analogous to Eq.

(2.25), but with a supplementary index

ψ±,s = lim
α→0

1√
2πα

U±,s exp[±ikFx−i(±(φρ(x)+sφσ(x))+(θρ(x)+sθσ(x)))
√

2] , (2.40)

where we introduced the field φ(x) for the two spin projections separately

φρ,σ =
1√
2
(φ↑ ± φ↓) . (2.41)

The full Hamiltonian takes the form

H = Hρ +Hσ +
2V ′

1q

(2πα)2

∫

dx cos(
√

8φσ) , (2.42)

where Hρ and Hσ have the same form as in Eq. (2.26), with the only difference that

the velocity v and the operator φ and Π have a supplementary subscript identifying

either charge propagation or spin propagation. Particularly, the velocity for charge and

spin density waves read

vσ =

[

v2
F −

(

V ′
1q

4π

)2
]1/2

, (2.43a)

vρ =

[

(

vF +
V1q

2π

)2

−
(

V2q

2π

)2
]1/2

. (2.43b)

Once we got the spectrum, we can show a very important and general feature

of a 1D interacting gas.

Let us suppose to create a particle in the fundamental state at the time t = 0

in the point x0:

〈0|ψ+(x0)ρ(x)ψ
†
+(x0)|0〉 = δ(x− x0) , (2.44)

〈0|ψ+(x0)σ(x)ψ†
+(x0)|0〉 = δ(x− x0) . (2.45)
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Let us consider the time evolution of charge and spin distributions; the time

dependence can be, of course, obtained by means of respective Hamiltonian. One gets

〈0|ψ+(x0)ρ(x, t)ψ
†
+(x0)|0〉 = δ(x− x0 − vρt)

1 + gρ
LL

2
+ δ(x− x0 + vρt)

1 − gρ
LL

2
,

〈0|ψ+(x0)σ(x, t)ψ†
+(x0)|0〉 = δ(x− x0 − vσt) .

Since, the velocities are completely distinct, after a while the charge and spin

modes will be completely separated in the space. Then, one speaks of spin-charge

separation, which is a characteristic of such a system.



Résumé en français du chapitre 2

L’inadéquation de la théorie de Landau à décrire des systèmes de taille réduite

oblige à considérer des modèles pouvants prendre en compte les phénomènes qui les

caractérisent. Parmi les systèmes les plus étudiés, et qui ne présentent pas un comporte-

ment type liquide de Fermi, il y a le gaz uni-dimensionnel d’électrons en interactions.

Ces types de systèmes sont généralement étudiés dans le contexte de la théorie des

liquides de Luttinger.

D’abord, il est nécessaire de noter que pour un système uni-dimensionnel la sur-

face de Fermi se réduit à deux points. Une excitation correspond au déplacement d’un

électron d’un état avec vecteur d’onde |k| < kF vers un autre état caractérisé par un

vecteur d’onde |k| > kF . Un tel processus entrâıne deux particules fermioniques, et

donc a un caractère bosonique.

La théorie de liquides de Luttinger permet d’écrire en termes d’opérateurs

bosoniques un Hamiltonien décrivant les modes propres d’un système uni-dimensionnel:

les ondes de densité de charge, et les ondes de densité de spin. Dans notre travail, nous

n’avons considéré que la contribution des ondes de densité de charge.

Dans ce chapitre, nous montrons comment il est possible d’écrire l’Hamiltonien

de notre système uni-dimensionnel, puis nous calculons ses états propres. Cela nous

servira dans le chapitre suivant, où nous allons évaluer les contributions de ces modes

propres au transport électrique et thermique.





Chapter 3

QUANTUM WIRES AND

LORENZ NUMBER

In the previous chapter, we have presented the basic concepts allowing the de-

scription, under well defined assumptions, of a 1D interacting system. Particularly, we

have seen that the low-energy excitations are no longer single-particle excitations but

collective modes: the charge density waves, also called plasmons, which have linear

spectrum.

In this chapter, we introduce the concept of quantum wire presenting the way

to model it, in accordance with Luttinger liquid theory, which allows to evaluate its

transport properties.

First, we will show the results for a clean quantum wire, that is a wire without

impurities; the different scattering properties between electrons and plasmons yield

drastic effects: the Lorenz number is strongly renormalised. Such results will be, then,

the starting point to tackle the problem of corrections induced by disorder.

The important role played by disorder in the transport properties in one-

dimensional conductors was brought out by Tarucha et al. in 1995, [Tarucha95]. They

have studied the conductance of semiconductor quantum wires in function of the gate

voltage for different samples. Some results are shown in Fig. 3.1. The dependence of
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Figure 3.1: The conductance of two samples is plotted as a function of the gate voltage
measured in mV, [Tarucha95]. The plateaux region depends on temperature, and such a
dependence points out the role played by disorder. Coulomb interactions cannot explain
alone such a dependence; they do not affect the mean free path and then the conductance.
It is the presence of the disorder and of the interactions which renormalise the transmission
through the conductors, and then the conductance in function of the temperature.

the plateaux on temperature is well visible. For clean samples, the tranport is sup-

posed to be ballistic; the Coulomb interactions do not affect the electron mean free

path, since they conserve the total momentum. Then, the transport cannot depend

on temperature, and one will recover the quantum of conductance e2/h. In presence

of disorder, the system is no longer translationally invariant. Impurities scatter off

electrons, and the mean free path reduces. At higher temperatures, the kinetic energy

of electrons close to the Fermi level rises, and the transmission is advantaged. At lower

temperatures the transmission will be no longer unitary, and the conductance lowers,

as shown in Fig. 3.1. Higher mobility electrons in 1D gases do not show such a strong

dependence on temperature variations, [Tarucha95]. Another experiment where the

dependence of the conductance plateau on the temperature is well visible is shown in

[Yacoby96].

In our work we investigate the behaviour of thermal and electrical conductance,

in presence of disorder and as a function of the temperature.

The expression of the conductances are given in term of the Green’s function

describing the transport in the system. Then, a large part of the chapter will be de-
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voted to its evaluation.

To make the reading fluent, we report the calculations in dedicated appendixes,

where most of them are developped in details for the interested reader.

3.1 Clean quantum wires

Let us consider the propagation of a particle in a 2D conductor, which is homo-

geneus along the x-axis and with a confining potential along the y-axis. Particularly,

to get a simple analytic solutions, one can imagine a parabolic confining potential,

U(y) =
1

2
mω2

0y
2 . (3.1)

Then, by solving the corresponding Scrhödinger equation, the spectrum is found

to be given by the sum of two terms

E(n, k) =
~

2k2

2m
+ ~ω0

(

n+
1

2

)

. (3.2)

Along the x-axis, one has plane waves, whose eigenvalues are represented by the

first term in the rhs of Eq. (3.2); along the transversal y-direction, the confining poten-

tial strongly influences the transport. Indeed, each value of n in Eq. (3.2) identifies a

different transversal mode, where the distance between two following subbands is ~ω0.

The larger ω0, the stronger is the confinement, and further in energy are the different

modes. Then, at low energies, only the first subband contributes to the transport. Such

modes are the same already introduced in Section 1.3.1. Experimentally, examples of

1D conductors, are given by AlGaAs/GaAs heterostructures, [Tarucha95, Levy05], and

carbon nanotubes, [Tans97, Wildoer98, Odom98]. In the latter, the energy separation

between two subbands can achieve the order of ∼ eV . Experimentally, such systems

behave as an electron waveguide, since the transversal dimension can be of the order

of some nanometer, then, comparable to Fermi wavelength λF . Such experimental sys-

tems behaving as 1D conductors are generally called quantum wires.

Before discussing the role played by disorder, we present the results which are al-

ready known for a clean quantum wire connected adiabatically to two two-dimensional
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Figure 3.2: Disordered quantum wire connected to two FL reservoirs. All the inhomogeneities
are supposed to have a characteristic spatial length scale ldis ≫ λF . The different scattering
properties of electrons and low-energy long-wavelength excitations (plasmons) yield drastic
effects on charge and heat transport. The flow of charge and energy current is assured by the
gradient of the chemical potential δµ and temperature δT , respectively.

reservoirs. They will be the starting point for our own work.

A quantum wire can be roughly represented as in Fig. 3.2. T and µ are the tem-

perature and the chemical potential, respectively. In the figure, a disordered quantum

wire is shown, and the disorder is represented as undulations on the side-walls of the

wire. Indeed, this represents a real experimental set-up; see Fig. 3 in the Introduction.

In Fig. 3.2, all kind of inhomogeneitis in the wire are supposed to have a typical

spatial length which is much larger than λF . Particularly, this is true for the disorder

represented by the connections to reservoirs; of course, for a clean quantum wire, such

connections represent the only source of disorder.

As we have already seen, the hamiltonian of a LL can be written as

H0 =

∫

dx

[

p̂2(x)

2mn(x)
+

1

2

(

V0 +
π2

m
n(x)

)

(∇n(x)û)2

]

, (3.3)

where the displacement u(x) has been treated as an operator, and p̂ is its conjugate

momentum; they satisfy the canonical commutation relation [û(x), p̂(x′)] = i~δ(x−x′);
n(x) is the electronic density, which we take constant: n(x) = n0 = mvF/π .

It has been shown, first experimentally, then theoretically, that for a clean one-

mode quantum wire connected to two FL reservoirs the electrical conductance is not

renormalised by the interactions inside the wire, with respect to the universal value

e2/h per spin, [Safi95, Safi97, Maslov95, Maslov95b, VanWees88, Wharam88], where

the last two references concerne more specifically quantum point contact. For charge
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Figure 3.3: Lorenz number for a clean quantum wire. Left: 3D plot of Lorenz number
for a clean quantum wire renormalised with respect to the classical value L0 in function of
dimensionless temperature 4Td/vF and interactions strength gLL. Right: Lorenz number
for a clean quantum wire renormalised with respect to the classical value L0 in function of
dimensionless temperature 4Td/vF for different values of gLL.

transport, only the contact resistance plays an important role. There are no other

renormalizing scattering processes taking place in the wire, and the universal value

follows from the Landauer approach.

For the thermal conductance, the behaviour changes drastically. In Fig. 3.3,

the Lorenz number as a function of temperature and interactions strength is plotted,

[Fazio98, Krive98]. Up to a constant, it represents the behaviour of thermal conduc-

tance, too. The Fig. 3.3 shows a very different behaviour with respect to the classical

theory. First of all, the classical value of the Lorenz number is recovered just in two

different cases:

• The Luttinger parameter gLL is equal to one.

• The temperature goes to zero.

Let us discuss the two previous points.

gLL is the so called Luttinger parameter; it describes the strength of interac-

tions inside the wire: gLL = 1 stands for non-interacting particles, gLL < 1 stands for

repulsive interactions. gLL will be defined analytically later.

For non-interacting electrons, at high temperatures, the system tends to behave

as an ensemble of classical particles. The quantization of conductance no longer holds,
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or at least is strongly smeared out by temperature; then, the transport properties are

well described by the Boltzman equation, and by the classical value of Lorenz number

L0. For non-interacting quantum particles, as mentioned, the problem has been solved

by Sivan and Imry in the context of Landauer approach, [Sivan86]; again, one finds the

classical value from Eq. (1.27).

Instead, if the temperature goes to zero, then, statistically, the dominant con-

tribution is given by long-wavelength plasmons. Particularly, if T = 0, then, at least in

principle, just the infinite wavelength plasmons will contribute to the transport. The

latter will not perceive the presence of the constriction represented by the wire, then

they will have a perfect transmission; in other words, in this limit, the system reduces

to an infinite FL reservoir and, again, the classical value L0 is recovered.

What about the renormalization for T 6= 0?

We have mentioned that all the inhomogeneities in the wire are characterised

by a spatial length scale linh ≫ λF , as shown in Fig. 3.2. Electric transport will be

not affected by such a presence; electrons, which can be seen as the responsible of the

charge transport, will not perceive it at all, since they have a characteristic spatial

length scale of the order of λF . This is no longer the case for the plasmons: there will

always exist a value ω∗ of the energy, whose corresponding wavelength can be compa-

rable to linh; such excitations can suffer backscattering processes at the edges of the

wire. This is the reason why the thermal conductance, and then the Lorenz number,

present a strongly renormalization as show in Fig. 3.3.

Such a peculiar behaviour of plasmons gives rise to what is sometimes called

energy-charge separation: the electron can propagate easily through the wire, but not

all the energy can do it as well. The dissipated energy is given to the reservoirs.

For a clean quantum wire, then, there is a strong deviation with respect to a

Fermi liquids behaviour. In the following of this chapter, we will justify analytically

all the previous statements about electrical and thermal conductance.
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Figure 3.4: The physical system is replaced by an effective 1D model described by the
effective interaction parameter gLL(x). It is equal to one in the reservoirs, signaling the
absence of interactions in the FL state, and different than one but constant in the wire.
An analogous condition holds for the velocity v(x) of excitations: it is equal to vF in the
reservoirs, and equal to v = vF /gLL=constant in the wire.

3.2 Electrical and thermal conductance

In this chapter, we show that all the physical quantities in which we are in-

terested can be written in terms of an appropriate Green’s function describing the

transport in the system. Then, we will evaluate such a function and the equation it

satifies to get its analytical expression.

We begin with replacing the physical system containing the one-dimensional

quantum wire connected adiabatically to two-dimensional reservoirs by an effective

one-dimensional system, as shown in Fig. 3.4. Such a system is described by the

Luttinger parameter gLL(x). It is equal to one as x < 0 and x > d, that is in the

FL reservoirs, signaling the absence of interactions; it is less than one but constant as

0 < x < d, that is in the interacting wire. v(x) represents the velocity of propagation

of the charge density waves in the wire; in the reservoirs, it reduces to vF . The points

whose coordinates are x = 0, x′, d represent the points where the boundary conditions

have to be satisfied to get the correct Green’s function.

In the following section, we show how the conductances can be expressed in

term of the above-mentioned Green’s function.
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3.2.1 Electrical conductance

In time domaine, the expression for the electric current is the following

I(x, t) =

∫

σ(x, x′; t, t′)E(x′, t′) dx′ dt′ , (3.4)

σ(x, x′; t, t′) being the non-local ac conductivity, and E(x′, t′) the electric field.

The following relations hold

1

2π

∫

σ(x, x′; t− t′)E(x′, t′) dt′ = F [σω(x, x′)Ēω(x′)] =
1

2π

∫

e−iωtσω(x, x′)Ēω(x′) dω ,

(3.5)

F being the Fourier transform operator, and Ēω(x′) the Fourier transform of the electric

field. Then, Eq. (3.4) can be written as

I(x, t) =

∫ d

0

dx′
1

2π

∫

dω e−iωtσω(x, x′)Ēω(x′) , (3.6)

In linear response theory, [Mahan00, Rickayzen80], the electrical conductivity

reads

σω(x, x′) =
e2iω2

ν

πω
Giων

(x, x′)

∣

∣

∣

∣

iων→ω+i0

. (3.7)

We used the Matsubara representation with imaginary time, ων being the Matsubara

bosonic frequency and

Giων
(x, x′) = πn2

0

∫ β

0

dτ〈Tτ û(x, τ)û(x
′, 0)〉eiωντ , (3.8)

is the Fourier transform of the temperature Green’s function describing the excitations

propagation. Tτ is the time ordering operator, 〈. . .〉 stands for thermodynamic average

and û is the operator identifing the displacement in the wire.

The conductance of the wire is then obtained in the zero-frequency limit, g =

σω→0(x, x
′), where σ depends no longer on x and x′.

3.2.2 Thermal conductance

The thermal conductance K can be obtained analogously in the zero-frequency

limit from the thermal conductivity, K = κω→0(x, x
′), where κω(x, x′) can be written,
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in linear response regime, by means of the corresponding Kubo formula

κω(x, x′) =
i

ωT
χ(x, x′; iων)

∣

∣

∣

∣

iων→ω+i0

=
i

ωT

∫ β

0

dτ〈Tτjth(x, τ)jth(x
′, 0)〉eiωντ

∣

∣

∣

∣

iων→ω+i0

, (3.9)

where jth is the thermal current density. Eq. (3.7) shows clearly the link between the

electrical conductivity and the Green’s function defined in Eq. (3.8). The expression

for the thermal current density jth, and for the thermal conductance in terms of Green’s

function defined in Eq. (3.8) can be obtained as follows.

The Hamiltonian of the system, Eq. (3.3), can be generally writen as H =
∫

dxH(x), H(x) being the energy density. Since the total energy flowing in the system

has to be conserved, by means of continuity equation

∂xjth(x) + ∂tH = 0 , (3.10)

it is possible to write the energy current jth(x) in term of û(x) and p̂(x) operators, by a

direct calculation of the commutator [H,H]. Finally, the thermal current density reads

jth(x) = −v
2
F

2
{p̂(x), ∂xû} , (3.11)

where {· · · , · · · } denotes anticommutator, and p̂(x) = mn0 ∂tû is the conjugate mo-

mentum of the displacement operator û(x). Eq. (3.11) has been written under the

assumption x < 0 or x > d. Since we are interested in the zero-frequency limit of

thermal conductivity κω→0(x, x
′), which does not depend on coordinates x and x′, it is

convenient to choose x < 0 and x′ > d, i.e., in the noninteracting reservoirs.

The current-current correlation function in Eq. (3.9) can be written in term of

the Green’s function G(x, x′; τ) with x and x′ in the reservoirs as described in Appendix

B. Finally, it reads

〈Tτjth(x, τ)jth(x
′, 0)〉

= v2
F

[

∂2
τG(x, x′; τ)∂2

x,x′G(x, x′; τ) + ∂2
τ,xG(x, x′; τ)∂2

τ,x′G(x, x′; τ)
]

. (3.12)
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From Eq. (3.8), G(x, x′; τ) = πn2
0〈Tτ û(x, τ)û(x

′, 0)〉. Upon Fourier transform,

∫ β

0

dτ〈Tτjth(x, τ)jth(x
′, 0)〉eiωντ

= −T
∑

iωµ

Giωµ
(x′, x)Giων+iωµ

(x, x′)
[

(ων + ωµ)
2|ωµ|2 − ωµ(ων + ωµ)|ωµ||ων + ωµ|

]

.(3.13)

In the latter equation, ων represents the external Matsubara frequency of the field,

and we shall consider the limit ω → 0, upon analytical continuation iων → ω + i0.

Eq. (3.13) has been obtained using the fact that in the reservoirs, ∂xGiωµ
(x, x′) =

−∂x′Giωµ
(x, x′) = (|ωµ|/vF )Giωµ

(x, x′). As shown in Appendix B, the sum over ωµ can

be written as a contour integral in the complex frequency plane; performing analytical

continuation and taking the limit ω → 0, one finds the thermal conductance

K =
1

2πT 2

∫ ∞

0

dω
ω4

sinh2(βω/2)
|Gω+i0(0, d)|2 , (3.14)

where we used the continuity of Green’s function at the interface x = 0 and x′ = d, to

express the thermal conductance in terms of Green’s function within the wire.

This result is formally identical to the one found in [Fazio98], where a scatter-

ing approach was used to obtain thermal conductance. The contribution to thermal

conductivity is given by excitations with frequencies up to temperature T , i.e. of wave-

lengths of the order of v/T up to infinity, v = vF/gLL being the propagation velocity

of plasmons in the wire. Generally, wavelengths comparable to the scale linh will play

a role, too. They will suffer backscattering on the edges of wire, causing a renormal-

ization of thermal conductivity and hence a variation of Lorenz number, as shown in

Fig. 3.3, [Fazio98].

3.3 Equation of motion for a clean wire

In this section, starting from the single particle Green’s function, we will come

to its equation of motion; this equation will allow the analytical determination of such

a function, and then of the electrical and thermal conductances in Eqs. (3.7) and
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(3.14). The details of calculations are reported in the Appendix C. The single-particle

temperature Green’s function, in the Matsubara imaginary time τ , is defined as

G0(x, x′; τ) = πn2
0〈Tτ û(x, τ)û

′(x′, 0)〉 , (3.15)

where the superscript 0 indicates that we are considering a clean wire, and the average

is evaluated in absence of disorder.

The equation of motion can be written by taking the derivative of Green’s func-

tion with respect to time

∂

∂τ
G0(x, x′; τ) = πn2

0

[

∂

∂τ
〈ûû′〉θ(τ) +

∂

∂τ
〈û′û〉θ(−τ)

]

, (3.16)

where, for the sake of simplicity, we set û = û(x, τ), û′ = (x′, 0) and θ(τ) is the step

function. The previous equation reads

∂

∂τ
G0(x, x′; τ) = −iπn0

m
〈Tτ p̂(x, τ)û(x

′, 0)〉 . (3.17)

In Eq. (3.17), the derivative of Green’s function is not proportional to the same Green’s

function, but to another not well defined function; then, we need at least the second

derivative to close the equation

∂2

∂τ 2
G0(x, x′; τ) = −iπn0

m
{∂τ 〈p̂û′〉 θ(τ) + ∂τ 〈û′p̂〉θ(−τ)} . (3.18)

Evaluating separately the two terms in the rhs of Eq. (3.18), the equation of

motion reads

∂2
τG

0(x, x′; τ) +
n0

m
∂x

{[

V0 +
π2n0

m

]

∂xG
0(x, x′; τ)

}

= −πn0

m
δ(x− x′)δ(τ) . (3.19)

The quantity in the square brackets in the second term of the lhs of Eq. (3.19)

can be written as

(

V0 +
π2n0

m

)

=
π2n0

m

(

1 +
mV0

π2n0

)

=
π2n0

m

1

g2
LL(x)

. (3.20)

The definition of the Luttinger parameter gLL follows from the second equality in the

latter equation. Besides, to write Eq. (3.20), we used the definition of the total number
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of particles: N = L
π
kF ⇒ N

L
= mvF

π
= n0; if the velocity depends on x, so does the

denstity, and one can write: n(x) = mv(x)/π. Then, the Eq. (3.20) can be written as

π2n0

m

1

g2
LL(x)

= π
v(x)

gLL(x)
, (3.21)

where v(x) = s(x)/gLL(x) is the velocity of plasmons inside the wire, and it is renor-

malised by the interactions described by gLL(x). Then, by means of Eq. (3.21) the Eq.

(3.19) reads

{

∂2
τ + s(x)∂x

(

v(x)

gLL(x)
∂x

)}

G0(x, x′; τ) = −s(x)δ(x− x′)δ(τ) . (3.22)

Considering the relation between v(x) and s(x), one finds the equation of motion

in time domain

{

1

v(x)gLL(x)
∂2

τ + ∂x

(

v(x)

gLL(x)
∂x

)}

G0(x, x′; τ) = −δ(x− x′)δ(τ) . (3.23)

In frequency space, it reads

{

−∂x

(

v(x)

gLL(x)
∂x

)

+
ω2

ν

v(x)gLL(x)

}

G0
iων

(x, x′) = δ(x− x′) . (3.24)

The explicit calculation of the Green’s function is reported in the Appendix D.

If the propagation velocity is supposed constant in the wire, as in our model, then the

solution of Eq. (3.24) inside the wire reads

G0
iων

(x, x′) = Aων
(x′)eανx +Bων

(x′)e−ανx , (3.25)

where we defined αν ≡ |ων |/v. The functions Aων
and Bων

are proportional to each

other,

Bων
= γAων

, (3.26)

where we defined the constant γ ≡ (1−gLL)/(1+gLL). The explicit form of the function

Aων
is

Aων
(x) =

cosh[αν(d− x)] (1 + gLL tanh[αν(d− x)])

|ων | (eανd + γe−ανd) + |ων |
gLL

(eανd − γe−ανd)
. (3.27)
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In the wire, if x = x′, Green’s function reads

G0
iων

(x, x) =
gLL

2|ων|
1

1 − γ2e−2ανd

{

1 + γ2e−2ανd + γe−2ανx + γe−2αν(d−x)

}

. (3.28)

The importance of Eq. (3.28) will be clear in the following.

The expression of Green’s function valid within the wire can be obtained imme-

diately substituting x = 0 and x′ = d in Eq. (3.25). One finds

G
(0)
iων

(0, d) = (1 + γ)Aων
(d) =

2

|ων |
gLL

(1 + gLL)2eανd − (1 − gLL)2e−ανd
. (3.29)

3.4 Results for a clean quantum wire

By means of Eq. (3.29), the behaviour for a clean wire is easily recovered.

The Green’s function valid within the wire, from Eq. (3.29), performing analyt-

ical continuation, reads

G
(0)
ω+i0(0, d) = i

2

ω

gLL

(1 + gLL)2e−iωd/v − (1 − gLL)2eiωd/v
. (3.30)

Substituting Eq. (3.30) into Eq. (3.7) and taking the limit ω → 0, one finds the

conductance for a clean one-mode quantum wire gcw = e2/h.

From Eq. (3.30),

|G(0)
ω+i0(0, d)|2 =

2

ω2

g2
LL

1 + 6g2
LL + g4

LL − (1 − g2
LL)2 cos(2ωd/v)

. (3.31)

Comparing the latter equation with the results in [Safi95, Fazio98] for the thermal

conductance, one gets the expression for the so-called plasmons transmission coefficient

of a clean wire,

Tpl(ω) = 4ω2|G(0)
ω+i0(0, d)|2 =

8g2
LL

1 + 6g2
LL + g4

LL − (1 − g2
LL)2 cos(2ωd/v)

. (3.32)

The behaviour of the transmission coefficient, Eq. (3.32), is plotted in Fig. 3.5, in

function of dimensionless energy ωd/vF and interactions strength gLL.

If gLL = 1, that is for non-interacting electrons, then Tpl(ω) = 1; from Eqs.

(3.14) and (3.31) one gets the classical value for thermal conductance K = (π/6)T ,
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Figure 3.5: Transmission coefficient for a clean quantum wire. Left: 3D plot of transmission
coefficient for a clean quantum wire in function of dimensionless energy ωd/vF and the in-
teraction strength gLL. Right: Transmission coefficient for a clean quantum wire in function
of dimensionless energy ωd/vF for different value of the interaction strength gLL. Resonance
picks are well visible when ωd/vF = πk/gLL. For each value of k a collective mode is excited.

and, consequently, the classical value L0 for the Lorenz number, too, see Fig. 3.3. As

mentioned, the same classical value, is recovered at low temperatures T ≪ v/d, for any

value of Luttinger parameter gLL.

The plot of Tpl(ω) shown in Fig. 3.5 for different values of interactions strength,

allows us to better understand phenomenologically how the collective modes are excited

inside the wire.

For non interacting particles, the transmission coefficient is constantly equal

to one; particles can transmit easily through the wire, because no repulsive forces

are present. As long as gLL lowers, the system becomes more and more rigid, and

resonances peaks appear.

From Eq. (3.32), one has the maxima for the transmission coefficient for values

of dimensionless energy given by

ωd

vF

=
π

gLL

k , (3.33)

where k is an integer, zero included. Each peak corresponds to an excitation of a

collective mode whose wavelength has a well defined value

λ =
2d

k
. (3.34)
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x lx

Figure 3.6: Diagrams for conductance in a clean wire. Left: Electrical conductance in
bosonised form is proportional to single-particle Green’s function, Eq. (3.7). Then, the only
contributing diagram is represented by a straight line, where the arrows indicate the direction
of propagation. Right: The thermal density current operator, Eq. (3.11), is bilinear in the
displacement operator û. Then, even in bosonised form, the simplest diagram contributing
to thermal conductance in a clean wire is still represented by a bubble diagram. Each branch
of the diagram is equivalent to the straight-line diagram on the left. Wavy lines represent
interactions with the external field.

At very low temperatures, the contribution to energy transport is determined

by those excitations whose wavelength largely exceeds the length of the wire. For k = 2

the corresponding mode has a wavelength equal to the wire length, then, for increasing

values of k smaller wavelength modes are excited. For each supplementary mode a

larger amount of energy is demanded. The stronger the interactions, the lower the

average value of transmission coefficient, and the larger the energy to excite even a

single mode. Of course, if gLL = 0, then an infinite amount of energy is demanded to

excite even the lowest modes.

In Fig. 3.6, the two diagrams contributing to electrical and thermal conductance

are shown. In the bosonized form, the electrical conductance is represented by a simple

straight line diagram, since it is proportional to the single-particle Green’s function,

Eq. (3.7). No bubble diagram contributes. On the contrary, since the thermal current

density operator is bilinear in the displacement operator û, Eq. (3.11), the simplest

diagram contributing to thermal conductance for a clean wire is still a bubble diagram.

As we will see in the following sections, this difference will play a very important

role in the evaluation of the corrections due to disorder. This evaluation will be the

aim of the next sections. Because of the different structure of electrical and thermal

conductance, Eqs. (3.7) and (3.14), the corrections to the aforementioned diagrams,
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and then to the conductances, cannot be evaluated in the same identical way. We

anticipate that for the electrical conductance the equation of motion for the single-

particle Green’s function can be used to evaluate the correction to the Green’s function

and then to the conductance. For the thermal conductance, a diagrammatic approach

will be followed to recover correctly all the contributing analytical terms.

3.5 Corrections induced by disorder

The Green’s function G0
iων

(x, x′) in Eq. (3.25), solution of the equation of mo-

tion in Eq. (3.24), has been used to find the results for a clean one-mode quantum

wire presented in the previous section. Notwithstanding the fact that the structure of

electrical and thermal conductance in terms of Green’s function is profoundly different,

Eqs. (3.7) and (3.14), they just depend on G0
iων

(x, x′), in the case of charge transport,

or on |G0
iων

(x, x′)|2 for the energy transport. As we have mentioned, this difference

goes back to the distinct structure of current density operator, which is linear in the

operator û for the charge transport, jel = −i√πn0∂τ û, [Maslov95], and bilinear for the

energy transport, Eq. (3.11).

While for a clean wire, the above-mentioned different structure of electrical and

thermal conductance does not prevent from using the same equation of motion, this is

no longer true in presence of impurities.

Under the assumption of weak disorder, one can study the linear response of

the system to such a perturbation by writing the electrical and thermal conductances

as the sum of two terms

gdw = gcw + δgdw , Kdw = Kcw + δKdw . (3.35)

The first terms in the rhs of these equations, are the values for a clean wire, and they

are given by Eqs. (3.7) and (3.14), respectively; δgdw and δKdw are the corrections due

to the perturbative potential. From Eq. (3.35), the correction to Lorenz number can
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be evaluated, and, at the lowest order in the corrections, it reads

Ldw ≃ Kcw

Tgcw

[

1 − δgdw

gcw

+
δKdw

Kcw

]

= Lcw

[

1 − δgdw

gcw

+
δKdw

Kcw

]

, (3.36)

Eq. (3.36) shows that the correction to Lorenz number depends on the correc-

tions to the conductances which appear with opposite sign. So far, to our knowledge,

few works exist which allow to determine the behaviour of the above-mentioned cor-

rection, [Li02, Ferone]. In [Li02], the behaviour of the Lorenz number is not explicitly

presented. No information can be deduced about the sign of the correction, and par-

ticularly, the limit of high temperatures is not discussed at all.

3.6 Correction to gcw and generalised equation of

motion

The correction to the electrical conductance in the first equation in Eq. (3.35)

can be written in terms of the correction to the Green’s function.

In linear response regime, one can write

Gdw(x, x′; τ) = G0(x, x′; τ) + δGdw(x, x′; τ) , (3.37)

where G0(x, x′; τ) is the expression of the Green’s function for a clean wire, and it is the

solution of Eq. (3.23), while δGdw the correction due to disorder. Such a correction,

we stress, is the correction to the single-particle Green’s function.

From Eqs. (3.7) and (3.37) the correction induced by disorder to electrical

conductivity can be written as

δσω(x, x′) =
e2iω2

ν

πω
δGiων

(x, x′)

∣

∣

∣

∣

iων→ω+i0

. (3.38)

The evaluation of δGiων
(x, x′), and then, of δσω(x, x′) is equivalent to the evaluation

of the self-energy Σ1, shown in Fig. 3.7-left, which dresses the bare Green’s function,

[Abrikosov75, Rickayzen80]. The form of Σ1 will be discussed in details later. Here,

we point out that since from Eq. (3.38) δσω(x, x′) is proportional to δGiων
(x, x′), the
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Σ 1

Figure 3.7: Left: Single particle Green’s function self-energy contributing to electrical con-
ductance. Right: The only terms giving information about the action of perturbative potential
in Eq. (3.40) and shown in the figure are ψ+

−ψ+ and ψ+
+ψ−; the first term describes a right-

moving state, ψ+, scattered off by the potential in a left-moving state, ψ+
−. On the contrary,

the second term describes a left-moving state ψ− scattered off in a right-moving state ψ+
+.

Both terms are used to write the expression of the perturbative Hamiltonian Himp in Eq.
(3.42).

self-energy Σ1 is all what one has to evaluate for the electrical conductance. No other

possible correlation functions appear in the evaluation.

In the following sections, we write the equation of motion for the single particle

Green’s function in presence of disorder. It will allow us to evaluate the correction

δGiων
(x, x′), and then the electrical conductance.

The Hamiltonian we have used until now, Eq. (3.3), describes a clean quantum

wire. To tackle the problem of a disordered 1D conductor, the first step is understanding

the way to modify correctly the Hamiltonian in order to describe the effects of disorder.

In second quantification formalism, [Rickayzen80, Mahan00], the Hamiltonian

describing the effect of impurities reads

Himp =

∫

d3rψ†(r)V (r)ψ(r) , (3.39)

where V (r) is the perturbative potential, and ψ a fermionic field.

The product of fermionic operators can be decomposed in contributions con-

cerning right, (+), and left, (−), movers, respectively:

ψ†ψ = ψ†
+ψ+ + ψ†

−ψ− + ψ†
+ψ− + ψ†

−ψ+ . (3.40)
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Physically, the only terms giving information about the action of the perturba-

tive potential are the third and the fourth ones in the rhs of Eq. (3.40), that is the

mixed one; they are the only ones to give an information about the particles reflected

by the potential, see Fig. 3.7-right. As we have seen in Section 2.3, the bosonization

technique allows to write a fermionic operator as

ψ± ∼ exp[±ikFx∓ iφ(x) + θ(x)] . (3.41)

where φ and θ are bosonic operators. By taking just the terms giving a contribution

to conductance as mentioned before, the Hamiltonian describing the effect of disorder

reads

Himp =
2

a

∫

dxV (x) cos(2kFx− 2πn0û) , (3.42)

where a is a microscopic cut-off length. The equation of motion with respect to the

Hamiltonian H0+Himp can be now evaluated. As for the clean case, all the calculations

are reported in details in the Appendix E. The equation of motion reads

{

1

v(x)gLL(x)
∂2

τ + ∂x

(

v(x)

gLL(x)
∂x

)}

G(x, x′; τ) =

−δ(x− x′)δ(τ) +
4π

a
n0V (x)〈Tτ sin(2kFx− 2πn0û)û

′〉 . (3.43)

From the previous equation it is possible, at least in principle, to determine the

complete evolution of the perturbed system provided that one is able to evaluate the

average in the second term in the rhs. We will see that it is analytically possible under

the assumption of weak disorder. Particularly, the calculation of the above-mentioned

average allows to evaluate the correction to Green’s function, and consequently, to the

electrical conductance.

3.6.1 First order corrections

We want to recover the analytical expression of the correction to Green’s func-

tion. From Eqs. (3.23), (3.37) and (3.43), the equation of motion for such a correction
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reads

{

−∂x

(

v(x)

g(x)
∂x

)

+
ων

2

v(x)g(x)

}

δGiων
(x, x′) =

= −4π

a
n0V (x)〈Tτ sin(2kFx− 2πn0û) û

′〉 . (3.44)

In order to study the system perturbatively in the potential V (x), at the lowest

order in the aforesaid potential, the rhs of Eq. (3.44) being already linear in V (x), the

average can be evaluated with respect to the unperturbed Hamiltonian H0.

The perturbative approach in this case is possible if the strength of the potential

V (x) is much smaller than the characteristic energy scale v/d of the wire. This point

will be discussed in details later.

To evaluate the average, we observe that the Hamiltonian in Eq. (3.3) can

be diagonalised by means of linear transformations; they allow to write the aforesaid

Hamiltonian in a bilinear form with respect to bosonic operators, [Fazio98]. Under

these assumptions, it is shown that the following equation holds

〈

eB̂
〉

= e
1
2〈B̂2〉 . (3.45)

To evaluate the average 〈Tτ sin(2KFx − 2πn0û)û
′〉H0, we observe that one can

decompose it by means of trigonometric formula; the averages to evaluate, then, can

be written as

〈cos(2πn0û)û
′〉 =

1

2

{〈

e−i2πn0ûû′
〉

+
〈

ei2πn0ûû′
〉}

. (3.46)

Each of the single term in the rhs of the Eq. (3.46) can be evaluated by means of Eq.

(3.45). Calculating each term, for the average one finds

〈Tτ sin(2KFx− 2πn0û)û
′〉H0 = − 2

n0

cos(2KFx)G
0(x, τ ; x′, 0)e−2πG0(x,τ ;x,τ) . (3.47)

The Green’s function appearing in the exponential function does not depend

on time; in fact, the general properties of Green’s functions state, provided that the

Hamiltonian does not depend on time, that they depend just on the difference of the

time argument. In this case, the two values are equal. By means of Eq. (3.47), the
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equation of motion for the correction to Green’s function in Eq. (3.44) reads

{

−∂x

(

v(x)

gLL(x)
∂x

)

+
ω2

ν

v(x)gLL(x)

}

δGiων
(x, x′) =

=
8π

a
V (x) cos(2kFx)G

0
iων

(x, x′)e−2πG0(x,τ ;xτ) = f(x, x′;ων) . (3.48)

The general theory of Green’s functions allows to write immediately the solution

of the previous differential equation

δGiων
(x, x′) =

∫

dx′′G0
iων

(x, x′′)f(x′′, x′, ων) . (3.49)

Finally, the correction can be written as

δGiων
(x, x′) =

8π

a

∫

dx′′V (x′′) cos(2kFx
′′)G0

iων
(x, x′′)G0

iων
(x′′, x′)e−2πG0(x′′,τ ′′;x′′τ ′′) .

(3.50)

We studied the case of a white noise potential, that is for a potential V (x)

such that 〈V (x)〉 = 0 and 〈V (x1)V (x2)〉 = niu
2δ(x1 − x2), where ni is the density of

impurities in the wire, u their strength, and, for the potential, 〈· · · 〉 stands for the

average over disorder realizations. For a perturbative approach, the condition u≪ v/d

must holds.

Since 〈V (x)〉 = 0, from Eqs. (3.38) and (3.50), no information on the behaviour

of electrical conductance can be obtained at this step, and higher order corrections

have to be evaluated. Besides, we stress that even for a different perturbative potential,

Eqs. (3.38) and (3.50) just give rise to an inductive correction. Then, no real resistive

contribution exists.

3.6.2 Second order corrections

The average in Eq. (3.44) should be evaluated with respect the total Hamilto-

nian H0 + Himp, where H0 and Himp are given by Eqs. (3.3) and (3.42), respectively.

Since the rhs of Eq. (3.44) is already linear in the potential V (x), one has to consider

all the first order contributions in the perturbative Hamiltonian Himp.
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Let H = H0 +Himp be the total Hamiltonian. One can write

〈f1f2〉H =
1

ZTr e−βHf1f2 , (3.51)

where f1 and f2 are two operators functions, and Z the partition function.

If the perturbation is small, as it is in our case, the density matrix reads

ρ = ρ0 [1 − βHimp] , (3.52)

where ρ0 is the unperturbed density matrix. In the same way, the partition function

can be written as

Z = Z0 [1 − 〈βHimp〉0] . (3.53)

By using the two previous equations, the average in Eq. (3.51) will assume the

following expression

〈f1f2〉H =
1

[1 − 〈βHimp〉0]
{〈f1f2〉0 − 〈βHimpf1f2〉0} , (3.54)

and consequently,

〈f1f2〉H ≃ {1 + 〈βHimp〉0} · {〈f1f2〉0} − 〈βHimpf1f2〉0} . (3.55)

At the first order in Himp, the contributions read

〈f1f2〉(I) = 〈βHimp〉0〈f1f2〉0 − 〈βHimpf1f2〉0 . (3.56)

In the latter equation, all the averages are to be evaluated with respect the unperturbed

Hamiltonian H0. For our problem, the functions in Eq. (3.56) read

f1 = f(x1, τ1) = sin(2kFx1 − 2πn0û(x1, τ1)) , (3.57)

f2 = f(x2, τ2) = −2
√
πn0û(x2, τ2) , (3.58)

Himp =
2

a

∫

dx3V (x3) cos(2kFx3 − 2πn0û(x3, τ3)) . (3.59)

For the sake of simplicity, we call (x1, τ1) = (x, τ), (x2, τ2) = (x′, 0), and

û(xi, τi) = ûi. From Eqs. (3.44), (3.56), (3.57), (3.58) and (3.59), the contribution, at
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the first order in the perturbative Hamiltonian, will read

√
πn0〈Tτ sin(2kFx− 2πn0û)û

′〉(I) =

= −2

a

∫

dτ3dx3V (x3)〈Tτ sin(2kFx1 − 2πn0û1)û2 cos(2kFx3 − 2πn0û3)〉0

−2

a

∫

dτ3dx3V (x3)〈cos(2kFx3 − 2πn0û3)〉0〈Tτ sin(2kFx1 − 2πn0û1)û2〉0.(3.60)

Evaluating the different contributions, which are reported in the Appendix F,

one gets

√
πn0〈Tτ sin(2kFx− 2πn0û)û

′〉(I) =

=
2
√
π

a

∫

dτ3dx3V (x3)

×
{

[

G0
12e

−2
√

π(G0
11+G0

33)
[

e−4πG0
13 − 1

]

+G0
23e

−2π(G0
11+G0

33+2G0
13)
]

cos[2kF (x1 + x3)]

+
[

G0
12e

−2
√

π(G0
11+G0

33)
[

e4πG0
13 − 1

]

−G0
23e

−2π(G0
11+G0

33−2G0
13)
]

cos[2kF (x1 − x3)]

}

= G(I)(X1, X2) , (3.61)

where: Xi = (xi, τi).

We can write immediately the equation of motion for the second order corretion

to the Green’s function
{

1

v(x1)gLL(x1)
∂2

τ + ∂x1

(

v(x1)

gLL(x1)
∂x1

)}

δ(II)G12 =

4
√
π

a
V (x1)G

(I)(X1, X2) = f(X1, X2) . (3.62)

where G0
ij = G0(Xi, Xj). Green’s functions theory allows to write the solution of the

previous equation, thanks to the knowledge of the Green’s function associated to the

differential operator

δ(II)G12 =

∫

dX4G
0(X1, X4)f(X4, X2) . (3.63)

Keeping just the terms giving a non vanishing contribution, the correction finally reads

δ(II)G12 = −8π

a2

∫

dX3dX4V (x3)V (x4)G
0(X1, X4)

×
[

G0
42e

−2π(G0
44+G0

33−2G0
43) −G0

23e
−2π(G0

44+G0
33−2G0

43)
]

cos[2kF (x4 − x3)] . (3.64)



64 QUANTUM WIRES AND LORENZ NUMBER

We can write the expression of the correction we have found for a white noise

potential; then, the correction to the Green’s function reads

δGwn
iων

= −8π

a2
niu

2

∫ d

0

dx0G
0
iων

(x1, x0)G
0
iων

(x0, x2) [F0(x0) − Fiων
(x0)] , (3.65)

where Fiων
is the Fourier transform of

F (x, τ) = exp

{

−4π

β

∑

ων

(1 − e−iωντ )G0
iων

(x, x)

}

. (3.66)

The latter equation requires, specifically, the knowledge of Green’s function in the wire

with x = x′, whose expression is given by Eq.(3.28).

By means of Eqs.(3.65) and (3.66), one can evaluate the corrections to Green’s

function and then to electrical conductance at any temperature. Eq. (3.66) can be

evaluated at any temperature by performing exactly the sum; one gets the general

expression F (y, τ) = exp{χ(y, τ)}, where

χ(y, τ) = −g
∞
∑

k=0

γ2k

{

ln



1 +
sin2

(

π
β
τ
)

+ α2

sinh2
(

πd
βv

2(k + α)
)



+ γ2 ln



1 +
sin2

(

π
β
τ
)

+ α2

sinh2
(

πd
βv

2(k + 1)
)





+ γ ln



1 +
sin2

(

π
β
τ
)

+ α2

sinh2
(

πd
βv

2(k + y)
)



+ γ ln



1 +
sin2

(

π
β
τ
)

+ α2

sinh2
(

πd
βv

2(k + 1 − y)
)





}

(3.67)

where y = x/d is the renormalized position of impurities in the wire, and α an infrared

cut-off. In the following, we will study the case of low and high temperatures, where

”low” and ”high” refer here to the characteristic energy scale of the system v/d. In this

limit, the analytical expression of Fiων
can be obtained.

The correction to Green’s function in Eq. (3.65), can be written in a more

suitable way. Using the property G0
iων

(x1, x2)G
0
iων

(x2, x3) = G0
iων

(x1, x3)G
0
iων

(x2, x2), it

reads

δGwn
iων

(x1, x2) = −8π

a2
niu

2G0
iων

(x1, x2)

∫ d

0

dx0G
0
iων

(x0, x0) [F0(x0) − Fiων
(x0)] . (3.68)

Substituting this result into Eq. (3.38), one finds the corrections to the electrical

conductance

δgdw = −gcw
8π

a2
niu

2

∫ d

0

dxG0
iων

(x, x) [F0(x) − Fiων
(x)]

∣

∣

∣

∣

iων→0+i0

. (3.69)
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In the following section, we present the result for the electrical conductance

in the limit of low and high temperatures. Then, we will develop the diagrammatic

approach to recover all the diagrams contributing to thermal conductance.

3.7 Electrical conductance. Low temperature limit:

T ≪ v/d

By taking the limit β → ∞ in Eq. (3.67), one finds the expression for the

correlation function at zero temperature. Taking this limit in Eq. (3.67) is equivalent

to replacing the sum over Matsubara frequencies in Eq. (3.66) by an integral. The

result reads

χ(y, τ) = −g
{

ln[1 + (ωF τ)
2] +

∑

m∈Zeven
m6=0

γ|m| ln

[

m2 + (τv/d)2

m2

]

+
∑

m∈Zodd

γ|m| ln

[

(m+ 1 − 2y)2 + (τv/d)2

(m+ 1 − 2y)2

]

}

,(3.70)

which coincides with the result obtained in [Safi97, Dolcini03].

Since we are interested in the response at low frequencies ω ≪ v/d, the main

contribution comes from the long-time region vτ/d ≫ 1 such that we can use the

corresponding long-time asymptotic form of Eq. (3.70). Then F (x, τ), in Eq. (3.66),

reads

F (x, τ) =
1

[1 + (ωF τ)2]gLL

(vτ

d

)2(gLL−1)

, (3.71)

valid in the limit τ ≫ d/v.

We need the Fourier transform of F (x, τ) which is found from the integral

F0(x) − Fiων
(x) =

β/2
∫

−β/2

dτ
1 − cos(ωντ)

[1 + (ωF τ)2]gLL

(vτ

d

)2(gLL−1)

. (3.72)

In the relevant limit (low-temperature and ων → 0), it can be written as

F0(x) − Fiων
(x) =

ων

ω2
F

(

v

ωFd

)2(gLL−1)
∞
∫

−∞

dz
1 − cos z

z2
. (3.73)
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Upon integration over z and analytical continuation, this reads

F0(x) − Fiων→ω+i0(x) ≃
−iπω
ω2

F

(

v

ωFd

)2(gLL−1)

. (3.74)

We now turn to the calculation of the disordered-induced correction δgdw to

the zero-temperature conductance of the quantum wire. In the limit ων → 0, we can

approximate, from Eq. (3.25), G0
iων

≃ 1/2|ων|. With the help of Eqs. (3.38), (3.68),

and (3.74), one obtains the same behaviour as in [Maslov95b]

δgdw = −gcw
d

l

[

ωFd

v

]2(1−gLL)

, (3.75)

where we defined the inverse effective mean free path

1

l
=

4π2niu
2

a2ω2
F

. (3.76)

The behaviour of electrical conductance in Eq. (3.75) was very recently confirmed

experimentally, [Levy05].

The validity of the perturbative approach can be inferred from the condition

that the zero-temperature correction δgdw ≪ gcw = e2/h. This yields the condition

d

l

[

ωFd

v

]2(1−gLL)

≪ 1. (3.77)

Defining the energy scale T0 = ωF (d/l)1/2(1−gLL), characteristic of the interplay between

disorder and interactions, the correction δgdw can also be written as

δgdw = −gcw

(

T0d

v

)2(1−gLL)

. (3.78)

The condition that this correction be small can then also be written as T0d/v ≪
1. In order for disorder effects to be weak, the energy scale T0, should be much smaller

than the energy separation v/d between subsequent plasma modes in the wire. This

condition will be met generally by simultaneously limiting the strength of the disorder

potential, via the condition l ≫ d, and the interaction strength such that 1− gLL ≪ 1.
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3.8 Electrical conductance. High temperature limit:

v/d≪ T ≪ ωF

In this limit, Eq. (3.66) has to be analyzed using Eq. (3.67). Note that this

limit corresponds to a long quantum wire, such that the dominant term in Green’s

function in Eq. (3.25) is Giων
≃ g/2|ων|. Then we find, as in [Maslov95b],

F (x, τ) =

[

(π/βωF )2

sin2(πτ/β)

]gLL

. (3.79)

The result for the Fourier transform of F is obtained by direct integration. This yields

F0(x) − Fiων
(x)|iων→ω+i0 =

[

2π

ωFβ

]2gLL β

π
F (ω), (3.80)

where

F (ω) = sin(πgLL)

[

B(gLL, 1 − 2gLL) − B(gLL − i
ωβ

2π
, 1 − 2gLL)

]

, (3.81)

with B(x, y) the Beta function.

In order to calculate the conductance, we need the Fourier transform of F (x, τ)

in the low-frequency limit ω → 0. Direct expansion of the Beta function yields

F0(x) − Fiων
(x)|iων→ω+i0 = −iω

√
π

2ω2
F

sin(πgLL)
(ωF

πT

)2(1−gLL) Γ(1 − gLL)

Γ
(

1
2

+ gLL

) [Γ(gLL)]2 .(3.82)

Using Eqs. (3.38), (3.68), (3.82), we can evaluate the correction δgdw to electrical

conductance

δgdw = −gcwC(gLL)
d

l

(ωF

πT

)2(1−gLL)

(3.83)

= −gcwC(gLL)

(

T0

πT

)2(1−gLL)

,

where the function C(gLL) is

C(gLL) =

√
π

2

Γ(gLL)

Γ
(

1
2

+ gLL

) . (3.84)

The behaviour of the correction is shown in Fig. 3.8. The higher is the temperature,
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Figure 3.8: The behaviour of the correction to electrical conductance at high temperatures
is shown in function of the reduced temperature Td/vF in arbitrary units. The constant α is

defined as α ≡ (d/l)x
2(1−gLL)
F , and xF ≡ ωFd/vF .

the larger is the thermal activation and the smaller is the correction. If gLL = 1, we find

δgdw = −gcw(d/l) both at low and high temperatures. In order for the perturbative

approach to be valid for electrical conductance, we demand that T ≫ T0, which is

satisfied for any T ≫ v/d in view of the condition T0 ≪ v/d discussed above.

3.9 Correction to Kcw and diagrammatic approach

We have mentioned the fact that because of the different structure of current

density operator for charge and heat transport, the diagrams contributing to the elec-

trical and thermal conductance are very different.

The electrical conductance is directly proportional to Green’s function, and the

diagram contributing to charge transport for a clean quantum wire is just a straight

line diagram, as shown in Fig. 3.6-left. In the previous sections, we have evaluated

the correction to gcw due to the presence of disorder. To do that, we have written the

equation of motion for the Green’s function in presence of disorder, and we have evalu-

ated the correction to Green’s function in Eq. (3.64) which allows to get the correction

δgdw in Eq. (3.69). We stress that the correction in Eq. (3.64) is the correction to
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single-particle Green’s function.

The thermal current density operator is bilinear in the displacement operator

û, Eq. (3.11); then, the simplest diagram contributing to heat transport is represented

by the bubble diagram in Fig. 3.6-right.

The thermal conductance is described by the two-particles Green’s function.

Consequently, the correction to Kcw due to the presence of disorder cannot be cor-

rectly inferred from the equation of motion for the single-particle Green’s function.

The complete dependence on the perturbative potential can be obtained by

means of the perturbation theory, [Abrikosov75, Rickayzen80]. At the second order in

the potential V (x), the two-particles response function can be written as

〈Tτjth(x1, τ1)jth(x2, τ2)〉 =
1

〈1 −Himp(x′, τ ′) + (1/2)Himp(x′, τ ′)Himp(x′′, τ ′′)〉
×[〈Tτ jth(x1, τ1)jth(x2, τ2)〉 − 〈Tτjth(x1, τ1)jth(x2, τ2)Himp(x

′, τ ′)〉

+(1/2)〈Tτjth(x1, τ1)jth(x2, τ2)Himp(x
′, τ ′)Himp(x

′′, τ ′′)〉] . (3.85)

The latter equation gives rise to the contributions in the perturbative potential V (x).

As we will show in the following, such contributions correspond to all possible connected

diagrams for the two-particles response function.

We are intrested in developing the third term in the numerator in the rhs of

Eq. (3.85), since it is this term to give rise to the second order contributions in the

perturbative potential V (x). Remembering the definitions of the current operator jth,

Eq. (3.11), and the Hamiltonian describing the effect of disorder, Eq. (3.42), one can

write

1

2

∫

d τ5d τ6〈Tτjth(x1, τ1)jth(x2, τ2)Himp(x5, τ5)Himp(x6, τ6)〉

=
v4

F

2
(mn0)

2∂τ1∂τ3∂x2∂x4

∫

d τ5d τ6〈Tτ û1û2û3û4Himp(x5, τ5)Himp(x6, τ6)〉

=
v4

F

2
(mn0)

2

(

2

a

)2

∂τ1∂τ3∂x2∂x4

∫

dX5dX6 [cos 2kFx5 cos 2kFx6

×〈Tτ û1û2û3û4 cos πn0û5 cosπn0û6〉 + sin 2kFx5 sin 2kFx6

×〈Tτ û1û2û3û4 sin πn0û5 sin πn0û6〉] , (3.86)
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Σ 1
l

Σ 2

Figure 3.9: Left: First-class diagram. It is characterised by the presence of disorder on
just one of two branches of bubble diagram. Σ′

1 is the self-energy related to the presence of
disorder. Right: Second-class diagram. It is characterised by the presence of disorder on both
branches, and Σ2 is the related self-energy. In both diagrams, solid lines are bosonic Green’s
function, and the wavy lines describe the interactions with the external field.

where (xi, τi) ∀i ∈ {1, 2, 3, 4} are just auxiliary variables, ûi = û(xi, τi) and Xi =

(xi, τi).

All the connected contributing diagrams are obtained by means of Wick’s theo-

rem applied to the average values in the latter equation. Such diagrams can be divided

into two different classes: we call first-class diagrams the contributions characterised

by the presence of disorder Hamiltonians on just one of the two branches of the bub-

ble diagram. The corresponding diagram is shown in Fig. 3.9-left, where Σ′
1 is the

self-energy related to the correction due to disorder. We call second-class diagrams the

contributions characterised by the presence of disorder Hamiltonians on both branches

of bubble diagram, and corresponding to the diagram in Fig. 3.9-right.

3.9.1 First-class diagram

The response function for a white noise potential corresponding to diagram in

Fig. 3.9-left, from Eq. (3.86) reads

χ(x, x′; iων) = 2π

(

2

a

)2

niu
2
0

∫

d x0 T
∑

iωµ

Giων+iωµ
(x, x0)Giων+iωµ

(x0, x
′)Giωµ

(x′x)

×
[

(ων + ωµ)
2ω2

µ − ωµ(ων + ωµ)|ωµ||ων + ωµ|
] [

F0(x0) − Fiων+iωµ
(x0)

]

(3.87)
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Σ 1 = +

+ ... +

l

Figure 3.10: Diagrams infinite series contributing to the self-energy Σ′
1. They represent the

only contributing terms to the electrical conductance.

The function Fiων
(x) is the Fourier transform of

F (x1, τ1; x2, τ2) = 〈sin πn0û1 sin πn0û2〉 + 〈cosπn0û1 cosπn0û2〉CON

= 〈sin πn0û1 sin πn0û2〉 + 〈cosπn0û1 cosπn0û2〉

−〈cosπn0û1〉〈cosπn0û2〉 . (3.88)

The function Fiων
(x) filters all the connected diagrams by the deconnected ones, and it

is the same function F in Eq. (3.66). CON in the latter equation stands for connected.

In Eq. (3.87), the function Giωµ
(x′x) describes the lower branch in the diagram in

Fig. 3.9-left; the two remaining Green’s functions, and the difference between the

two F -functions describe the upper branch taking into account the correction due to

disorder and then giving rise to the self-energy Σ′
1. From a diagrammatic point of

view, the evaluation of Σ′
1 corresponds to the sum, at any order, over all the dressed

single-particle Green’s functions contributing to transport, as shown in Fig. 3.10.

The analytical structure of Eq. (3.87) and the diagrams in Fig. 3.10 allow

to understand how the contributions to energy transport take place. The response

function χ(x, x′; iων) is built summing over all the possible virtual states, indicated with

solid and dashed lines in Fig. 3.10, each of which has energy ωµ. Then, the external

frequency ων is coupled to each of these virtual states contributing to tranport. Such a

complicated expression is a direct consequence of the strongly non-linear character of

impurities Hamiltonian defined in Eq. (3.42). Transforming the sum into an integral

in the complex plane, as already done in Appendix B for the thermal conductance

for a clean wire, one recovers the first-class contribution to the correction to thermal
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Σ 2 =

Figure 3.11: Second-class diagrams contributing to the self-energy Σ2. They are related to
two-particles Green’s function, and do not exist for the charge transport.

conductance

δKI
dw = −2niu

2

T 2a2

∫ ∞

0

dω
ω2Tpl(ω)

sinh2(βω/2)
ℜe

{
∫ d

0

dxG
(0)
ω+i0(x, x) [F0(x) − Fω+i0(x)]

}

,(3.89)

where the superscript I stands for first-class contribution. Of course, in the latter equa-

tion, we took into account the multiplicity due to the possibility that the disorder can

also act on the lower branch of the diagram.

The self-energy Σ′
1, from Fig. 3.9-left, takes into account the renormalization,

due to disorder, of the single-particle Green’s function. That is the first-class contri-

bution to thermal conductance can be evaluated starting from the correction to the

Green’s function evaluated by means of the equation of motion in Eq. (3.64). The two

self-energies Σ1 and Σ′
1 coincide.

3.9.2 Second-class diagrams

The second-class diagrams take into account the possibility that the two disorder

Hamiltonians in the lhs of Eq. (3.86) are coupled each to one of the braches. In Fig.

3.11, all the second-class diagrams contributing to the self-energy Σ2 are shown. These

diagrams give rise to four distinct contributions. The corresponding response functions

read
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χ1(x, x
′; iων) = −8π2

(

2

a

)2

niu
2
0

∫

d x0T
2
∑

iωλ,iωµ

(ων + ωλ)(ων + ωµ)|ωλ||ωµ|F0(x0)

×Giων+iωλ
(x, x0)Giωλ

(x0, x)Giων+iωµ
(x0, x

′)Giωµ
(x′, x0) , (3.90a)

χ2(x, x
′; iων) = −8π2

(

2

a

)2

niu
2
0

∫

d x0T
2
∑

iωλ,iωµ

(ων + ωλ)(ων + ωµ)|ωλ||ωµ|Fiων
(x0)

×Giων+iωλ
(x, x0)Giωλ

(x0, x)Giων+iωµ
(x0, x

′)Giωµ
(x′, x0) , (3.90b)

χ3(x, x
′; iων) = −8π2

(

2

a

)2

niu
2
0

∫

d x0T
2
∑

iωλ,iωµ

Fiωλ−iωµ
(x0)

×(ων + ωλ)|ωλ|[(ων + ωµ)|ωµ| − |ων + ωµ|ωµ]

×Giων+iωλ
(x, x0)Giωλ

(x0, x)Giων+iωµ
(x0, x

′)Giωµ
(x′, x0) , (3.90c)

χ4(x, x
′; iων) = 8π2

(

2

a

)2

niu
2
0

∫

d x0T
2
∑

iωλ,iωµ

(ων + ωλ)(ων + ωµ)|ωλ||ωµ|

×Giων+iωλ
(x, x0)Giωλ

(x0, x)Giων+iωµ
(x0, x

′)Giωµ
(x′x0)

×[Fiωµ
(x0) + Fiωλ

(x0) + Fiων+iωµ
(x0) + Fiων+iωλ

(x0)] . (3.90d)

The analytical structure of the above-mentioned response functions is even more com-

plicated than the one evaluated in Eq. (3.87). Particularly, in their structure a double

sum appears. One of the sums can be interpreted as we did in the previous section.

The second one appears since one has to consider this time all the virtual states con-

cerning the exchange energy between the two branches of the bubble, as shown in Fig.

3.11. First, one has to consider the possible coupling between the external frequency

ων with all the virtual states chracterised by an energy ωµ; then, for each of them, one

has to consider the possible coupling with the virtual states with energy ωλ. All these

processes contributing to thermal transport, and shown in Fig. 3.11, do not exist at

all for the charge transport.

3.10 Lorenz number for a non-interacting system

The first test on the correctness of the linear response functions in Eqs. (3.89),

(3.90a), (3.90b), (3.90c) and (3.90d) has been done calculating the Lorenz number for
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gLL = 1. As it has been shown by Chester and Tellung, even in presence of arbitrary

impurity scattering, the Wiedemman-Franz law for a non-interacting system is fullfilled,

[Chester61].

The expression of correction to Lorenz number is given by Eq. (3.36). The

contributions given by the first-class diagrams to electrical and thermal conductance

can be easily evaluated by means of Eqs. (3.75) and (3.89); they are well-behaved, and

for gLL = 1 they read

δgdw

gcw

= −d
l
,

δKI
dw

Kcw

= −2
d

l
. (3.91)

The contributions of second-class diagrams for gLL = 1 can be evaluated from Eqs.

(3.90a), (3.90b), (3.90c) and (3.90d), and, albeit lengthy, the sum of the response

functions reads

χ1(ω) + χ2(ω) + χ3(ω) + χ4(ω) = −(iωT )

{

d

l
Kcw +

1

2

d

l
ωF

}

. (3.92)

The corresponding contribution to the thermal conductance follows from Eq. (3.9),

and it reads
δKII

dw

Kcw

=

{

d

l
+

1

2

d

l

ωF

Kcw

}

. (3.93)

Unlike the contributions given by the firts-class diagrams, the correction in Eq. (3.93)

is not well-behaved, giving rise to an ultraviolet divergence. Of course, such a diver-

gence is completely unphysical, and it must be removed. No contributions to thermal

conductance can exist as T = 0. No diagram has been neglected since, from Eqs.

(3.36), (3.91) and (3.93), removing the non-physical terms, the Wiedemann-Franz law

is fulfilled. And this results is robust.

The evaluation of contributions from second-class diagrams in presence of the

interactions has been slowed down by our attempt to understand the origin of such

unphysical ultraviolet divergence. It will be very important, for the calculations for

any value of gLL being able to discriminate the terms giving physical and unphysical

contributions.

This will allow us to evaluate the correction to thermal conductance, and then
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to Lorenz number. Of course, the total correction to heat transfer has to be negative

because of the presence of disorder. Nothing can be said about the behaviour of the

Lorenz number. Of course, as T → 0, one expects to find again the classical value

L0 because of the dominant contribution of long wave-length plasmons, which will no

longer perceive the presence of the constriction.

3.11 First-class contribution to thermal conductance

in presence of interactions

We have mentioned that the evaluation of the second-class diagrams for any

value gLL is very cumbersome. In the meantime, the behaviour of the first-class diagram

contribution to thermal conductance in Eq. (3.89) can be shown. It can be evaluated

analytically in the limit of low and high temperatures, as previously did for the electrical

conductance.

3.11.1 Low temperature limit: T ≪ v/d

According to Eq. (3.89), we need to calculate the zero frequency limit of

∫ d

0

dxℜe
{

G
(0)
iων→ω+i0(x, x) [F0(x) − Fiων→ω+i0(x)]

}

=
πd

2ω2
F

(

v

ωFd

)2(gLL−1)

. (3.94)

The latter limit was easily performed by means of Eq. (3.74), and since in the zero

frequency limit, as already mentioned, the Green’s function reads G0
iων

≃ 1/2|ων|.
Then, by means of Eq. (3.89), one finds the first contribution to the correction δKdw

to thermal conductance in the limit of vanishing temperature T → 0,

δKI
dw = −2Kcw

d

l

(

ωFd

v

)2(1−gLL)

= −2Kcw

(

T0d

v

)2(1−gLL)

(3.95)
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Similar to the correction to electrical conductance, the correction to thermal conduc-

tance is negative and governed by the ratio T0d/v. Then, for Eq. (3.95) the same

assumptions as for the corrections to electrical conductance in Eq. (3.78) hold.

3.11.2 High temperature limit: v/d≪ T ≪ ωF

In order to evaluate the thermal conductance, we note that the Fourier transform

of F in Eqs. (3.80) and (3.81) does not depend on the position x along the wire. As a

result the integral over x in Eq. (3.89) only involves G
(0)
iων

(x, x),

d
∫

0

dxG
(0)
iων→ω+i0(x, x) = dG(ω), (3.96)

where

G(ω) =
g

2ω

1 + γ2e2iωd/v

1 − γ2e2iωd/v

(

i− vγ

ωd

1 − e2iωd/v

1 + γ2e2iωd/v

)

. (3.97)

The correction δKI
dw to thermal conductance then can be written as

δKI
dw = − 1

8πT 2

∞
∫

0

dω
ω2

sinh2(βω/2)
δTpl(ω), (3.98)

with

δTpl(ω) = T
16d

l
Tpl(ω)

( ωF

2πT

)2(1−gLL)

ℜe[F (ω)G(ω)]. (3.99)

As a first test on the correctness of Eqs. (3.98) and (3.99) we calculate δKdw for

gLL = 1, which must be equal to the result found at low temperatures, since the energy

scale vF/d for a non-interacting system is meaningless. In this case, F (ω) = −iβω/4
and G(ω) = i/2ω, hence we find the expected result

δKI(gLL = 1) = −π
3

dT

l
T = −2Kcw

d

l
. (3.100)

Analytical evaluation of correction for arbitrary value of gLL is very difficult for thermal
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Figure 3.12: The behaviour of the first-class correction to thermal conductance at high
temperatures and gLL = 1/2 is shown in function of the reduced temperature Td/vF in
arbitrary units. The constant α is defined as α ≡ (d/l)xF , and xF ≡ ωF d/vF .

conductance, because of complicated expression of F . For gLL = 1/2, the real and

imaginary part of F in Eq. (3.99), FR and F I , respectively, have a simpler expression

FR = ℜe

[

Ψ

(

1

2
+ i

ω

2πT

)]

+ γ + 2 ln 2 , (3.101)

F I =
π

2
tanh

( ω

2T

)

, (3.102)

where Ψ(z) is the digamma function. The first-class correction to thermal conductance,

δKI
dw/Kcw can be evaluated numerically, and its behaviour for gLL = 1/2 is shown in

Fig. 3.12. It behaves as ∼ T−1; the higher is the temperature, the larger the thermal

activation, and the smaller is the correction, as in the case of the electrical conductance.

3.12 Conclusions

We are studying the thermal conductance for a one-mode disordered quantum

wire connected adiabatically to two reservoirs. The physical system has been modeled

by means of a finite length Luttinger liquid, and the disorder as a white noise potential.

First, we have reproduced the behaviour for a clean quantum wire. The electrical
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conductance is not renormalised unlike the thermal conductance. Such a renormalisa-

tion takes place since the plasmons, which can be seen as responsible of heat transfer,

suffer backscattering at the edges of the wire because of the connection to reservoirs.

If linh ≫ λF is the characteristic spatial scale of any inhomogeneities in the conductor,

then electrons will not perceive at all the one-dimensional constriction, and the uni-

versal value for the electrical conductance is recovered, gcw = e2/h. This is no longer

true for plasmons which can have any wavelength. Then, for particular values, such a

wavelength can be comparable to linh, and plasmons are scattered off by leads. This

gives rise to a strong renormalization of thermal conductance and of Lorenz number.

In presence of disorder, an interplay between disorder and interactions exists.

Such an interplay is contained in the energy scale T0 we have introduced in Section 3.7.

Because of the analytical structure of electrical current density operator, the

correction to electrical conductance can be evaluated by means of the correction to

the bare single-particle Green’s function. This has been done solving the equation of

the motion for the above-mentioned Green’s function and its correction that allows to

write immediately the correction to electrical conductance. The charge transport has

been studied in the limit of low and high temperatures. Particularly, for finite temper-

atures, it behaves as ∼ T−2(1−gLL). The effects of disorder is as smaller as temperature

increases.

For the thermal conductance, the evaluation is more cumbersome.

In this case, the thermal conductance is proportional to two-particles Green’s

function. A diagrammatic approach has been developed in the perturbative theory

framework to take into account all the diagrams contributing to heat transport. As we

have discussed, some of these diagrams could be evaluated by means of single-particle

Green function. For the remaining ones, a different approach is mandatory.

Unlike what happens for electrical conductance, because of the structure of ther-

mal current density operator, two different kind of contributions exist. The ones called

first-class contributions where the disorder acts on just one branch of the bubble di-

agram, and the so-called second-class contributions, where the disorder acts on both
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branches. The first-class diagrams are well-behaved. They give rise to a contribution

which has been evaluated in the limit of high and low temperatures, and which be-

haves qualitatively as the correction to electrical conductance. On the contrary, the

second-class diagrams are not-well behaved, and they give rise to an ultraviolet diver-

gence. Our work has been slowed down by the need to understand the nature of such

a divergence. At the moment, we verified that the aforementioned diagrams give rise

to, for a non-interacting system, gLL = 1, the correct result to thermal conductance in

order for the Wiedemann-Franz law to be respected. Understanding the nature of the

above-mentioned divergence is a fundamental step to be able to tackle the problem for

any value of interaction strength.

Once the correction to thermal conductance will be calculated, the behaviour of

the Lorenz number for the interacting system will be able to be evaluated. At the mo-

ment, one cannot say, whether the presence of impurities affects equally the charge and

heat transport; that is, one cannot say whether the correction to the Lorenz number,

with respect to a clean wire, is negative or positive.

Conclusions

Nous étudions la conductance thermique pour un fil quantique connecté de façon

adiabatique à deux réservoirs. Le système physique a été modélisé comme un liquide

de Luttinger de taille finie, et le désordre comme un potentiel du type bruit blanc.

D’abord, nous avons reproduit le comportement d’un fil quantique propre. La

conductance électrique n’est pas renormalisée, à la différence de la conductance ther-

mique. Une telle renormalisation a lieu car les plasmons, qui peuvent être vus comme

les responsables du transport de chaleur, sont diffusés aux bords du fil à cause de la

connexion aux réservoirs. Si linh ≫ λF est l’échelle spatiale typique de toutes les inho-

mogénéités à l’intérieur du fil, alors les électrons n’apercevront pas du tout la présence

du fil, et la valeur universelle pour la conductance électrique est retrouvée, gcw = e2/h.

Cela n’est plus vrai pour les plasmons qui peuvent avoir n’importe quelle longueur
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d’onde. Alors, pour certaines valeurs, une telle longueur d’onde peut être comparable

à linh et les plasmons peuvent être diffusés. Cela donne lieu à une forte renormalisation

de la conductance thermique et ensuite du nombre de Lorenz.

En présence de désordre, une compétition entre le désordre et les interactions

existe. Une telle compétition est décrite par le paramètre T0 que nous avons introduit

dans la Section 3.7.

A cause de la structure analytique de l’opérateur densité de courant électrique,

la correction à la conductance électrique peut être évaluée à l’aide de la correction à la

fonction de Green à une particule. Cela a été fait, en résolvant l’équation du mouve-

ment pour la fonction de Green en question et pour sa correction qui permet d’écrire

immédiatement la correction à la conductance électrique. Le transport de charge a été

étudié dans les limites de basse et de haute températures. En particulier, à température

finie, elle se comporte comme ∼ T−2(1−gLL). Les effets du désordre sont de plus en plus

faibles pour des températures croissantes.

En ce qui concerne la conductance thermique, l’évaluation est beaucoup plus

lourde.

Dans ce cas, la conductance thermique est proportionnelle à la fonction de Green

à deux particules. Une approche diagrammatique a été développée dans le contexte de

la théorie perturbative pour prendre en compte tous les diagrammes contribuants au

transport de chaleur. Comme nous l’avons discuté, certains de ces diagrammes peu-

vent être évalué à l’aide de la fonction de Green à une particule. Pour les restants, une

approche différente est obligatoire.

A la différence de ce qu’il se passe pour la conductance électrique, à cause de la

structure de l’opérateur densité de courant, deux types de contribution existent. Celles

que nous avons appelés diagrammes de première classe où le désordre agit seulement

sur une branche du diagramme à bulle, et les dits diagrammes de deuxième classe, où le

désordre agit sur les deux branches de la bulle. Les diagrammes de première classe ont

un comportement régulier. Ils donnent lieu à une contribution qui a été évaluée à les

basses et à hautes températures, et qui se comporte qualitativement comme la correc-
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tion à la conductance électrique. En revanche, les diagrammes de deuxième classe ont

un comportement singulier, et ils donnent lieu à une divergence ultraviolette. Notre

travail, a été ralenti par la nécessité de comprendre la nature de ces divergences. Pour

le moment, nous avons vérifié que les susdits diagrammes donnent lieu, pour un sys-

tème sans interaction, gLL = 1, au résultat correct pour la conductance thermique de

façon à ce que la loi de Wiedemann-Franz soit respectée. Comprendre la nature des

susdites divergences constitue un pas fondamental en vue d’aborder le problème pour

n’importe quelle valeur des interactions dans le fil.

Une fois les corrections à la conductance thermique calculées, le comportement

du nombre de Lorenz pour un système en interaction pourra être évalué. Pour l’instant,

personne ne peut dire si la présence des impuretés affecte également le transport de la

charge et de la chaleur; c’est à dire que personne ne peut prévoir si la correction au

nombre de Lorenz par rapport à un fil propre est négative ou positive.





Résumé en français du chapitre 3

A l’aide de la théorie des liquides de Luttinger, dans ce chapitre nous étudions

le transport électrique et thermique pour un système uni-dimensionnel.

D’abord, nous montrons les résultats pour un fil propre. Comme nous l’avons

mentionné dans l’Introduction, dans ce cas, la seule forme de désordre présente à

l’intérieur du système est représentée par les connexions aux réservoirs. De telles inho-

mogénéités sont caractérisées par une échelle spatiale typique linh ≫ λF . Les électrons,

responsables du transport de la charge, ne sont pas sensible à une telle présence car

ils sont caractérisés par une échelle spatiale de l’ordre de λF . En revanche, les ondes

de densité de charge, ou plasmons, peuvent avoir n’importe quelle longueur d’onde.

Ceci étant, pour des valeurs bien définies et comparables à linh, les plasmons seront

diffusés au bords du fil. Cela donne lieu à une forte renormalisation de la conductance

thermique et ensuite du nombre de Lorenz.

L’évaluation des corrections aux susdites conductances en présence d’impuretés

à été accomplie pour un désordre de type bruit blanc. A cause de la nature différente

des électrons et des plasmons, la méthode suivie dans l’évaluation des corrections est

différente aussi.

Pour la correction à la conductance électrique, nous écrivons l’équation du mou-

vement pour la fonction de Green à une particule en terme de laquelle la conductance

électrique peut être écrite. Une telle équation en présence de désordre ne peut être

résolue que de façon perturbative par rapport à l’amplitude de la force des impuretés.

Cela permet de retrouver correctement toutes les contributions à la conductance élec-

trique. La correction a été étudiée dans le régime des basses et hautes températures.
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La conductance thermique, quant à elle, est décrite en termes de la fonction de

Green à deux particules. Ceci-étant, la susdite solution à l’équation du mouvement

ne peut pas être utilisée. Nous avons donc suivi une approche diagrammatique per-

mettant de récupérer tous les diagrammes nécessaires afin d’évaluer correctement la

conductance. Les fonctions de réponse associés à chacun de ces diagrammes ont des

expressions très compliquées demandant une analyse attentive est adéquate.

Pour l’instant, nous avons vérifié, pour la conductance thermique, que les sus-

dites contributions pour un système sans interactions donnent la valeur correcte de la

conductance thermique de sorte que la loi de Wiedemann-Franz est respectée, ainsi que

prévu pour des particules sans interaction en présence de désordre.



PART II

GRANULAR METALS





Chapter 4

SUPERCONDUCTIVITY AND

FLUCTUATIONS

In this second part of the thesis, we present the evaluation of the corrections,

due to superconducting fluctuations, to thermal conductivity in granular metals.

Thermodynamical fluctuations play an important role in phase transitions close

to the critical temperature, giving rise to measurable effects. We will discuss the influ-

ence of such effects in the case of superconducting transition on electrical and thermal

transport in the normal state. Because of such fluctuations, the transport properties of

superconducting state are mixed with the properties of the normal one. We will show

that the fluctuations of order parameter give rise to important contributions which are

both classical and quantum mechanical.

In this first chapter, we will give some reminders of BCS theory, presenting

particularly the so-called BCS Hamiltonian, which will be used later, and showing the

fundamental results; then, we will discuss phenomenologically the importance of ther-

modynamical fluctuations, giving some elements to better understand the role they play

in phase transitions. The importance of superconducting fluctuations will be pointed

out, first from a phenomenological point of view, then from a microscopic one. We will

focus on the microscopic approach, which is the way we have followed in our study.
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Known results are presented to define a coherent context where illustrate our own work.

4.1 BCS theory of superconductivity

In this section, we want to recall the most important results of BCS theory. For

a complete review, see [Tinkham96, DeGennes99].

When Bardeen, Cooper and Shrieffer presented the microscopic theory of super-

conductivity in 1957, such a phenomenon was known since nearly fifty years; already in

1911, Kamerlingh-Onnes had discovered that below the temperature of 4.2 K mercury

presents a strong suppression of electrical resistance. The same behaviour was then

discovered for other metals. The temperature at which the superconducting transition

occurs is called critical temperature Tc.

Between 1911 and 1957, a great number of efforts were made to describe such a

phenomenon, both from a phenomenological and microscopic point of view.

The discovery of isotopic effect in 1950, showing the dependence of Tc on the

mass of ions in the lattice, Tc ∝M−1/2, pointed out the importance played by the lat-

tice vibrations, also called phonons. Such a discovery represented perhaps the decisive

step for a deeper comprehension from a microscopic point of view.

In fact, it was later shown that electrons in a lattice can interact by means of

an attractive force, and that such an attractive force can be correctly described by

means of an effective electron-phonon interaction, inducing the formation of a bound

electron-electron state at temperatures lower than Tc. Bardeen, Cooper and Shrief-

fer in their description imagined that the effective potential describing the attractive

interaction could be considered constant until a cut-off value given by the Debye fre-

quency ωD. Under these assumptions, the system can be described by the following

BCS Hamiltonian

HBCS =
∑

k,σ

εkc
†
k,σck,σ − g

∑

kl
ǫk,ǫl<ωD

c†k↑c
†
−k↓c−l↓cl↑ , (4.1)
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Figure 4.1: BCS density of states in superconducting metals. The superconducting instability
concerns just a layer around the Fermi level, and it is characterised by the opening of a gap
∆ in the density of states and in the spectrum of quasi-particles excitations.

where εk is the energy of an electron of wave vector k, σ is the spin index, c† and c the

creation and annihilation operators respectively, and g the positive constant describing

the effective attractive interaction between electrons; the second term in the rhs of Eq.

(4.1) is a two-body interacting potential.

Phenomenologically, at very low temperatures, Fermi’s sphere has most of the

states occupied. As it generally happens for transport properties, the superconducting

instability, that is the possibility for electrons to form Cooper pairs, just concerns a

narrow layer around the Fermi level.

The superconducting transition is characterised by the opening of an energy

gap ∆ in the density of state around the Fermi level, as shown in Fig. 4.1, and in the

spectrum of quasi-particles excitations in the condensate; such a spectrum was found

by Cooper to be ǫ = [ξ2+∆2]1/2, ξ = ε−µ being the energy of electronic quasi-particles

measured with respect to the Fermi level µ.

The length ξc which defines the spatial extension of Cooper pairs is the so-called

correlation length, and it can be estimated to be of the order

ξc ∼
v

∆
, (4.2)

v being the velocity of the quasi-particle in the normal state. In most of the pure bulk

metals, the correlation length is of the order ∼ 10−5cm.

The expression for the gap at zero temperature is given by BCS theory, and it
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reads

∆(T = 0) = 2ωD exp

(

− 2

gνF

)

, (4.3)

where νF is the density of states at Fermi energy. The value of the gap is related to

the critical temperature

∆(T = 0) =
π

γE
Tc , (4.4)

where γE = eγ , γ being the Euler constant. The dependence on temperature of the

correlation length reads

ξc(T ) =
v

π∆(T )
, (4.5)

and, if T = Tc, then ξc reads

ξ0 ≡ ξc(0) ≈ 0.18
v

Tc
. (4.6)

4.2 Superconducting fluctuations

In this and in the following sections, we discuss superconducting fluctuations,

particularly from a microscopic point of view; we want to understand the role they

play in the transport properties of normal state in metals, and what kind of physical

and mathematical tools we need to study such phenomena.

Second order phase transitions are characterised by the presence of an order

parameter which vanishes in the normal state, and it is different than zero below the

critical temperature Tc, [Huang87]. For example, in the ferromagnetic transition, the

order parameter can be the spontaneous magnetization vector M; in the supercon-

ducting transition, the order parameter is a complex scalar quantity: the coherent

wave function of Cooper pair in the condensate state.

The phenomenological Landau theory of phase transition states that close to Tc,

where the order parameter becomes smaller and smaller, the generic thermodynamic

potential Φ can be developed in term of the order parameter, here indicated with ϕ, as

Φ = Φ0 +
1

2
αV ǫϕ2 +

1

4
bV ϕ4 − hϕV , (4.7)
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where ǫ = (T − Tc)/Tc is the reduced temperature, V the volume of the system, α

and b the development coefficients, and h an external field. From the potential Φ,

several thermodynamical quantities can be evaluated, as, for instance, the entropy

S = −(∂Φ/∂T )ϕ, and then the heat capacity Cp = (T/V )(∂S/∂T )p, p being the

pressure. The heat capacity presents a jump in correspondece with the transition, as

usual for the second order phase transition.

The evaluation of different physical quantities shows that the critical exponents

controlling their behaviour do not match exactly with the experimental results. Landau

theory does not provide the truly correct behaviour, since it does not take into account

the fluctuations of order parameter. Such fluctuations, very close to Tc, give rise to

measurable effects.

If ∆E is the total variation of energy due to onset of just one fluctuation, then

the probability that such a fluctuation takes place is, [Larkin04]

W ∝ exp

(−∆E

T

)

. (4.8)

From Eq. (4.8), the smaller the variation of energy associated to fluctuation, the larger

is the probability it takes place. Close to Tc, the difference between the two phases is so

small, that the fluctuations of order parameter are associated to very small variations

of energy. Then, they can give large contributions to the thermodynamical quantities.

Consequently, the potential in Eq. (4.7) has to be modified to take correctly into

account such phenomena. The new potential can be written as

Φ(ϕ) = Φ0 +

∫

d V

[

1

2
c(∇ϕ)2 +

1

2
αǫϕ2 +

1

4
bϕ4 − hϕ

]

, (4.9)

where we supposed that ϕ = ϕ(r) is a function and no longer a simple number. The first

term in the integral in the rhs of Eq. (4.9) is the term allowing to take into account the

fluctuations of order parameter. Eq. (4.9) is a very general expression holding for any

second order phase transition. Particularly, discussing the superconducting transition,

the free energy functional for a superconductor reads

Fs = Fn +

∫

d V

[

αǫ|Ψ|2 +
1

2
b|Ψ|4 +

1

4m

∣

∣

∣

∣

(

−i∇− 2e

c
A

)

Ψ

∣

∣

∣

∣

2

+
H

8π

]

, (4.10)
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where Fn is the free energy in the normal state, H is an external magnetic field, A

the vector potential, and Ψ is the order parameter for the superconducting state. It is

generally defined as

Ψ =

√

ns

2
eiφ , (4.11)

where ns is the superconducting electrons density, and φ the phase of the wave function

describing the condensate of Cooper pairs. From Eq. (4.10) the Ginzburg-Landau

theory allows to determine different thermodynamical quantities; for a complete review,

see [Larkin04, Thinkam96]. Here, we just point out a result which we will be useful

later; Ginzburg-Landau theory allows to define a characteristic length, which is the

correlation length of the fluctuations of order parameter Ψ, and it is defined as

ξGL(T ) =
1

2(mα|ǫ|)1/2
. (4.12)

ξGL in Eq. (4.12) can be related to the correlation length in Eq. (4.5) of BCS theory

ξGL(T ) = 0.74 ξ0

(

Tc

Tc − T

)1/2

clean case , (4.13a)

ξGL(T ) = 0.85

(

ξ0lTc

Tc − T

)1/2

dirty case , (4.13b)

where l is the mean free path.

4.3 Microscopic approach

We have spoken of thermodynamical fluctuations, and we have pointed out that

such phenomena are more relevant as one gets closer to Tc. We gave some brief reminder

about the phenomenological approach typical of the Landau-Ginzburg theory; partic-

ularly, we presented the Landau functional, Eq. (4.10), which allows the evaluation of

several physical quantities for the superconducting state, at least under the hypothesis

that one is not too far from Tc. The functional allows not only the evaluation of the

above-mentioned physical quantities, but also the corrections due to the fluctuations

of order parameter.
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The approach we will follow to determine such corrections will be different. We

will try to understand how such corrections can be described by a microscopic point of

view.

Fluctuations of order parameter in superconducting transition manifests them-

selves with the appearance of Cooper pairs above the critical temperature Tc. One

may say that such pairs anticipate the superconducting transition, or, at least, some

features of the superconducting state, modifing the transport properties of the normal

one. This is observable in the behaviour of different physical quantities such as the

conductivity and the heat capacity, [Varlamov99]. Particularly, for the heat capacity,

the characteristic jump of second order phase transition can be strongly smeared.

Without entering in details, we point out that the precursor effects of super-

conductivity due to fluctuations are much more observable in the high temperature

superconductors (HTS), or very dirty samples, [Larkin04]. HTS and dirty supercon-

ductors are characterised by a correlation length ξc of Cooper pairs much smaller than

in bulk metals. This is due to low-dimension effective spectrum for electrons in the first

case, and to the diffusive nature of propagation in the second one. Above Tc, many

spatial regions, whose typical dimension is ξc, can undergo fluctuations to supercon-

ducting state, and the transition is strongly smeared.

The first estimation of the contribution of superconducting fluctuations was

made by Ginzburg in 1960, and he showed, as anticipated before, that fluctuations

smear the typical jump foreseen by Landau theory of phase transition, [Ginzburg60,

Larkin04]. Ginzburg also estimated the range of temperature where the fluctuations

corrections are relevant, and he found for a 3D-system

δT

Tc
∼
(

a

ξ0

)4

∼ 10−12 − 10−14 , (4.14)

where a is the interatomic distance, and ξ0 the superconducting coherence length at

zero temperature, already defined in Eq. (4.6). Of course, the interval defined in Eq.

(4.14) is below the accessible range in experiments. This is the reason why the fluctu-

ations contributions in transport properties were for long time neglected.
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The same estimation as the one presented by Ginzburg was then made by Asla-

mazov and Larkin by means of a microscopic approach in 1968, [Aslamazov68]; they

also found the dependence on the dimension of the sample of the exponent of the ratio

a/ξ0 in Eq. (4.14); for 2D electron spectrum, it reduces to 1, providing a more accesible

range in experiments.

In the following, we consider the effects of fluctuations on electrical and thermal

conductivity, describing qualitatively what happens for bulk metals from a microscopic

point of view.

The presence of fluctuations of order parameter gives rise to three different con-

tributions that we analyse distinctly in the following.

As we have mentioned, the fluctuations of order parameter manifest themselves

with the appearance of Cooper pairs above the critical temperature Tc. The time de-

pendent Ginzburg-Landau theory, (TDGL), foresees that the lifetime of such pairs is

the so-called Ginzburg-Landau time τGL ∼ 1/(T − Tc), which shows that the afore-

mentioned Cooper pairs are well defined close to the critical temperature. Of course,

below Tc they are in excess with respect to the fermionic quasi-particles composing the

normal state. In other words, fluctuations of order parameter open in the normal state

a new transport channel called the Cooper channel; such a channel is described by

an appropriate propagator, generally called Cooper pair fluctuation propagator. In the

next chapter, we will study the form of such a propagator which plays a fundamental

role in the microscopic description.

The attitude of Cooper pairs to propagate easily through the system makes the

correction due to their presence in the normal state positive: both electrical and ther-

mal conductivity are enhanced by fluctuating Cooper pairs, [Larkin04, Niven02]. This

correction is usually called Aslamazov-Larkin contribution, (AL), or paraconductivity.

Particularly, one finds for bulk metals the following dependence on temperaure

σAL ∼ (T − Tc)
d/2−2 , (4.15a)

T κAL ∼ (T − Tc)
d/2 , (4.15b)
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Figure 4.2: Single-particle DOS correction for a two-dimensional sample in the case of a
clean superconductor, [DiCastro90].

where d is the dimension of the sample. The AL contribution to electrical conductivity

is strongly divergent as T → Tc, while the contribution to thermal conductivity is not.

Qualitatively, this behaviour can be understood by means of Cooper pairs features:

they can easily transport charge, but they do not carry heat, at least, at a first approx-

imation. Then, close to the critical temperature, where the number of Cooper pairs

strongly increases, the contribution of pairs to electrical transport is much larger than

to the thermal one.

Electrons forming Cooper pairs are no longer available for single-particle trans-

port. The number of electronic states being well defined, the density of states close

the Fermi level has to change. This reduction of single-particle density of states is

described by the so-called DOS contribution, and for a clean superconductor, its be-

haviour is shown in Fig. 4.2, [DiCastro90]. The decrease of single-particle density of

states leads to negative contribution to electrical and thermal conductivity. Both of

them behave, for bulk metals, as ∼ −(T − Tc)
d/2−1 in three and one dimension. In

two dimension, the behaviour is logarithmic. The DOS contribution is divergent for

d ≤ 2, but it diverges more slowly than the AL contribution. Because of this weaker

divergency, for the electrical conductivity, it is often neglected except for the case where

the other diverging contributions are suppressed or far from Tc, [Varlamov99].

For thermal conductivity, it is different. As shown recently by Niven and Smith,
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always in bulk metals, the DOS contribution is exactly canceled by the third and last

contribution to transport properties that fluctuations give rise: Maki-Thompson con-

tribution (MT), [Niven02].

This latter contribution can be seen as the result of Andreev reflection of the elec-

trons by the fluctuating Cooper Pairs, [Maki68, Thompson70, Larkin04]. As explained

in [Niven02], because of the fluctuations, and then of Cooper attractive interaction,

electrons can scatter into a hole. The latter carry the same heat current as an elec-

tron, but the opposite charge. The probability amplitude of Andreev reflection is the

same as for an electron to form a fluctuating Cooper pair, and then is the same as the

probability that the single-particle density of states is reduced. Since, as mentioned,

the heat current contribution is the same for an electron and for a hole, for the thermal

conductivity in bulk metals, DOS and MT contributions cancel exactly. This is not

the case for the electrical conductivity, since holes carry opposite charge with respect

to the electrons; then, for electric transport, DOS and MT corrections have the same

sign and they reinforce.

The temperature dependence of MT close to the critical temperature Tc and

for bulk metals is the same as for the DOS. MT correction is also described some-

times as generated by the coherent scattering of electrons forming Cooper pairs on the

same elastic impurities. Then, MT is extremely sentitive to all electron phase-breaking

processes.



Résumé en français du chapitre 4

Dans ce chapitre, nous donnons un bref rappel des principaux résultats de la

théorie BCS de la supraconductivité. Certains seront utilisés pour discuter des pro-

priétés de métaux granulaires.

Puis, nous abordons le problème des fluctuations supraconductrices. Elles jouent

un rôle fondamental dans les transitions de phase, et elles influencent énormément les

propriétés de transport près de la température de transition Tc, où les propriétés typ-

iques de la phase normale se mélangent avec celles de la phase supraconductrice. Nous

présentons, d’abord, le phénomène de fluctuations d’un point de vue thermodynamique.

La théorie de Ginzburg-Landau permet d’écrire la fonctionnel énergie libre à partir de

laquelle toutes les grandeurs physiques peuvent être évaluées, en prenant en compte les

contributions dues aux fluctuations.

Nous, nous avons suivi une approche microscopique qui fut proposée pour la

première fois en 1968 par Aslamazov et Larkin, [Aslamazov68]. Comme nous les

avons mentionnés dans l’Introduction, nous présentons les différentes contributions

microscopiques dues aux fluctuations: la contribution Aslamazov-Larkin, qui prend en

compte la possibilité que deux électrons puissent former une paire de Cooper même

dans la phase normale près de la température critique; les électrons qui forment une

paire de Cooper ne sont plus disponible pour le transport à une particule. Cela im-

plique qu’il doit y avoir une redistribution au niveau de Fermi des états disponibles à

une particule; cette redistribution est prise en compte par la contribution dite Densité

d’états, DOS. Enfin, un terme de nature purement quantique apparâıt: la contribution

Maki-Thompson; elle considère la possibilité que les deux électrons formant une paire
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de Cooper soient diffusés de façon cohérente par la même impureté.



Chapter 5

GRANULAR METALS

In the first section of this chapter, we motivate the interest for such systems; we

define what a granular metal is, and we introduce the characteristic energy scales which

allow to define different working regimes, and some important physical quantities.

Then, we illustrate particularly the known results concerning the electrical trans-

port. As for other kinds of mesoscopic systems, the charge transport has been more

studied at the moment than the thermal transport. We will show how different the

behaviour of a granular system can be, passing from truly metallic to insulating be-

haviour. This will allow us to have a larger vision of granular metals characteristics

before introducing in details our work.

Finally, we study the influence of superconducting fluctuations on thermal con-

ductivity; we evaluate, by means of the diagrammatic technique, the three different

contributions which have been introduced in the previous chapter, pointing out the

difference existing between the bulk and the granular case. At the end, we present the

results and the conclusions.

As we did for quantum wires, most of the calculation are presented in details,

for the interested reader, in dedicated appendices to make the reading fluent.
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5.1 Normal granular metals

Since many years, the interest in understanding the transport properties of gran-

ular metals represents a great deal of research in mesoscopic physics, both theoretically

and experimentally, [Abeles77, Dynes78, Orr86, Imry81, Shapira83, Barber94, Ger-

ber97, Efetov03, Beloborodov00, Beloborodov03, Beloborodov05]. The reason resides

both in the fact that their properties are general for a wealth of disordered systems and

in the fact that granular metals represent, from an experimental point of view, systems

where the interaction strength and the disorder can be partially controlled, [Barber94,

Gerber97].

Granular metals can be considered as a d-dimensional array of metallic grains

embedded in an insulating amorphous matrix, with impurities on the surface and inside

each grain. In Fig. 5.1-left, Al grains are embedded in Ge matrix, [Shapira83]. Each

Al grain has an average dimension of 120±20 , and the sample has linear dimension of

the order of mm.

The highly disordered granular structure of real samples can be detected exper-

imentally by studying the resistance of the samples in function of their thickness. This

was one of the first techniques to reveal the granular nature of the samples, [Dynes78].

In Fig 5.1-right, it is reported the behaviour of the resistance for different metals de-

posited, in extremely thin monolayers per time, on thin films. The figure shows how

the decrease of resistance is very rapid for very small increase of thickness, and it is

described approximately by an exponential behaviour. It implies that the morphology

is not uniform, but granular. Qualitatively, one can think of a model, where each de-

position reduces the average distance between the already deposited grains or island,

increasing the tunneling, and then the conductivity.

In each grain, the energy levels have no longer the classical band structure

typical of bulk metals; because of the small size of the grains, they are discrete. The

smallest energy scale is the mean level spacing

δ =
1

νFV
, (5.1)
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Figure 5.1: Left: Image of a granular film composed of Al grains on amorphous Ge back-
ground. The typical size of the grains is ∼ 120, [Shapira83]. Right: The granular structure
of thin samples can be revelaled studing the behaviour of the resistance in function of the
thickness of the film. The nearly exponential behaviour shown in the figure can be justified
only by a strongly non-uniform morphology typical of granular metals.

where V = ad is the volume of the grain, a being the size of the single grain, and νF

the density of states at the Fermi level. The size of the grain defines the Thouless

energy ET = D/a2, D = v2
F τ/3 being the diffusion constant, vF the Fermi velocity and

τ the mean free path between two collisions. Each grain is characterised by a local

dimensionless conductance

g =
ET

δ
, (5.2)

while the macroscopic tunnelling conductance is defined as

gT =

(

π

2

t

δ

)2

, (5.3)

where t is the hopping energy. Generally, it is supposed gT ≪ g, signaling the condition

that an electron propagates easier in the grain than in the macroscopic sample because

of tunneling among grains. In other words, the granular structure is important, and

the largest contribution to resistance comes from the contact resistance.

The value of macroscopic tunneling conductance gT plays a fundamental role,

since it allows to define different regimes. In the following, we report some known

results for normal granular metals in two cases: gT ≪ 1 and gT ≫ 1, and for tem-

peratures T ≪ gT δ and T ≫ gT δ. In both cases, the effects of long-range Coulomb
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interactions have been taken into account, and the corrections to the electrical and

thermal conductivity have been evaluated.

It has been shown by Beloborodov et al. that in the limits T ≫ gT δ, corre-

sponding to not very low temperatures, the weak localizations effects are suppressed,

leading to incoherent motion of electrons in the grains, [Beloborodov01]. In this limit,

for large tunneling conductance gT , the electrical conductivity behaves, in the limit of

zero-frequency, as

σ = σ0

[

1 − 1

2πdgT
ln

(

gTEc

T

)]

, (5.4)

where σ0 = e2(8/π)gTa
2−d is the electrical conductivity of the granular metal per spin,

and Ec = e2/2C is the charging energy taking into account the Coulomb interactions in-

side and among grains, [Efetov03]. As mentioned above, the correction due to Coulomb

interactions is essentially independent of the dimensionality d. That is the tunneling

of electrons is completely incoherent; the granular structure dominates the physics.

On the other side, if the temperature lowers, always for large value of gT , one

finds corrections due to the coherent motions of electrons on scales which can be larger

of the size a of a single grain. In this case, the corrections read

δσ

σ0
=



















α
12π2gT

√

T
gT δ

d = 3

− 1
4π2gT

ln gT δ
T

d = 2

− β
4π

√

δ
TgT

d = 1

(5.5)

α and β are two numerical constants of order unity, [Beloborodov03]. Corrections in

Eq. (5.5) are similar to those obtained for bulk metals by Altshuler and Aronov, [Alt-

shuler85].

In the limit of low coupling among grains, the charging energy becomes impor-

tant, and the electrical conductivity, because of a finite charging energy, behaves as,

[Efetov03]

σ = 2σ0 exp

(

−Ec

T

)

. (5.6)

The macroscopic conductivity is strongly reduced, and the sample behaves as

an insulator, or, in other words, the conduction becomes activated, as confirmed later
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by Meyer et al., [Meyer04].

The thermal transport has been studied for not too low temperatures, and for

large coupling. The Coulomb interactions renormalise the thermal conductivity, too.

For a two-dimensional samples, it reads

κ = κ0 −
π − 2

6
T ln

(

gTEc

T

)

, (5.7)

where κ0 = L0σ0T is the thermal conductivity for the granular metal, [Beloborodov05].

Contrary to the electrical conductivity, κ depends on the dimensionality of the system

even for high temperatures T ≫ gTδ. This can be qualitatively explained, thinking

of what happens in consequence of local charge fluctuations. For local charge fluctu-

ations, electrical conductivity is not affected, since the net current does not change,

while energy distribution is, giving rise to contributions which do not exist for charge

transport. In other words, one may think of two different transport mechanisms; energy

transport would involve low-energy long wavelength modes, which even in presence of

incoherent motion of electrons give rise to dimension-dependent corrections to thermal

conductivity.

The correction to Lorenz number δL is constant if d = 3, while it behaves as

δL ∼ ln(gTEc/T ) and it is positive in two dimensions, indicating that interactions

suppress charge transport more than heat transport.

5.2 Superconducting granular metals

Granular metals can exhibit superconducting phase transition. In Fig. 5.2, it is

shown the behaviour close to critical temperature Tc for a quasi-bulk lead sample, solid

lines, and for a granular lead sample. The former exibits a complete superconducting

transition at the temperature of 6.6 K, while the latter shows a much more broadened

transition, starting from Tc, [Dynes78].

Before discussing the behaviour close to the superconducting transition, we point

out that it has been shown that samples having high normal-state resistance, do not
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Figure 5.2: At a temperature of 6.6 K, a quasi-bulk lead sample, solid line, shows a complete
superconducting transition. A granular lead sample shows a much more broadened transition,
starting from Tc. It is supposed that the superconducting state starts appearing in the single
grains, but no global phase coherence exists.

exibit the superconducting transition at all. Their resistance even increases with re-

spect to the normal state starting from Tc, [Strongin70, Barber94]. The limit of high

normal-state resistance occurs when the electronic mean free path is equal to the Fermi

wavelength, [Dynes78, Ioffe60]. Beyond this condition, the conduction becomes acti-

vated and no longer metallic. In bulk metals, such a high resistance cannot be reached,

since the Fermi wavelength is comparable to the lattice spacing. Then, experimentally,

the metal has to be strongly non-uniform to present high resistances, and the single

grain can be spatially placed very far from the other. Under this condition, below the

critical temperature Tc, it is supposed that the single grains are superconducting, but

the tunneling among them is very inefficient. The opening of an energy gap in the

density of states, makes the tunneling even more difficult for voltage below the gap if

the Josephson tunneling is not set up yet.

In our work, we consider the range of temperatures such that T & Tc, where Tc

is the critical temperature for the grains. Then, we suppose to be in the region of phase

transition where the superconducting state just starts appearing in each grain by means

of order parameter fluctuations, but there not exists a global phase coherence. The

sample is not supposed to undergo a complete phase transition; similar experimental

conditions have been observed in different experiences, [Dynes78, Orr86, Gerber97].
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Electrons can diffuse through the system thanks to tunneling among the grains.

We point out that we speak of single electron tunneling, and not Josephson tunneling

which occurs just at lower temperatures, and that would contribute to set up the global

superconducting state.

With respect to the bulk metals, the interest in studying thermal transport in

granular metals is in the completely different behaviour one can expect, depending on

the temperature regime. We will see that in granular superconductors, there exists a

temperature region close to Tc in which a singular correction due to superconducting

fluctuations dominates the behaviour of the thermal conductivity; such a correction

can be either negative or positive, depending on the ratio between the tunneling bar-

rier transparency and the critical temperature Tc. When the temperature approaches

even more Tc, the behaviour observed in homogeneous systems is recovered, and the

divergence will be cut-off to cross over to the regular behaviour. Moreover, a significant

difference with respect to the homogeneous systems is present, the constant correction

at T = Tc being either negative or positive depending on the above-mentioned ratio.

For some choice of the parameter, a non-monotonic temperature-dependent behaviour

of the correction is possible.

We will see that the above different behaviour is due to the fact that the three

different contributions to thermal conductivity, AL, MT and DOS corrections, depend

differently on the tunneling because of their different nature.

5.3 The model

We consider a d−dimensional array of metallic grains embedded in an insulating

amorphous matrix as described in Sec. 5.1, with impurities on the surface and inside

each grain, and schematized as in Fig. 5.3.

Even if the model we use is for a perfectly ordered d-dimensional matrix, the

results still hold for an amorphous one. Indeed, one can imagine different possible

configurations of spatial position of grains in the lattice, that is different disordered
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Figure 5.3: Even if the analytical model we use is for a perfectly ordered d-dimensional
matrix, as represented in the figure, the results we found still hold for an amorphous one;
indeed, our description is correct till the system can be described by a dimensionless tunneling
conductance gT on a scale which is much larger than the typical linear dimension of the grains
a, but smaller than the macroscopic size of the whole sample.

configurations. Consequently, the hopping matrix shall vary for each sample. By

performing the average over disorder, one gets a model with the same value of the

coordination number and hopping energy, t, for different configurations. In other words,

our description is correct till the system can be described by a dimensionless tunneling

conductance on a scale which is much larger than the typical linear dimension of the

grains, a, but smaller than the macroscopic size of the whole sample.

The Hamiltonian of the system reads

Ĥ = Ĥ0 + ĤP + ĤT . (5.8)

Ĥ0 and ĤP describe the free electron gas and the BCS pairing Hamiltonian inside each

grain, respectively

Ĥ0 =
∑

i,k

εi,kâ
†
i,kâi,k + Ĥimp , (5.9a)

ĤP = −λ
∑

i,kk′

â†i,kâ
†
i,−kâi,−k′ âi,k′ , (5.9b)

where i is the grain index, and â†i,k (âi,k) stands for creation (annihilation) operator

of an electron in the state k = (k, ↑) or −k = (−k, ↓). The term Ĥimp describes the

electron elastic scattering with impurities.

The interaction term in Eq. (5.8) contains only diagonal terms. This simple

description is correct under the condition that the off-diagonal terms are really small.

It can be shown that for granular systems, such terms are proportional to rapidly
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oscillating functions, giving a contribution of the order 1/g = δ/ET , [Kurland00]. For

highly conducting grains, as in our case, such a contribution is extremely small. This

condition is included in the following important inequality

δ ≪ ∆ ≪ ET , (5.10)

where δ is the mean level spacing defined in Eq. (5.1), ∆ is the BCS superconducting

gap of a single grain, supposed equal for each of them, and ET is the Thouless energy.

The first inequality, δ ≪ ∆, is the fundamental condition in order for the super-

conductivity to exist, more or less as in bulk samples, in a single grain, [Imry81]. The

second one, ∆ ≪ ET , is equivalent to the condition a≪ ξ0, ξ0 =
√

D/Tc being the GL

dirty superconducting coherence length. The condition a ≪ ξ0 states that each grain

behaves as a zero-dimensional system, so that the order parameter is approximately

uniform inside each grain. Finally, δ ≪ ET is the necessary condition in order for the

off-diagonal terms to be negligeable. Eq. (5.10) shows that the mean level spacing δ is

the smallest energy scale in our problem, while the Thouless energy the largest one.

The grains are coupled by single electron tunneling, and the tunneling Hamil-

tonian ĤT in Eq. (5.8) reads

ĤT =
∑

〈i,j〉

∑

pq,σ

[

tpq
ij â

†
i,pσâj,qσ + H.c.

]

. (5.11)

It is assumed that the momentum of an electron is completely randomized after the

tunneling. Besides, we assume that the sample is a good metal, that is gT ≫ 1;

then, we are not in Coulomb blockade regime, and the long range Coulomb interac-

tions can be safely neglected. Finally, we assume that the temperature is larger than

gT δ, so that weak localization effects are completely smeared, and can be neglected,

[Beloborodov01].

5.4 Conductivity in normal granular metals

In linear response regime, the expressions of electrical and thermal conductiv-

ity can be evaluated by means of the electromagnetic response operator Q(r, r′, t, t′),
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[Abrikosov75, Rickayzen80, Larkin04]. The expression between the current density

j(r, t) and the vector-potential A(r′, t′) reads

j(r, t) = −
∫

Q(r, r′, t, t′)A(r′, t′)dr′dt′ . (5.12)

Comparing the Fourier components of Eq. (5.12) with the definition of con-

ductivity j(r, t) = σE(r, t), E being the electrical field, one can write the electrical

conductivity as

σ(ω) = lim
ω→0

[Q(elec)(iων)

ων

]

iων→ω+i0+

, (5.13)

where ων = 2πTν is the bosonic frequency of the external field in the Matsubara repre-

sentation, [Abrikosov75, Rickayzen80, Fetter03]. Analogously, the thermal conductivity

reads

κ = lim
ω→0

[

Q(heat)
ret (iων)

ωνT

]

iων→ω+i0+

, (5.14)

where Q(heat)(iων) is the linear response operator to an applied temperature gradient.

The diagrammatic technique we have used in our work allows to write the lin-

ear response operator quite easily; for a complete review, see [Abrikosov75, Larkin04,

Fetter03].

Before evaluating the corrections to thermal conductivity, in this section we cal-

culate the electrical and the thermal conductivity of the granular metal in the normal

state. It will be such conductivities which will be renormalised by the presence of su-

perconducting fluctuations.

For a normal granular metal, the diagram which provides the electrical and

thermal conductivity is represented in Fig. 5.4. Solid lines are impurity-averaged

single-electron Green’s functions with the specified momentum and Matsubara’s fre-

quency; they describe the propagation of an electron in the disordered i-th grain, and

an anti-particle or hole in the j-th grain, respectively. The crossed circles represent

tunnelling vertices. In diagrammatic technique, to each vertex is associated a contribu-

tion jvertex, representing the electron microscopic contribution to electrical or thermal

conductivity. Vertex contributions can have different representations. Of course, they
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p, ε +ωνn

p , ε n’

i

j

Figure 5.4: Diagram for the thermal conductivity in a granular metal. The solid lines
are impurity-averaged single-electron Green’s functions with the specified momentum and
Matsubara’s frequency, and belonging to the grain i and j. Crossed circles represent tunneling
vertices, and each of them contributes as jQvertex = i2at(εn + ων/2).

are equivalent, giving the same results, but their diagrammatic representation is differ-

ent, [Langer62, Ussishkin03]. In our case, the tunnelling heat current operator is given

by

j(heat) = ia
∑

j

∑

pp′σ

[

εnt
pp′

ij â
†
i,pσâj,p′σ − h.c.

]

, (5.15)

where εn = πT (2n + 1) is the Matsubara frequency of the electron involved in the

transport. Eq. (5.15) has been obtained by means of Lagrangian approach. For

Hamiltonian representations examples, see [Varlamov90, Ussishkin03, Beloborodov00,

Larkin04].

From Eq. (5.15), vertex contributions to thermal conductivity reads

jQ
vertex = i2at(εn + ων/2) , (5.16)

where we took into account the interactions with the field, represented by ων , and

we considered the tunneling amplitude uniform and momentum-independent, tpp′

ij ≡ t,

which is as a good approximation as one is closer to Fermi level. Eq. (5.16) can be

qualitatively understood as follows: each time an electron jumps from one grain to

another, its transmission probability is given by t; for each electron tunneling from the

i-th grain to j-th grain, one has to consider not only such a contribution to thermal

conductivity, but also the energy transported by the hole tunneling from j-th grain to

i-th grain. To the electron contribution, one has to sum the contribution given by the

photons of the electromagnetic field and represented by the frequencies ων , too.

As we mentioned above, diagrammatic technique allows to write easily the linear
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response operator Q(iων); it will contain a sum over all discrete electron frequencies

εn, the integration over the momentum of electrons involved in the transport, and the

vertex contributions.

For diagram in Fig. 5.4, the linear response operator will read

Q(heat)(iων) = −a2t t∗T
∑

i,j

∑

εn

(2εn + ων)
2 I(εn, ων) , (5.17a)

I(εn, ων) =

∫

(dp)G (ε̃n+ν,p)

∫

(dp′)G (ε̃n,p
′) . (5.17b)

t∗ = −t is the tunneling amplitude for an electron tunneling from j-th grain to i-th

grain; (dp) = ddp/(2π)d, ε̃n and εn+ν are shorthand notations for εn + (1/2τ)sign(εn)

and εn + ων , respectively. G (ε̃n,p) is the Matsubara Green’s function of an electron

in a disordered grain

G (ε̃n,p) =
1

iεn + i 1
2τ

sgn(εn) − ξ(p)
. (5.18)

As usual, ξ(p) = p2/2m − µ, µ being the Fermi level, and (1/2τ)sgn(εn) is the self-

energy taking into account the coherent scattering of electron on impurities in the bulk

metal, [Altshuler85]. Particularly, in diffusive regime, provided that the energy scale

τ−1 is much larger than the energy εn of the quasi-particles involved in transport

G (ε̃n,p) ≃ 1

i 1
2τ

sgn(εn) − ξ(p)
. (5.19)

Let us evaluate I(εn, ων) in Eq. (5.17b); first, we observe that the integral over

the momentum, can be written as an integral over the energy since

dξ =
p

m
dp , (5.20a)

d3p = pmdξdΩ , (5.20b)

where dΩ = sin θdθdφ is the measure in spherical coordinates. Then,

∫

d3p

(2π)3
G(ε̃n,p) = νF

∫

dξG(ε̃n,p) , (5.21)
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where νF = pm/2π2 is the density of states at Fermi level. To evaluate the integrals in

I(εn, ων), by means of Eq. (5.21), we observe that

ν2
F

∫

dξ
1

i 1
2τ

sgn(εn + ων) − ξ

∫

dξ′
1

i 1
2τ

sgn(εn) − ξ′

= 2ν2
F

∫

dθdχ
1

θ + χ− i 1
2τ

sgn(εn)

1

θ − χ− i 1
2τ

sgn(εn + ων)
, (5.22)

where we defined

θ =
ξ + ξ′

2
, χ =

ξ − ξ′

2
. (5.23)

In order for the integral in the rhs of Eq. (5.22) to not vanish, the two poles have to

be in the two different half-planes. This condition is fullfilled if and only if εn < 0 and

εn + ων > 0. Using contour integration, one finds

I(εn, ων) = ν2
Fπ

2

∣

∣

∣

∣

εn<0
εn+ων>0

. (5.24)

From Eq. (5.17a), the linear response operator reads

Q(heat)(iων) = (πνFat)
2T
∑

j

∑

εn

(2εn + ων)
2 . (5.25)

Since the Green’s functions do not depend on the site, no term depends on site indices,

and the sum over {j} can be performed immediately; it turns out to be z, where z

is the coordination number, that is the number of neighbours of each grain. In the

expression of conductivity, we will not consider such a factor, since we will consider a

quantity per unit volume. The sum over εn can be written as

∑

εn<0
εn+ων>0

(2εn + ων)
2 =

∑

0<εn<ων

(2εn − ων)
2 ≃ −2

3
πTων . (5.26)

In the sum, we just conserved the terms linear in ων . All the other higher order terms

will disappear taking the limit in Eq. (5.14). Finally, from Eqs. (5.3), (5.14) and

(5.25), the thermal conductivity for a granular metal reads

κ0 =
8

3
πa2gTT . (5.27)
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Analogously, one can evaluate the electrical conductivity. In this case, each vertex

contributes as

je
vertex = i 2 e a t . (5.28)

The energy is replaced by the charge, and the field does not contribute directly to

charge transport. From Eq. (5.13), one finds

σ0 =
8

π
e2a2gT . (5.29)

From Eqs. (5.27) and (5.29) the Lorenz number for a granular metal is

L0 =
κ0

σ0T
=

π2

3e2
, (5.30)

and the Wiedemann-Franz law is fullfilled.

5.5 Electron coherence effects on transport

The superconducting fluctuations, as we have mentioned, manifest themselves

allowing the creation of Cooper pairs at temperatures above but close to the critical one

Tc. This new transport channel is generally called Cooper pair fluctuation propagator.

The presence of Cooper pairs above Tc strongly affects transport properties of the

normal state. To evaluate the correction to thermal conductivity κ0 in Eq. (5.27),

one needs the analytical expression of fluctuations propagator. Such a propagator is

nothing else but the fingerprint of the coherence between the electrons forming Cooper

pairs.

This is not the only effect of the coherence introduced by the fluctuations of

order parameter. One has to consider, in diffusive regime, the renormalization due to

coherent scattering on the same impurity by both electrons forming the Cooper pairs.

Such a renormalization to conductivity is called Cooperon or vertex correction.

This latter contribution is largely known and studied for several systems; one

can find in several books detailed calculations. We will discuss the physical meaning of

Cooperon correction, and will give directly its analytical expression. This will give us
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Figure 5.5: Cooperon vertex correction. It takes into account the possibility of coherent
scattering by both the electrons forming the Cooper pair on the same imputiies. Solid lines
are one-electron Green’s functions, while the dashed lines indicate the scattering by both the
electrons on the same impurity represented by the cross.

the opportunity to concentrate on the evaluation of fluctuation propagator for granular

system, which present interesting points to discuss.

The aim of most of this section is evaluating explicitly the fluctuation propagator

for our specific problem. As we will see, the deep difference with respect to bulk metals

is represented by the renormalization due to the presence of the tunneling.

Finally, by means of analytical expression of fluctuation propagator, we will be

able to evaluate the three corrections to thermal conductivity.

5.5.1 Vertex correction

In section 5.4, when we introduced the one-electron Green’s function in Eq.

(5.18), we mentioned the self-energy taking into account the coherent scattering of an

electron on the impurities in the sample. Now, the existence of BCS pairing potential

and then the possibility for two electrons to form a Cooper pair introduces a new

correction. The latter takes into account the coherent scattering by both the electrons

forming the Cooper pair on the same impurity. The renormalized vertex, generally

indicated as λ(q, ε1, ε2), can be determined by a graphical Dyson’s equation, as shown

in Fig. 5.5.

Diagrams in Fig. 5.5 correspond to Dyson’s equation

λ = 1 + Σλ , (5.31)
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where Σ is the self-energy. Analytically, Eq. (5.31) reads

λ(q, ε1, ε2) = 1 +
1

2πντ

∫

dp

(2π)3
λ(q, ε1, ε2)G(p + q, ε̃1)G(−p, ε̃2) . (5.32)

The first term in the rhs of Eq. (5.32) corresponds to the ”bare” diagram in Fig. 5.5.

The numerical factor 1/2πνF τ = 〈U2〉 is the strength of impurity. Solid lines in the

diagrams are one-electron Green’s functions, while the dashed lines indicate the scat-

tering by both the electrons on the same impurity represented by the cross; we neglect

the diagrams with crossed dashed lines giving rise to a negligeable contribution in the

parameter (1/kF l), l being the mean free path. Then, one speaks of ladder approxima-

tion. For a complete review, see [Abrikosov75, Altshuler85, Larkin04, Akkermans04]

For our sample, the vertex correction reads

λ(q, ε1, ε2) =
1

τ

1

|ε1 − ε2| +Dq2
, (5.33)

where ε1 and ε2 are the energies of the electrons involved in the Cooper pair, q is the

momentum of the pair and D the diffusion constant. Particularly, as stated in section

5.3, since we are in the approximation of an ensemble of zero dimensional grains,

a ≪ ξ0, the Cooperon λ(q, ε1, ε2) provides the main contribution as q → 0, and the

vertex correction reads

λ(ε1, ε2) =
1

τ

1

|ε1 − ε2|
. (5.34)

5.5.2 Cooper pair fluctuation propagator

The propagator is generally defined by means of the diagrams in Fig. 5.6: the

first diagram in the rhs in the top line represents the BCS electron-electron interaction,

and it is expressed by a constant g > 0. The second and third diagrams take into

account the corrections induced by the fluctuations. All these diagrams can be summed

up as shown in the bottom line, allowing to write a Dyson’s equation for the flucuation

propagator

L−1
K (Ωµ) = g−1 − ΠK(Ωµ) , (5.35)
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Figure 5.6: Diagrams providing the Cooper pair fluctuation propagator in absence of tun-
neling. The first diagram in the rhs in the top line represents the BCS electron-electron
interaction, and it is expressed by a constant g > 0. The second and third diagrams take
into account the corrections induced by the fluctuations. The diagrams in the bottom line
represent graphically Dyson’s equation for the fluctuation propagator, Eq. (5.35).

where K is the wave vector associated with the lattice grains, and Ωµ is the bosonic

Matsubara’s frequency reflecting the bosonic nature of Cooper pairs. From Eq. (5.35),

one needs to evaluate the so-called polarization operator

ΠK(Ωµ) = T
∑

εn

∫

dp

(2π)3
G(K + p, εn + Ωµ)G(−p,−εn) , (5.36)

to find the expression of L−1
K (Ωµ).

The diagrams in Fig. 5.6 allow to have an intuitive idea of the meaning of the

fluctuation propagator and of the physical processes it describes; besides, the evaluation

of Dyson’s equation is the way generally followed for bulk metals; see [Larkin04] for a

complete review.

Neverthless, for granular systems the diagrams shown in Fig. 5.6 do not take

into account at all the renormalization due to tunnelling. Why does the tunneling

renormalize the propagator?

As mentioned above, the fluctuation propagator describes the coherent motion

of electrons forming Cooper pairs and the effects of the fluctuations of order parameter.

In a granular system, because of the finite probability for each electron to tunnel from

one grain to another, one has to consider the possibility that each electron forming the

Cooper pair can tunnel during the lifetime τGL of the Cooper pair itself without loosing

the coherence. At the lowest order in tunneling two different physical situations can

take place: in the first one, both the electrons forming the Cooper pair tunnel coherently

from one grain to another; in the second case, one electron tunnels back and forth; in
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+ +

Figure 5.7: Diagrams providing the renormalization of fluctuation propagator in Fig. 5.6.
The first one describes the physical process where both the electrons forming the Cooper pair
tunnel from one grain to another. The second and the third diagram describe the processes
where just one electron forming the Cooper pair tunnels back and forth from one grain to
another.

this case, one has a double multiplicity since this event can take place for both the

electrons of the Cooper pair. Such processes are represented by the diagrams shown in

Fig. 5.7.

To take correctly into account the tunneling renormalization, we evaluate the

fluctuation propagator using the characteristic properties of gaussian integrals. In the

following, we show the principal steps of such a calculation; most of the details can be

found in Appendices G and H.

We write the Hamiltonian in Eq. (5.8) in real space, by means of fermionic field

operator Ψi and Ψ†
i for each grain

Ĥ0 =
∑

i

Ψ†
i(r)

(

−∇2
i

2m

)

Ψi(r) , (5.37a)

ĤP = −g
∑

i

∫

Ψ†
i↑(r)Ψ

†
i↓(r)Ψi↓(r)Ψi↑(r)d r , (5.37b)

ĤT =
1

2

∑

i,j

∑

σ

tij

∫

Ψ†
iσ(r)Ψjσ(r

′)d rd r′ + H.c. . (5.37c)

By means of interaction representation and time ordering operator Tτ , one can

evaluate the partition function of our system as

Z = Tr e−
R β
0 Ĥ(τ)dτ

= Tr
{

e−
R β
0 Ĥ0(τ)dτTτe

−
R β
0 [HP (τ)+HT (τ)]dτ

}

. (5.38)

The latter expression is not quadratic in the field operators. To get a quadratic form

to be able to use properties of Gaussian integrals, we introduce a new field operator ∆
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by means of Hubbard-Stratonovich transformation. Let us observe that

eg
P

i

R

dτdrP †
i (r,τ)Pi(r,τ) =

∏

∆x

eg
P

i P †
i (r,τ)Pi(r,τ)∆x , (5.39)

where Pi(r, τ) = Ψi↓(r, τ)Ψi↑(r, τ). Each term of Eq. (5.39) can be written as a

quadratic integral

eg
P

i P †
i (r,τ)Pi(r,τ)∆x =

∫

d2∆(r, τ)e
P

i

R β
0

»

− |∆i(r,τ)|2

g
−∆∗

i (r,τ)Pi(r,τ)−∆i(r,τ)P †
i (r,τ)

–

∆x
. (5.40)

The product of all these terms is a functional integral and the partition function reads

Z = Tr

{

e−
R β
0 H0(τ)dτTτ

∫

D∆(r, τ)D∆∗(r, τ)

×e
P

i

R β

0

»

− |∆i(r,τ)|2

g
−∆∗

i (r,τ)Pi(r,τ)−∆i(r,τ)P †
i
(r,τ)

–

−HT (τ)

}

. (5.41)

The latter equation allows to know the action for our granular system, since the par-

tition function can be written as

Z = e−S0

∫

D∆(r, τ)D∆∗(r, τ) exp{−S[∆(r, τ)]} , (5.42)

where S[∆(r, τ)] represents the fluctuation contribution in the total action, [Larkin04].

S[∆(r, τ)] can be presented as a series over the BCS parameter ∆(r, τ) and the tun-

neling amplitude t. The Cooper pair fluctuation propagator is given exactly by the

coefficient of the second order term in the development, [Larkin04].

By means of Taylor’s expansion in the field ∆ and in the tunneling amplitude

t, one can develop the two terms exp
{

∑

i

∫ β

0

[

−∆∗
i (r, τ)Pi(r, τ) − ∆i(r, τ)P

†
i (r, τ)

]}

and exp{−HT (τ)}. The expansion is justified by our assumption to be close but above

to the critical temperature where the mean field (BCS) value of order parameter is still

zero; moreover, one can expand in t, in the region t≪ 1/τ ≪ ET .

From the development, most of the terms of the product gives no contribution

since they are not diagonal; just two terms give a non-vanishing contributions, corre-

sponding to the typical action of superconducting fluctuations, and to the tunneling

correction, respectively

Seff = S0
eff + St

eff . (5.43)
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The first term in the rhs of Eq. (5.43) reads, see the Appendix G for all details,

S0
eff = −T

V

∑

Ωµ

|∆i (Ωµ)|2
[

1

g
− 4πνFTτ

∑

2εn>Ωµ

λ (εn, εµ−n)

]

. (5.44)

In the approximation of zero dimensional grains, one can neglect the dependence on

spatial coordinate in the field ∆i. The sum over the fermionic frequencies in Eq. (5.44)

is logarithmically divergent and must be cut-off at Debye’s frequency, [Larkin04]; using

the definition of superconducting critical temperature

1

g
= ν

[

log
ωD

2πTC
− Ψ

(

1

2

)]

, (5.45)

one obtains

S0
eff = −νF

T

V

∑

Ωµ

|∆i (Ωµ)|2
[

ln
T

Tc

+ Ψ

(

1

2
+

|Ωµ|
4πTc

)

− Ψ

(

1

2

)

]

. (5.46)

Ψ(x) is the digamma function, defined as the logarithmic derivative of gamma function.

Close to critical temperature, T ≃ Tc, the main contribution to singular behaviour

comes from ”classical” frequencies, |Ωµ| ≪ Tc; see the end of this Section for some more

comments. Then, we can expand the Ψ function in the small parameter |Ωµ| /Tc:

S0
eff = −νF

T

V

∑

K,Ωµ

[

ln
T

Tc
+
π |Ωµ|
8Tc

]

|∆K (Ωµ)|2 . (5.47)

In the last expression, we considered the lattice Fourier transform: K belongs

to the first Brillouin zone of reciprocal grain lattice.

The tunneling-dependent part of the action can be evaluated starting from dia-

grams in Fig. 5.8.

The calculation of diagram in Fig. 5.8(a) gives the contribution due to the

possibility of tunneling of both electrons during the lifetime of the fluctuating Cooper

pair, i.e. the Ginzburg-Landau time τGL = π/8 (T − Tc); it is equal to

S
t,(a)
eff = zgT

∑

K,Ωµ

γK |∆K (Ωµ)|2 , (5.48)
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b

a

c
Figure 5.8: Total tunneling correction to the fluctuation propagator. The upper diagram
is related to the possibility of tunneling of both electrons forming the fluctuating Cooper
pair during its lifetime τGL. The other two diagrams consider the renormalization of the
intra-grain fluctuation propagator. Shadowed areas represent vertices corrections.

where, as mentioned, z is the number of nearest neighbors, and the function γK =

(1/z)
∑

a exp{iK · a} is the so-called lattice structure factor, where a is a vector con-

necting nearest neighbor grains.

The diagrams in Fig. 5.8(b) and Fig. 5.8(c) give an identical contribution,

which is related to the probability that a single electron, participating in the fluctuat-

ing Cooper pair, undergoes a double tunneling, back and forth, during the Ginzburg-

Landau time. Such a contribution reads

S
t,(b+c)
eff = −zgT

∑

K,Ωµ

|∆K (Ωµ)|2 . (5.49)

The final result for fluctuation propagator at every order in tunneling in the ladder

approximation is, [Beloborodov00, Biagini05]

LK (Ωµ) = − 1

νF

1

ln T
Tc

+ π|Ωµ|
8Tc

+ z gT δ
Tc

(1 − γK)
. (5.50)

We point out that the propagator in Eq. (5.50) corresponds to the sum of the

diagrams in Fig. 5.6 and in Fig. 5.7. Of course, from Eq. (5.50), without the tunneling

correction, one finds again the propagator for a single grain.

Since we are interested in the behaviour of conductivity close to critical temper-

ature, from Eq. (5.50), one can see that as T → Tc, the most diverging contribution

is given by Ωµ = 0. Such a limit is often called static limit. One can imagine such

a contribution as given by very long wavelength modes of Cooper channel. As one as

gets further from Tc, finite wavelength modes starts playing an important role, and the
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Figure 5.9: (a) Density of states and (b) Maki-Thompson diagrams. The solid lines are
impurity-averaged single-electron Green’s functions, wavy lines represent fluctuation prop-
agator and the shadowed areas are Cooperon vertex corrections. Crossed circles represent
tunneling vertices.

so-called dynamical contribution appears.

The contribution as Ωµ = 0 is also called classical limit; physically, it means that

the product of Heisenberg field operator Ψi↓(r)Ψi↑(r) in Eq. (5.37b) behaves as a clas-

sical field describing the Cooper pair wave function, and proportional to the fluctuation

order parameter close to Tc.

5.6 Superconducting fluctuation corrections

In this section, we evaluate the corrections to thermal conductivity due to super-

conducting fluctuations. We present the evaluation of the three different contributions,

the Aslamazov-Larkin (AL) correction, the Maky-Thompson (MT) correction and the

density of states (DOS) contribution, addressing the interested reader to the appendix

for detailed calculations. Finally, we will discuss the behaviour of total correction

showing its dependence on the ratio between the barrier transparency and the criti-

cal temperature Tc. The knowledge of thermal conductivity will allow us to evaluate

the Lorenz number thanks to the known results for the electrical conductivity, [Be-

loborodov00].

5.6.1 Density of states correction

The diagram describing the DOS correction is shown in Fig. 5.9(a). Solid
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lines are impurity-averaged single-electron Green’s functions; wavy line represents the

fluctuation propagator and the shadowed areas are Cooperon vertex corrections. As

usual, crossed circles represent tunneling vertices.

At the lowest order in tunneling in the fluctuation propagator, the DOS con-

tribution involves two electrons forming a fluctuating Cooper pairs inside one given

grain, contrary to what happens for MT or AL diagrams in Fig. 5.9(b) and Fig. 5.10.

It means that the DOS correction is the only contribution which is present even in

absence of tunneling. Then, in temperature regions far from the critical temperature,

namely T − Tc ≫ gT δ, where the coherence length does not increase excessively, one

can expect this term to give a significant contribution to thermal conductivity stressing

the granular nature of the sample.

The contribution to thermal conductivity can be evaluated by means of Eq.

(5.14). The corresponding response function operator reads

Q(DOS) (ων) = T 2t2a2
∑

j

∑

Ωµ

Lij (Ωµ)Σ (Ωµ, ων) , (5.51)

where

Σ (Ωµ, ων) =
∑

εn

(εn + εn+ν)
2 λ2 (εn+ν, ε−n−ν+µ) I (εn,Ωµ, ων) , (5.52)

and

I (εn,Ωµ, ων) =

∫

(dp)G2 (p, εn+ν)G (p, ε−n−ν+µ)

∫

(dp′)G (p′, εn) . (5.53)

In Eq. (5.51), Lij (Ωµ) is the Fourier transform with respect to the grains lattice of the

propagator in Eq. (5.50). It is defined as

Lij(Ωµ) =
∑

K

eiRij ·KLK(Ωµ) , (5.54)

where Rij is the vector between two sites; for DOS diagram, Rij = Rii. As already

mentioned, the main contribution to singular behaviour comes from classical frequencies

|Ωµ| ≪ Tc; then, we will take the so-called static limit Ωµ = 0. The product of integrals

in Eq. (5.53) can be evaluated by means of contour integration

I (εn, 0, ων) = −2 (πνF τ)
2 [θ (εnεn+ν) − θ (−εnεn+ν)] , (5.55)
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where θ(x) is the step function.

Thanks to previous equation, the sum in Eq. (5.52) can be evaluated, and the

only linear contribution in ων turns to be

Σ (0, ων) ≃ −ωνπν
2
F . (5.56)

Finally, the DOS response function can be evaluated from Eqs. (5.51) and (5.56)

Q(DOS) (ων) = (ων)
8

π
gTTa

2
∑

j

Lij (0) , (5.57)

where we also took into account the double multiplicity of DOS diagram, since the

fluctuation propagator can involve the lower branch of the diagram in Fig. 5.9(a). The

DOS correction to thermal conductivity reads, [Biagini05]

δκ(DoS)

κ0
= − 3

π2

1

gT

gT δ

Tc

∫

BZ

(dK)
1

ǫ+ z gT δ
Tc

(1 − γK)
. (5.58)

We took the lattice Fourier transform and defined the reduced temperature ǫ =

ln(T/Tc) ≃ (T − Tc)/Tc . (dK) = [ad/(2π)d]ddK is the dimensionless measure of the

first Brillouin zone.

Before discussing the behaviour of correction in Eq. (5.58), we calculate the

other corrections too; in this way, we will be able to compare the different contribution

and evaluate their weight in function of the temperature.

5.6.2 Maki-Thompson correction

Maki-Thompson diagram is shown in Fig. 5.9(b). With respect the DOS di-

agram, there is an important difference. In the case of DOS diagram, the bubble

represents the propagation of a particle and its corresponding hole, and the tunnelling

coefficients for vertices are tij and t∗ij = tji = −tij . In MT diagrams, one has two

incoming particles, and the tunnelling coefficients are the same. Besides, the electrons

entering the diagram from opposite side contribute with opposite sign energies.

The linear response operator reads

Q(MT ) (ων) = T 2t2a2
∑

j

∑

Ωµ

Lij (Ωµ)Σ (Ωµ, ων) , (5.59)
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where

Σ (Ωµ, ων) =
∑

εn

(εn + εn+ν)
2 λ (εn+ν, ε−n−ν+µ)λ (εn, ε−n+µ) I (εn,Ωµ, ων) , (5.60)

and

I (εn,Ωµ, ων)

=

∫

(dp)G (p, εn+ν)G (p, ε−n−ν+µ)

∫

(dp′)G (p′, εn)G (p′, ε−n+µ) . (5.61)

Eqs. (5.60) and (5.61) can be evaluated in the same way as for DOS correction, see

Appendix J for details, and the correction to thermal conductivity reads, [Biagini05]

δκ(MT )

κ0
=

3

π2

1

gT

gT δ

Tc

∫

BZ

(dK)
γK

ǫ+ z gT δ
Tc

(1 − γK)
. (5.62)

As expected from bulk behaviour, the MT correction has the same singular be-

haviour as the DOS but opposite sign. On the other hand, because such a correction

involves the coherent tunneling of the fluctuating Cooper pair from one site to the near-

est neighbors, it is proportional to the lattice structure factor γK: due to this propor-

tionality, in the regime T −Tc ≫ gT δ, the correction vanishes because
∫

BZ
(dK)γK = 0.

Such a behaviour mirrors the condition that in such a regime, the granular structure

is important, and the tunneling is not efficient. Let us stress that this is not the case

for the DOS correction, which in this regime behaves as ∼ −(1/g)(ET/Tc)(1/ǫ), giving

a non-vanishing contribution.

5.6.3 Aslamazov-Larkin correction

The AL diagrams for a granular system can be built up by means of blocks

in Fig. 5.10, by considering all their possible combinations in pairs. For the sake of

simplicity, we will call the first block, Fig. 5.10(a), B1, and the second one B2. Finally,

one has three different kind of diagrams: the first one, with two B1-type blocks; the

second one with two B2-type blocks, and the latter, with both of them. Because of

the double multiplicity of B2-type block, totally, one has nine diagrams contributing to
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Figure 5.10: Diagrams of the blocks appearing in the Aslamazov-Larkin contribution to
thermal conductivity. The AL diagrams for a granular system can be built up by means of
the shown blocks, by considering all their possible combinations in pairs. Diagram (b) has a
double molteplicity, since the bare tunnel vertex can stay on both side of the block.

thermal conductivity. In the following, we evaluate the analytical expression of B1 and

B2 in the static approximation, as for the two previous corrections; we will see that

for the AL correction, one needs to go beyond the static approximation to find a first

non-vanishing contribution.

The general expression of linear response function for the AL diagrams reads

Q(AL) (ων) = T 2t4a2
∑

l,j

∑

Ωµ

Lij (Ωµ+ν)Lml (Ωµ)Bleft (ων ,Ωµ)Bright (ων ,Ωµ) , (5.63)

where Bleft and Bright can be either B1 or B2-type. We point out that in Eq. (5.63),

contrary to what happens for DOS and MT corrections, there is a factor t4 due to

the presence of four tunneling vertices. For granular metals, it is not possible to

build AL diagrams of lower order. Among them, two are tunneling vertices which

interact with the external electromagnetic field and which contribute, as usual, as

jQ
vertex = i2at(εn + ων/2); the other two ones just contribute as pure tunneling vertices

with a factor t.

B1 block reads

B1 (ων ,Ωµ) =
∑

εn

(εn + εn+ν)λ (εn+ν , εµ−n)λ (εn, εµ−n)

×
∫

(dp)G (p, εn+ν)G (p, εµ−n)

∫

(dp′)G (p′, εµ−n)G (p′, εn) . (5.64)
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Taking the integrals over the Fermi surface, in the static approximation, we get

B1 (ων , 0) = (2πνF τ)
2
∑

εn

θ (εn+νεn) (εn + εn+ν)λ (εn+ν ,−εn)λ (εn,−εn)

= (2πνF )2

[

∑

εn<−ων

+
∑

εn>0

]

εn + εn+ν

|εn+ν + εn|
1

|2εn|
. (5.65)

Manipulating the sum, it is easy to see that

B1 (ων , 0) = (2πνF )2
∑

0<εn<ων

1

2εn

= (2πνF )2

[

ψ

(

ων

2πT
+

1

2

)

− ψ

(

1

2

)]

≈
(πνF

2

)2 ων

T
. (5.66)

In the same way as sketched above, one can show, always in the static approx-

imation, that the block B2 vanishes identically. Then, all the diagrams containing

B2-type blocks do not give any contribution. Since the only AL diagram with two

B1-type block is proportional to the square of Eq. (5.66), it is quadratic in the external

frequency ω, and therefore vanishes identically in the limit ω → 0.

To evaluate the first non vanishing AL correction, one has to consider the dy-

namical contribution. In such a case, the B2 block, for instance, reads

B2 (ων ,Ωµ) =
∑

εn

(εn + εn+ν)λ (εn+ν, εµ−n)λ (εn, εµ−n)

∫

(dp′)G (p′, εµ−n)G (p′, εn)G (p′, εn+ν)

∫

(dp)G (p, εn+ν) . (5.67)

In the evaluation of the block, because of the pole structure of fluctuation prop-

agator, one can neglect the ων dependence, and keeps just the one in Ωµ, [Larkin04].

The calculation of the integrals and the sums in the latter equation is, in the dynam-

ical approximation, a little bit more cumbersome. One has to take into account the

different possible signs of Ωµ and εn, see Appendix K. Finally, Eq. (5.67) reads

B2 (0,Ωµ) = −2(πνF )2
∑

εn

2εn

(2εn − Ωµ)2

×{θ(Ωµ)[θ(εn − Ωµ) + θ(−εn)] + θ(−Ωµ)[θ(Ωµ − εn) + θ(εn)]} . (5.68)
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By taking the lowest order in the bosonic frequency Ωµ, one gets the result for

the block

B2 (0,Ωµ) = −1

2

(πνF

2T

)2

Ωµ . (5.69)

In the same way, one can evaluate also B1-type block, with the result

B1 (0,Ωµ) = −2B2 (0,Ωµ) , (5.70)

which is consistent with the homogeneous case, [Larkin04]. The sum over Ωµ in the

response function can be performed by writing the sum as an integral, [Larkin04],

and exploiting the properties of the pair correlators. All the details are reported in

Appendix K.

Finally, the AL dynamical correction to thermal conductivity reads, [Biagini05]

δκ(AL)

κ0

=
9

2π

1

gT

(

gT δ

Tc

)2 ∫

BZ

(dK)
(1 − γk)

2

ǫ+ z gT δ
Tc

(1 − γK)
. (5.71)

Latter equation is the first non vanishing correction due to AL channel. Such

a correction is always positive, and it depends, as in the MT, on the lattice structure

factor γK, but it does not vanishes in the regime T − Tc ≫ gT δ. This is a good feature

of the system, since far from Tc, the dynamical contribution plays an important role; in

this region, one has to compare such a correction with DOS contribution, as discussed

in the following section. Here, we just observe that since the corrections, Eqs. (5.58),

(5.62) and (5.71), have different signs, non-monotonic behaviour in the total correction

is expected, depending on the ratio gTδ/Tc.

5.7 Conclusions

The total correction to thermal conductivity close to the critical temperature

can be immediately written by means of Eqs. (5.58), (5.62) and (5.71), [Biagini05]. It

reads

δκ

κ0

=
3

π2

1

gT

gTδ

Tc

∫

BZ

(dK)
(1 − γK)

[

3π
2

gT δ
Tc

(1 − γK) − 1
]

ǫ+ z gT δ
Tc

(1 − γK)
. (5.72)
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Figure 5.11: Total correction to the thermal conductivity due to superconducting fluctu-
ations for different values of gT δ/Tc for a two-dimensional system. A 1/ǫ−suppression is
observed at high temperatures, with a sign depending on the above-mentioned ratio. At
low temperatures, a finite correction, inversely proportional to the coordination number z,
is reached at ǫ = 0. In a finite interval of values of gT δ/Tc, a non-monotonic behaviour of
the correction is observed, where the correction is positive and increasing with decreasing
temperature, reaches a maximum and then goes to a smaller (possibly negative) value at the
critical temperature, [Biagini05].

This correction has been obtained at all orders in the tunneling amplitude in the ladder

approximation. Its behaviour is plotted in Fig. 5.12, as a function of the reduced

temperature for the case of a two dimensional sample, and for different values of the

ratio gTδ/Tc. We can recognize two different regimes of temperatures: far from Tc, ǫ≫
gT δ/Tc, and close to Tc, ǫ ≪ gT δ/Tc. For the sake of simplicity, we will identify these

two regimes as “high temperatures” and “low temperatures”, respectively. The energy

scale that separates the two regions, gTδ, can be recognized as the inverse tunneling

time for a single electron, giving information on barrier transparency, [Beloborodov01].

5.7.1 High temperature regime: ǫ≫ gTδ/Tc

The condition ǫ≫ gT δ/Tc is equivalent to the condition τGL ≪ τdwell = (gTδ)
−1.

That is the lifetime of a Cooper pair is smaller than the time the electrons spend in the

grain before tunneling. Then, the tunneling is not efficient, and the system behaves as
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an ensemble of real zero-dimensional grains.

As a consequence, only the DOS and the AL terms contribute significantly to

the superconducting fluctuations; the correction to heat conductivity reads

δκ

κ0
≈ 3

π2

1

gT

gT δ

Tc

1

ǫ

[

3π

2

gTδ

Tc

(

1 +
1

z

)

− 1

]

. (5.73)

This expression shows a 1/ǫ singularity and it can have either positive or negative sign,

depending on the ratio gTδ/Tc; let γ1 be the value of the above-mentioned ratio solution

of Eq. (5.77). In the absence of renormalization due to tunnelling, the correction is

negative and corresponds to the typical singularity of the quasi-zero-dimensional den-

sity of state. On the other hand, increasing the barrier transparency gTδ, the correction

grows due to the presence of the direct channel, i.e., the AL term, which becomes more

and more important, till the correction itself vanishes at γ1, afterwhich it becomes

positive.

A direct comparison with the behaviour of the electrical conductivity, [Be-

loborodov00], shows that there is a positive violation of the Wiedemann-Franz law,

δL

L0

=
δκ

κ0

− δσ

σ0

≈
[

− 3

π2
+

9

2π

gT δ

Tc

z + 1

z
+

7ζ(3)

π2

]

δ

Tc

1

ǫ
. (5.74)

5.7.2 Low temperature regime: ǫ≪ gTδ/Tc

In this regime the tunneling is effective and there is a crossover to the typical

behaviour of a homogeneous system, as T → Tc, from the point of view of the fluctu-

ating Cooper pairs. Physically, the bulk behaviour is recovered, and one gets a non

divergent correction even at ǫ = 0, where it equals

δκ (ǫ = 0)

κ0
=

3

zπ2

1

gT

(

3π

2

gT δ

Tc
− 1

)

. (5.75)

The latter equation gives the saturation value in any dimension. Again, the value of

the constant can be either negative or positive. The correction vanishes at a value

gT δ/Tc = γ2 which is independent on the dimensionality and larger than γ1. In the

interval γ1 < gTδ/Tc < γ2, the correction has a non-monotonic behaviour, being pos-

itive and increasing with decreasing temperatures and negative for low temperatures.
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In the above-mentioned interval, the barrier transparency is enough large in order for

the correction to be positive because of AL and MT positive contributions, but the

negative correction given by DOS contribution yet plays a role giving rise to a non-

monotonic behaviour. For larger values of barrier transparency, the sample behaves as

a real bulk system, and the DOS correction is completely cut off by the MT one. Such

a behaviour has been plotted, for the case of d = 2, in Fig. 5.12.

The deviation from the Wiedemann-Franz law in the low temperature region is

much more evident than in the high temperature one, because of the pronounced sin-

gular behaviour of the electrical conductivity, due to the increasing number of Cooper

pairs, close to the critical temperature, [Beloborodov00].

Conclusion

La correction totale à la conductivité thermique près de la température critique

peu être immédiatement écrite à l’aide des Eqs. (5.58), (5.62) et (5.71), [Biagini05].

Elle s’écrit

δκ

κ0
=

3

π2

1

gT

gTδ

Tc

∫

BZ

(dK)
(1 − γK)

[

3π
2

gT δ
Tc

(1 − γK) − 1
]

ǫ+ z gT δ
Tc

(1 − γK)
. (5.76)

Cette correction a été obtenue à tous les ordres en l’amplitude du tunnelling dans

l’approximation soi-disant ladder. Son comportement est montré sur la Fig. 5.12,

en fonction de la température réduite, et pour différentes valeurs du rapport gT δ/Tc.

On peut reconnâıtre deux régimes différents: loin de Tc, ǫ ≫ gT δ/Tc, et près de Tc,

ǫ≪ gT δ/Tc. Pour une question de simplicité, nous identifions ces deux régimes comme

”hautes” et ”basses” températures, respectivement. L’échelle d’énergie qui sépare les

deux régions, gT δ, peut être vue comme l’inverse du temps de tunnelling, donnant des

informations sur la transparence de la barrière, [Beloborodov01].
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Figure 5.12: Correction totale à la conductivité thermique due aux fluctuations supracon-
ductrices pour différentes valeurs du rapport gT δ/Tc pour un système deux-dimensionnel.
Une suppression se comportant comme 1/ǫ est observée à hautes températures, avec un signe
qui dépend du susdit rapport. A basse températures, une correction finie, inversement pro-
portionnelle au nombre de coordination z, est atteinte à ǫ = 0. Dans un intervalle de valeurs
de gT δ/Tc, un comportement non monotone est observé, où la correction est positive et crois-
sante avec la diminution de la température, atteint le maximum et puis décrôıt vers des
valeurs plus petites à la température critique, [Biagini05].

5.7.3 Régime des hautes temperatures: ǫ≫ gTδ/Tc

La condition ǫ ≫ gT δ/Tc est équivalente à la condition τGL ≪ τdwell = (gTδ)
−1.

C’est à dire que le temps de vie d’une paire de Cooper est plus petit que le temps que

les électrons passent dans les grains avant de tunneler. Donc, le tunnelling n’est pas

efficace, et le système se comporte comme un ensemble de grains uni-dimensionnels.

Par consequant, juste les termes DOS et AL contribuent significativement aux

fluctuations supraconductrice; la correction à la conductivité thermique s’écrit

δκ

κ0

≈ 3

π2

1

gT

gT δ

Tc

1

ǫ

[

3π

2

gTδ

Tc

(

1 +
1

z

)

− 1

]

. (5.77)

Cette dernière expression montre une singularité 1/ǫ et peut être soit positive soit

négative; elle dépend du rapport gT δ/Tc. Soit γ1 la valeur du rapport ci-dessus qui

est solution de l’Eq. (5.77). En absence de renormalisation due au tunnelling, la

correction est négative et correspond à la singularité typique pour la densité d’états. En

augmentant la transparence de la barrière gT δ, la correction crôıt à cause de la présence

du canal direct, i.e., le terme AL, qui devient de plus en plus important jusqu’à ce que
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la correction disparâıt lorsque la valeur γ1 est atteinte, pour enfin devenir positive.

Une comparaison directe avec le comportement de la conductivité électrique,

[Beloborodov00], montre qu’il y a une violation positive de la loi de Wiedemann-Franz,

δL

L0

=
δκ

κ0

− δσ

σ0

≈
[

− 3

π2
+

9

2π

gT δ

Tc

z + 1

z
+

7ζ(3)

π2

]

δ

Tc

1

ǫ
. (5.78)

5.7.4 Régime des basses températures: ǫ≪ gTδ/Tc

Dans ce régime, le tunnelling est efficace et il y a un crossover au comportement

typique pour un système homogène, pour T → Tc, du point de vue des paires de

Cooper. Physiquement, le comportement d’un métal massif est retrouvé, et on obtient

une correction non divergeante même pour ǫ = 0, où elle s’écrit

δκ (ǫ = 0)

κ0

=
3

zπ2

1

gT

(

3π

2

gTδ

Tc

− 1

)

. (5.79)

La dernière équation donne la valeur de saturation dans n’importe quelle dimension.

Ici aussi, la valeur de la constante peut être positive ou négative. La correction s’annule

à la valeur gT δ/Tc = γ2 qui ne dépend pas de la dimensionalité, et qui est plus grande

que γ1. Dans l’intervalle γ1 < gT δ/Tc < γ2, la correction a un comportement non

monotone, elle est positive et crôıt lorsque la température décrôıt, et négative à basses

températures. Dans le susdit intervalle, la transparence de la barrière est assez grande

de sorte que la correction est positive à cause des corrections AL et MT, mais la cor-

rection négative donnée par la contribution DOS joue encore un rôle donnant lieu à

un comportement non monotone. Pour des valeurs plus grandes de la transparence de

la barrière, l’échantillon se comporte comme un système massif, et le terme DOS est

complètement coupé par le terme MT. Un tel comportement est montré, pour le cas

d = 2 sur la Fig. 5.12.

La déviation à la loi de Wiedemann-Franz dans le régime des basses tempéra-

tures est encore plus évidente encore à cause du comportement fortement singulier de

la conductivité électrique, due au nombre croissant de paires de Cooper près de la

température critique, [Beloborodov00].





Résumé en français du chapitre 5

Dans la première partie de ce chapitre, nous présentons les propriétés fonda-

mentales des métaux granulaires normaux.

Nous montrons comment dans les années 70, à l’aide d’études sur la résistivité,

leur structure fortement non-uniforme fut révélée. Nous introduisons les plus impor-

tantes échelles d’énergie qui permettent de définir de différents régimes de travail. En

particulier, comme nous l’avons mentionné, nous supposons que les métaux granulaires

sont de bons conducteurs ce qui équivaut à affirmer que la conductivité tunnel sans

dimension entre les grains est beaucoup plus grande qu’un. Cependant, nous supposons

aussi que la plus grande contribution à la résistance vient du tunnelling entre les grains.

C’est à dire que les électrons se déplacent beaucoup plus facilement à l’intérieur d’un

grain qu’entre deux grains.

Sous ses conditions, nous montrons les résultats les plus importants pour le mé-

taux normaux concernant le transport électrique et thermique.

Puis, nous abordons le problème des métaux supraconducteurs. Nous présen-

tons le modèle que nous avons utilisé et calculons le courant thermique entre les grains.

L’approche que nous avons utilisée afin d’évaluer les différentes contributions à la con-

ductance thermique est l’approche diagrammatique. L’expression du courant thermique

nous permet de connâıtre les contributions de chaque vertex des diagrammes.

Par rapport au cas d’un métal massif, la présence du tunnelling comporte un

profond changement de comportement. La possibilité que deux électrons formant une

paire de Cooper puissent tunneler sans perdre leur corrélation entrâıne une correction

importante dans l’expression du propagateur du canal direct de Cooper, et donc dans
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les corrections aux conductivités.

Pour les contributions MT et DOS, il a été suffisant d’évaluer la contribution

dite statique. Pour le terme AL, la première contribution dynamique a été calculé.
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Appendix A

LL Hamiltonian: semi-classical

approach

We want to write the Hamiltonian of a LL by means of a semi-classical approach,

that is by considering the electrons gas as a real fluid, and using the Euler equation,

[Gramada97].

Let us consider the semi-classical equation of motion

mn(x, t)
d2u(x, t)

dt2
= −en(x, t)E(x, t) − dP

dx
, (A.1)

where m is the mass of an electron, and u(x, t) the displacement in the fluid; n(x, t) is

the electron density: n(x, t) = n0 + n1(x, t), where n1(x, t) describes the time fluctua-

tions; E(x, t) = E0(x)+E1(x, t) is the electric field, which can be imagined as composed

by a steady part and a dynamical one; P = π2
~

2n3/3m is the hydrostatic pressure.

The steady component of the electric field can be cancelled by the equation of

motion, using the equilibrium condition

eE0n0 = −dP
dx

∣

∣

∣

∣

∣

n=n0

. (A.2)

Replacing Eq. (A.2) in the equation of motion, Eq. (A.1), and linearizing the latter

with respect to n1(x, t), one gets

mn0
d2u

dt2
= −en0E1 −

π2
~

2

m

(

n2
0

dn1

dx
+ n0n1

dn0

dx

)

. (A.3)
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Let V (x) be the electron-electron interaction potential. The electric field E1 can be

imagined to be generated by the fluctuations of the density n1(x, t); then,

eE1 = − d

dx

∫

dx′V (x− x′)n1(x
′, t) . (A.4)

By means of the fundamental hypotesis on quantum wire, Eq. (2.30), Eq. (A.4) can

be written as eE1 = −V0(dn1(x, t)/dx). The density n1 can be written in terms of the

displacement û by means of the continuity equation: n1 = −d(n0u)/dx. To obtain the

energy conservation law, one can multiply Eq. (A.3) by du/dt. Thanks to Eq. (A.4),

the first term in the rhs of Eq. (A.3) reads

−V0

2

d

dt

[

d(n0u)

dx

]2

+ V0

(

d

dx

)[

d(n0u)

dx

d(n0u)

dt

]

, (A.5)

and the remaining terms

π2
~

2

2m

d

dt

{

d

dx

[

n0
d(n0u)

2

dx

]

− n0

[

d(n0u)
2

dx

]2
}

. (A.6)

Integrating over x, Eq. (A.3) reads dE/dt = 0, where the energy is

E =

∫

dx

[

mn0

2

(

du

dt

)2

+
1

2

(

V0 +
π2

~
2

m
n0

)

(~∇n0u)
2

]

. (A.7)

The latter expression for the energy allows to write the corresponding Hamil-

tonian. Let us consider the displacement u(x) as an operator û(x); let p̂(x) be the

conjugate momentum, with [û(x), p̂(x)] = i~δ(x− x′). Finally, the Hamiltonian reads

H0û
=

∫

dx

[

p̂2(x)

2mn0

+
1

2

(

V0 +
π2

~
2

m
n0

)

(∇n0û)
2

]

. (A.8)



Appendix B

Thermal conductance for a clean

wire

To evaluate the thermal conductance for a clean wire, we start from the current-

current correlation function in Eq. (3.9), and the expression of current density operator

in Eq. (3.11).

〈Tτjth(x, τ)jth(x
′, 0)〉

=

(

v4
Fm

2n2
0

4

)

〈Tτ [∂τ1 û(x1, τ1)∂x2 û(x2, τ2) + ∂x2 û(x2, τ2)∂τ1 û(x1, τ1)]

× [∂τ3 û(x3, τ3)∂x4û(x4, τ4) + ∂x4 û(x4, τ4)∂τ3 û(x3, τ3)]〉

= v4
Fm

2n2
0 (∂τ1∂τ3∂x2∂x4) 〈Tτ û1û2û3û4〉 , (B.1)

where, for the sake of simplicity, ûi = û(xi, τi). From the latter equality, it is easy to

get the expression in Eq. (3.12). By means of Fourier transform of Green’s function,

the correlation function can be written as

〈Tτjth(x, τ)jth(x
′, 0)〉 = v2

F (∂τ1∂τ3∂x2∂x4)

× T 2

[

∑

iω1,iω2

e−iω1(τ1−τ3)e−iω2(τ4−τ2)G0(x1, x3; iω1)G
0(x4, x2; iω2)

+
∑

iω3,iω4

e−iω3(τ1−τ4)e−iω4(τ3−τ2)G0(x1, x4; iω3)G
0(x3, x2; iω4)

]

. (B.2)
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Remembering that

∂xGiωµ
(x, x′) = −∂x′Giωµ

(x, x′) = (|ωµ|/vF )Giωµ
(x, x′) , (B.3)

Eq. (B.2) can be written as

〈Tτjth(x, τ)jth(x
′, 0)〉

= −T 2

[

∑

iω1,iω2

ω2
1|ω2|2e−iω1(τ1−τ3)e−iω2(τ4−τ2)G0(x1, x3; iω1)G

0(x4, x2; iω2)

−
∑

iω3,iω4

ω3ω4|ω3||ω4|e−iω3(τ1−τ4)e−iω4(τ3−τ2)G0(x1, x4; iω3)G
0(x3, x2; iω4)

]

.(B.4)

Now, one can take the correct limits for the different variables: (x1, x2) → x, (x3, x4) →
x′, (τ1, τ2) → τ and (τ3, τ4) → 0. Eq. (B.4), then, reads

〈Tτjth(x, τ)jth(x
′, 0)〉

= −T 2

[

∑

iω1,iω2

ω2
1|ω2|2e−i(ω1−ω2)τG0(x, x′; iω1)G

0(x′, x; iω2)

−
∑

iω3,iω4

ω3ω4|ω3||ω4|e−i(ω3−ω4)τG0(x, x′; iω3)G
0(x′, x; iω4)

]

. (B.5)

Defining ων = ω1 −ω2 in the first term, and ων = ω3 −ω4 in the second, and by means

of Fourier tranform, one gets Eq. (3.13),

∫ β

0

dτ〈Tτjth(x, τ)jth(x
′, 0)〉eiωντ

= −T
∑

iωµ

Giωµ
(x′, x)Giων+iωµ

(x, x′)
[

(ωµ + ων)
2|ωµ|2 − ωµ(ων + ωµ)|ωµ||ων + ωµ|

]

,(B.6)

where we set ω2 = ω4 = ωµ. The latter equation gives rise to a non vanishing contri-

bution only for values of ωµ such that −ων < ωµ < 0. The sum in the latter equation

can be rewritten as a contour integral in the complex plane by means of the Eliashberg

formula, [Eliashberg61]

T
∑

Ωµ

f(Ωµ) =
1

4πi

∮

C0

dz coth
( z

2T

)

f(−iz) , (B.7)
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ων

R A

Re(z)

Im(z)

Im(z)=−i

Figure B.1: The sum over ωµ in Eq. (B.6) can be performed transforming the sum into an
integral along the indicated integration contour. The function in the integral is not analytical
at ℑm(z) = 0 and ℑm(z) = −iων . Crosses represent the poles of coth(z/2T ), and A and R
stand for advanced and retarded, respectively.

with z = iωµ; then,

∫ β

0

dτ〈Tτjth(x, τ)jth(x
′, 0)〉eiωντ

= − 2

4πi

∮

C0

dz coth
( z

2T

)

G0(x′, x; z)G0(x, x′; iων + z)(−iz)2(ων − iz)2 . (B.8)

The contour of integration is shown in Fig. B.1. The rhs of Eq. (B.8) can be

written as

− 1

2πi

{
∫ ∞−iων

−∞−iων

dz coth
( z

2T

)

z2(iων + z)2GR(x, x′; iων + z)GA(x′, x; z)

+

∫ −∞

+∞
dz coth

( z

2T

)

z2(iων + z)2GR(x, x′; iων + z)GA(x′, x; z)

}

, (B.9)

where the superscripts A and R stand for advanced and retarded, respectively. Setting

z′ = z + iων in the first integral, Eq. (B.9) reads

− 1

2πi

{
∫ +∞

−∞
dz′ coth

(

z′

2T

)

(z′)2(z′ − iων)
2GR(x, x′; z′)GA(x′, x; z′ − iων)

−
∫ +∞

−∞
dz coth

( z

2T

)

z2(iων + z)2GR(x, x′; z + iων)G
A(x′, x; z)

}

. (B.10)
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Performing analytical continuation ων → −iω, and setting z′ = z + ω in the second

integral

− 1

2πi

{
∫ +∞

−∞
dz coth

( z

2T

)

z2(z − ω)2GR(x, x′; z)GA(x′, x; z − ω)

−
∫ +∞

−∞
dz′ coth

(

z′ − ω

2T

)

(z′)2(z′ − ω)2GR(x, x′; z′)GA(x′, x; z′ − ω)

}

= − 1

2πi

∫ +∞

−∞
dz coth

[

coth
( z

2T

)

− coth

(

z − ω

2T

)]

×z2(z − ω)2GR(x, x′; z)GA(x′, x; z − ω) . (B.11)

In the limit ω → 0, one gets the expression for the thermal conductance in Eq. (3.14),

GA being the hermitian conjugate of GR.



Appendix C

Equation of motion for the Green’s

function

For the sake of simplicity, we consider the bosonic operator φ̂(x, τ), in terms of

which the density of current is written as, [Maslov95, Maslov95b]

ĵ(x, τ) = −∂τ
φ̂(x, τ)√

π
. (C.1)

By means of the current continuity equation, the operator φ̂(x, τ) can be written in

function of the displacement û(x, τ) as

φ̂(x, τ) = −
√
π[n0û(x, τ)] . (C.2)

The relation of commutation between φ̂ and p̂, its conjugate momentum, reads

[φ̂(x, τ), p̂(x′, τ)] = −
√
πin0δ(x− x′) . (C.3)

The Luttinger liquids Hamiltonian in Eq. (3.3) in terms of operator φ̂ reads

H0
φ̂

=

∫

dx

[

p̂2(x)

2mn0

+
1

2π

(

V0 +
π2

m
n0

)

(∇φ̂)2

]

. (C.4)

To evaluate the equation of motion, let us consider the temperature Green’s

function in time domain

G(x, x′; τ) = 〈Tτ φ̂(x, τ)φ̂(x′, 0)〉 , (C.5)
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and let us evaluate ∂τG:

∂

∂τ
G =

∂

∂τ
〈φφ′〉θ(τ) +

∂

∂τ
〈φ′φ〉θ(−τ) . (C.6)

For the sake of simplicity, we have indicated φ̂(x, τ) = φ, and φ̂(x′, 0) = φ′; θ(τ) is the

step function.

The first term in the rhs of Eq. (C.6) reads

∂

∂τ
〈φφ′〉θ(τ) = 〈φφ′〉δ(τ) + θ(τ)〈[H, φ]φ′〉 . (C.7)

The commutator which appears in Eq. (C.7) reads

[H, φ] =

∫

dx′
{

1

2mn0
[p̂2

′ , φ] +
1

2π

(

V0 +
π2

m
n0

)

[(∇′φ′)
2, φ]

}

=

∫

dx′
1

2mn0

[p̂2
′ , φ]

=

∫

dx′
1

2mn0

{

2
√
πin0δ(x− x′)p̂′

}

=
i
√
π

m
p̂(x) . (C.8)

By means of Eq. (C.8), Eq. (C.7) can be written as

∂

∂τ
〈φφ′〉θ(τ) = 〈φφ′〉δ(τ) +

i
√
π

m
〈p̂φ′〉θ(τ) . (C.9)

Analogously, developing the second term in the rhs of Eq. (C.6), one finds

∂

∂τ
〈φ′φ〉θ(−τ) = −〈φφ′〉δ(τ) +

i
√
π

m
〈p̂φ′〉θ(−τ) . (C.10)

The sum of Eqs. (C.9) and (C.10) reads

∂

∂τ
G(x, x′; τ) =

i
√
π

m
〈Tτ p̂(x, τ)φ(x′, 0)〉 . (C.11)

Since we are interested in the equation of motion of G(x, x′; τ), we need to

evaluate the second derivative; the Green’s function which appears in the rhs of Eq.

(C.11) does not give any useful information.

∂2

∂τ 2
G(x, x′; τ) =

i
√
π

m
{∂τ 〈p̂φ′〉 θ(τ) + ∂τ 〈φ′p̂〉θ(−τ)} . (C.12)
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Let us evaluate separately the two terms in the rhs of Eq. (C.12).

∂τ 〈p̂φ′〉θ(τ) = 〈p̂φ′〉δ(τ) + θ(τ)〈[H, p̂]φ′〉 . (C.13)

It is necessary to evaluate the commutator between H and p̂

[H, p̂] =

∫

dx′
1

2π

(

V0 +
π2

~
2

m
n0

)

[(∇′φ′)
2, p̂] , (C.14)

[(∇′φ′)
2, p̂] = −2

√
πi∇′n0δ(x− x′)∇′φ′ . (C.15)

By means of Eq. (C.15), Eq. (C.14) can be written as

[H, p̂] = − iV0√
π

∫

dx′∇′n0δ(x− x′)∇′φ′ −
iπ2

~
2

m
√
π

∫

dx′n0∇′n0δ(x− x′)∇′φ′ . (C.16)

Integrals appearing in Eq. (C.16) can be evaluated by integration by parts, and

exploiting the properties of Dirac δ function

∫

dx′∇′n0δ(x− x′)∇′φ′ = −n0∇2φ(x) , (C.17)

∫

dx′n0∇′n0δ(x− x′)∇′φ′ = −n0∇[n0∇φ] . (C.18)

Replacing Eqs. (C.17) and (C.18) in Eq. (C.16), one finds

[H, p̂] =
iV0√
π
n0∇2φ(x) +

iπ2

m
√
π
n0∇[n0∇φ] . (C.19)

Eq. (C.13) by means of Eq. (C.19) reads

∂τ 〈p̂φ′〉θ(τ) = 〈p̂φ′〉δ(τ)

+ θ(τ)

{

iV0√
π
〈n0∇2φ(x)φ′〉 +

iπ2

m
√
π
〈n0∇[n0∇φ]φ′〉

}

. (C.20)

The second term in the rhs of Eq. (C.12) can be evaluated as

∂τ 〈φ′p̂〉θ(−τ) = −〈−
√
πin0δ(x− x′) + p̂φ′〉δ(τ)

+ θ(−τ)∂τ 〈−
√
πin0δ(x− x′) + p̂φ′〉

= i
√
πn0δ(x− x′)δ(τ) − 〈p̂φ′〉δ(τ) + θ(−τ)〈[H, p̂]φ′〉 . (C.21)
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Eq. (C.21) can be evaluated by means of Eq. (C.19)

∂τ 〈φ′p̂〉θ(−τ) = i
√
πn0δ(x− x′)δ(τ) − 〈p̂φ′〉δ(τ)

+θ(−τ)
{

iV0√
π
〈n0∇2φ(x)φ′〉

+
iπ2

m
√
π
〈n0∇[n0∇φ]φ′〉

}

. (C.22)

The sum of Eqs. (C.20) and (C.22) reads

∂2

∂τ 2
G(x, x′; τ) = −

{

π

m
n0δ(x− x′)δ(τ) +

V0

m
n0∇2G(x, x′; τ)

+
π2

m2
n0∇n0∇G(x, x′; τ) +

n2
0π

2

m2
∇2G(x, x′; τ)

}

. (C.23)

Eq. (C.23) can be written as

∂2
τG(x, x′; τ) +

n0

m
∂x

{[

V0 +
π2n0

m

]

∂xG(x, x′; τ)

}

= −πn0

m
δ(x− x′)δ(τ) . (C.24)

Finally, the equation of motion reads

{

1

v(x)gLL(x)
∂2

τ + ∂x

(

v(x)

gLL(x)
∂x

)}

G(x, x′; τ) = −δ(x− x′)δ(τ) , (C.25)

In the frequency domain, Eq. (C.25) reads

{

−∂x

(

v(x)

gLL(x)
∂x

)

+
ων

2

v(x)gLL(x)

}

G0
iων

(x, x′) = δ(x− x′) . (C.26)
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Green’s function in a clean wire

We want to solve the equation of motion, Eq. (C.26). From Fig. 3.4, Eq. (C.26)

can be written as

∂2
xG

0(x, x′; τ) =
ων

2

v2
G0(x, x′τ) , (D.1)

that is as a constant coefficients differential equation.

The general solution is

G0
iων

(x, x′) =































Ee
|ων |
vF

x
: x ≤ 0 GI

Ae
|ων |

v
x +Be−

|ων |
v

x : 0 < x ≤ x′ GII

Ce
|ων |

v
x +De−

|ων |
v

x : x′ < x ≤ L GIII

Fe
− |ων |

vF
x

: x > L GIV

(D.2)

The evaluation of coefficient is done by means of boundary conditions



































































GI(0) = GII(0) :

GII(x
′) = GIII(x

′) :

GIII(d) = GIV (d) :

vFG
′
I(0) = v

gLL
G′

II(0) :

v
gLL

G′
III(d) = vFG

′
IV (d) :

− v
gLL

G′0(x, x′)

∣

∣

∣

∣

∣

x′+ǫ

x′−ǫ

= 1 :

(D.3)
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Easily, albeit slowly, one finds

B =
γ − ω

γ + ω
A , (D.4a)

E =
2γ

γ + ω
A , (D.4b)

C = −e
−αx′

2γ
+ A , (D.4c)

D =
eαx′

2γ
+
γ − ω

γ + ω
A , (D.4d)

F = −e
βd

γ
sinh[α(d− x′)] + eβd

(

eαd + e−αdγ − ω

γ + ω

)

A , (D.4e)

A =
cosh[α(d− x′)]

(

1 + ω
γ

tanh[α(d− x′)]
)

ω
(

eαd + e−αd γ−ω
γ+ω

)

+ γ
(

eαd − e−αd γ−ω
γ+ω

) , (D.4f)

where

ω = |ων| , α = |ων|/v , β = |ων|/vF , γ = |ων |/gLL . (D.5)



Appendix E

Generalised equation of motion

We want to write the equation of motion in presence of the perturbative potential

Himp =
2

a

∫

dxV (x) cos(2KFx+ 2
√
πφ) . (E.1)

The way to follow is the same as the one in Appendix C, with the difference

that all the quantities have to be evaluated with respect to the total Hamiltonian,

Ĥ0 + Ĥimp. Let us start from Eq. (C.5), and from the evaluation of the derivative. In

Eq. (C.7), what has to be changed is the calculation of the commutator, which reads

[H, φ] = [H0, φ] + [Himp, φ] =
i
√
π

m
p̂+ [Himp, φ] . (E.2)

The commutator in the rhs of Eq. (E.2) reads

[Himp, φ] =
1

a

∫

dx′V (x′)
{[

ei(2KF x′+2
√

πφ′) + e−i(2KF x′+2
√

πφ′), φ
]}

= 0 . (E.3)

The commutator vanishes, since φ̂ commute with itself, and in general [A, f(A)] =

0. Then, the perturbative term does not give any contribution to the first derivative,

and one gets the same expression as in Eq. (C.11).

One has to evaluate the second derivative. Let us evaluate the two terms in Eq.

(C.12) separately. For the first one, Eq. (C.13), we need the value of the commutator

[Himp, p̂]. It reads

[Himp, p̂] =
1

a

∫

dx′V (x′)
{

ei(2KF x′)
[

ei(2
√

πφ′), p̂
]

+ e−i(2KF x′)
[

e−i(2
√

πφ′), p̂
]}

. (E.4)
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To evaluate the two commutators, one needs to use the relation of commutation

between φ̂ and p̂, and the following relation

[F (φ′), p̂] =
∂F

∂φ′
[φ′, p̂] . (E.5)

By means of Eq. (E.5), one finds

[

ei(2
√

πφ′), p̂
]

= 2πn0e
i(2

√
πφ′)δ(x− x′) , (E.6)

[

e−i(2
√

πφ′), p̂
]

= −2πn0e
−i(2

√
πφ′)δ(x− x′) . (E.7)

By means of Eqs. (E.6) and (E.7), Eq. (E.4) can be written as

[Himp, p̂] =
4πi

a

∫

dx′V (x′)n0 sin(2KFx
′ + 2

√
πφ)δ(x− x′)

=
4πi

a
V (x)n0 sin(2KFx+ 2

√
πφ) . (E.8)

The latter equation allows to write Eq. (C.13) as

∂τ 〈p̂φ′〉θ(τ) = 〈p̂φ′〉δ(τ) + θ(τ)

{

iV0√
π
〈n0∇2φ(x)φ′〉

+
iπ2

m
√
π
〈n0∇[n0∇φ]φ′〉

+
4πi

a
V (x)n0〈sin(2KFx+ 2

√
πφ)φ′〉

}

. (E.9)

Developing the second term in Eq. (C.12), and using what we found for a clean

wire

∂τ 〈φ′p̂〉θ(−τ) = i
√
πn0δ(x− x′)δ(τ) − 〈p̂φ′〉δ(τ) + θ(−τ)

{

iV0√
π
〈n0∇2φ(x)φ′〉

+
iπ2

m
√
π
〈n0∇[n0∇φ]φ′〉

+
4πi

a
V (x)n0〈sin(2KFx+ 2

√
πφ)φ′〉

}

. (E.10)



Generalised equation of motion 151

The sum of Eqs. (E.9) and (E.10) reads

∂2

∂τ 2
G(x, x′; τ) = −

{

π

m
n0δ(x− x′)δ(τ) +

V0

m
n0∇2G(x, x′; τ)

+
π2

m2
n0∇n0∇G(x, x′; τ) +

n2
0π

2

m2
∇2G(x, x′; τ)

+
4π

a
V (x)n0〈T ∗

τ sin(2KFx+ 2
√
πφ)φ′〉

}

. (E.11)

By means of Eq. (C.24), Eq. (E.11) can be written as

{

1

v(x)K(x)
∂2

τ + ∂x

(

v(x)

K(x)
∂x

)}

Gφ =

−δ(x− x′)δ(τ) − 4
√
π

a
V (x)〈Tτ sin(2KFx+ 2

√
πφ)φ′〉 . (E.12)

The latter equation represents the general equation of motion for the Green’s

function in time domain in presence of the perturbative potential Eq. (E.1).

Under the assumption of being able to evaluate the average in the rhs, Eq.

(E.12) describes the evolution of the Green’s function and of the whole system.





Appendix F

Second order correction in the

perturbative potential

Let us start from Eq. (3.60) which in term of operator φ reads,

〈Tτ sin(2KFx+ 2
√
πφ)φ′〉(I) =

= −2

a

∫

dτ3dx3V (x3)〈Tτ sin(2KFx1 + 2
√
πφ1)φ2 cos(2KFx3 + 2

√
πφ3)〉0

+
2

a

∫

dτ3dx3V (x3)〈cos(2KFx3 + 2
√
πφ3)〉0〈Tτ sin(2KFx1 + 2

√
πφ1)φ2〉0.(F.1)

To evaluate the rhs of the latter equation, we need to evaluate the averages

appearing in the integrals. The second average in the second integral in the rhs of Eq.

(F.1) has been already evaluated in Eq. (3.47)

〈Tτ sin(2KFx1+2
√
πφ1)φ2〉0 = 2

√
π cos(2KFx1)G(x1, τ1; x2, τ2)e

−2πG(x1,τ1;x1,τ1) . (F.2)

We need to evaluate the term

〈cos(2KFx3 + 2
√
πφ3)〉0 = cos(2KFx3)〈cos(2

√
πφ3)〉0 − sin(2KFx3)〈sin(2

√
πφ3)〉0 .

(F.3)

Writing the sin and cos function in terms of exponential function, and reminding

that 〈eB̂〉 = e
1
2
〈B̂2〉, one finds

〈cos(2KFx3 + 2
√
πφ3)〉0 = e−2πG33 cos(2KFx3) . (F.4)
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The second integral in the rhs of Eq. (F.1) reads

4
√
π

a

∫

dτ3dx3V (x3)G12e
−2π(G11+G33) cos(2KFx1) cos(2KFx3) , (F.5)

where G12 = G(x1, τ1; x2, τ2).

The average in the first term in the rhs of Eq. (F.1) can be evaluated in a similar

way

〈Tτ sin(2KFx1 + 2
√
πφ1)φ2 cos(2KFx3 + 2

√
πφ3)〉0 =

sin(2KFx1) cos(2KFx3)〈Tτ cos(2
√
πφ1)φ2 cos(2

√
πφ3)〉0

− sin(2KFx1) sin(2KFx3)〈Tτ cos(2
√
πφ1)φ2 sin(2

√
πφ3)〉0

+ cos(2KFx1) cos(2KFx3)〈Tτ sin(2
√
πφ1)φ2 cos(2

√
πφ3)〉0

− cos(2KFx1) sin(2KFx3)〈Tτ sin(2
√
πφ1)φ2 sin(2

√
πφ3)〉0 . (F.6)

Among the four terms in the latter equation, the ones where the function inside

is odd vanish. The other two ones can be evaluated in the usual way. Given the

generating function

〈Tτe
iλφ1eiµφ2eiγφ3〉 = e−

1
2
(λ2G11+µ2G22+γ2G33)e−(λµG12+λγG13+µγG23) , (F.7)

each term in Eq. (F.6) can be written as a derivative of Eq. (F.7), with the

correct values of λ, µ, and γ; one finds

〈Tτ sin(2KFx1 + 2
√
πφ1)φ2 cos(2KFx3 + 2

√
πφ3)〉0 =

=
√
π

{

(G12 +G23)e
−2π(G11+G33+2G13) cos[2KF (x1 + x3)]

+(G12 −G23)e
−2π(G11+G33−2G13) cos[2KF (x1 − x3)]

}

. (F.8)

By means of Eqs. (F.5) and (F.8), the first order contribution in the perturbative
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potential finally reads

〈Tτ sin(2KFx+ 2
√
πφ)φ′〉(I) =

= −2
√
π

a

∫

dτ3dx3V (x3)

×
{

[

G12e
−2π(G11+G33)

[

e−4πG13 − 1
]

+G23e
−2π(G11+G33+2G13)

]

cos[2KF (x1 + x3)]

+
[

G12e
−2π(G11+G33)

[

e4πG13 − 1
]

−G23e
−2π(G11+G33−2G13)

]

cos[2KF (x1 − x3)]

}

= G(I)(X1, X2) , (F.9)

where Xi = (xi, τi).





Appendix G

Fluctuation propagator with

tunneling

Our aim in this appendix is the analytical evaluation of the Cooper pair fluctuation

propagator in presence of the tunneling. As we have seen in Sec. 5.5.2, the partition

function can be written in terms of the action of the system, and the fluctuation

propagator is represented by the coefficient of the second order term in the development

in the field ∆ and in the tunneling amplitude t. As already mentioned, the two terms

to develop till the second order in ∆ and t are

exp

{

∑

i

∫ β

0

[

−∆∗
i (r, τ)Pi(r, τ) − ∆i(r, τ)P

†
i (r, τ)

]

}

, (G.1)

and

exp{−HT (τ)} . (G.2)

where Pi(r, τ) = Ψi↓(r, τ)Ψi↑(r, τ). Using the kinetic term appearing in Eq. (5.41),

exp{−
∫ β

0
H0(τ)dτ}, one can exploit the definition of mean value

Z0〈A〉 = Tr exp{−H0} (G.3)

where A is any physical quantity, to evaluate the non-vanishing contributions in the

product of the terms coming out from Taylor’s development of Eqs. (G.1) and (G.2).
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Most of the terms gives no contribution since they are not diagonal. The only two ones

which give a non-vanishing contribution are

∑

i,j,σ

[∆∗
i ∆jΨi,−σΨi,σΨ

†
j,σΨ

†
j,−σ + ∆i∆

∗
jΨ

†
i,σΨ

†
i,−σΨj,−σΨi,σ] , (G.4)

[

∑

i,j,l

m,a,b

σ,σ′,σ′′

∆∗
i ∆jtlmtabΨi,−σ′′Ψi,σ′′Ψ†

j,σ′′Ψ
†
j,−σ′′Ψ

†
lσΨmσΨ†

aσ′Ψbσ′

+
∑

i,j,l

m,a,b

σ,σ′,σ′′

∆i∆
∗
j tlmtabΨ

†
i,σ′′Ψ

†
i,−σ′′Ψj−σ′′Ψj,σ′′Ψ†

lσΨmσΨ†
aσ′Ψbσ′

]

. (G.5)

The two latter expressions can be dealed by means of Wick’s theorem to select

correctly Green’s functions. For the sake of clarity, as already done in Sec. 5.5.2, we

write the effective action as in Eq. (5.43),

Seff = S0
eff + St

eff . (G.6)

S0
eff and St

eff describe the fluctuations in an isolated grain and the corrections due to

tunneling, respectively. By means of Wick’s theorem, Eq. (G.4) can be written as

∑

i,σ

[∆i(r1, τ1)∆
∗
i (r4, τ4)]Gi,σ(r4 − r1, τ4 − τ1)Gi,−σ(r4 − r1, τ4 − τ1) . (G.7)

Then, the effective action for an isolated grain reads

S0
eff = −

∑

i,σ

[

|∆i(r1, τ1)|2
g

−[∆i(r1, τ1)∆
∗
i (r4, τ4) + H.c.]Gi,σ(r4 − r1, τ4 − τ1)Gi,−σ(r4 − r1, τ4 − τ1)

]

,(G.8)
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where we took into account also the the first term in the sum in the second integral

in the rhs of Eq. (5.41). If we suppose that the field ∆ does not depend on space

coordinates, by means of Fourier transform, Eq. (G.8) reads

S0
eff = −T

V

∑

Ωµ

|∆i (Ωµ)|2
[

1

g
− 4πνFTτ

∑

2εn>Ωµ

λ (εn, εµ−n)

]

. (G.9)

λ (εn, εµ−n) is the Cooperon, and the factor 1/V comes from the independence of the

field ∆ on space coordinates. Before evaluating analytically S0
eff , let us see how the

expression in Eq. (G.5) can be written. Such a term gives rise to the correction to

fluctuation propagator due to tunneling. Using Wick’s theorem, one can write, for

instance

〈TτΨi↓Ψi↑Ψ
†
j↑Ψ

†
j↓Ψ

†
l↑Ψm↑Ψ

†
a↓Ψb↓〉 = −Gi↑Gi↓Gj↑Gj↓ , (G.10)

where we supposed that the tunneling process affects opposit-spin particles. In other

words, Eq. (G.10) describes the physical situation where both particles tunnel from

i-th grain to j-th grain without loosing their correlation. Then, Eq. (G.10) can be

written as

1

2

∑

i,j

[∆∗
i (r1, τ1)∆j(r4, τ4) + H.c.]tijt

∗
ijGj(r4 − r6, τ4 − τ5)

×Gj(r4 − r3, τ4 − τ2)Gi(r2 − r1, τ2 − τ1)Gi(r5 − r1, τ5 − τ1) , (G.11)

where in the numerical prefactor we took into account the development coefficient,

1/16, the multiplicity of the physical process, 4, and the spin degeneracy. If a is the

radius of a grain, then the tunneling element can be expressed as

ti(r1)j(r2) = tij

∫

d a δ(|r1 − a|)δ(r2 − r1) , (G.12)

where the latter expression means that the tunneling process happens between very
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close points. In term of Fourier transform, just to give an example, Eq. (G.11) reads

1

2
t2T 6V −2

∑

i,j

∑

Ωq1 ,Ωq2

[∆∗
i (Ωq1)∆j(Ωq2) + H.c.]

×
∑

ε1,ε2ε3,ε4

∫ 6
∏

i=1

dridτ1dτ2dτ4dτ5dp1dp2dp3dp4dada
′eip1(r4−r6)eip2(r4−r3)eip3(r2−r1)

×eip4(r5−r1)eiτ1Ωq1e−iτ4Ωq2e−iε1(τ4−τ5)e−iε2(τ4−τ2)e−iε3(τ2−τ1)e−iε4(τ5−τ1)δ(|r2 − a|)

×δ(|r5 − a′|)δ(r2 − r3)δ(r5 − r6)Gj(p1, ε1)Gj(p2, ε2)Gi(p3, ε3)Gi(p4, ε4) . (G.13)

The evaluation of the latter equation reads

z

2

∑

i,j

∑

Ωq,εn

[∆∗
i (Ωq)∆j(Ωq) + H.c.]t2T 2

×
∫

dpidpjG(pj , εn)G(pj ,−εn)G(pi,−εn)G(pi, εn)λ
2(εn,Ωq − εn) , (G.14)

and it corresponds to the diagram in Fig. 5.8(a)

In the same identical way, one can evaluate the contribution corresponding to

the physical processes where just one electron tunnel back and forth from one grain to

another, Fig. 5.8(b+c)

z
∑

i

[∆∗
i (r1, τ1)∆i(r4, τ4) + H.c.]tijt

∗
ijGi(r4 − r1, τ4 − τ1)

×Gi(r4 − r3, τ4 − τ2)Gi(r5 − r1, τ5 − τ1)Gj(r2 − r6, τ2 − τ5) , (G.15)

where we took into account the multiplicity due to equivalent diagram, represented by

the H.c., and z is the correlation number, that is the number of the nearest neighbours.

Performing again the Fourier transform, one gets

z
∑

i

∑

Ωq,εn

[∆∗
i (Ωq)∆i(Ωq) + H.c.]t2T 2

×
∫

dpidpjG(pi, εn)G(pi,−εn)G(pi,−εn)G(pj ,−εn)λ2(εn,Ωq − εn) .(G.16)
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To resume

S
t,(a)
eff =

z

2

∑

i,j

∑

Ωq ,εn

[∆∗
i (Ωq)∆j(Ωq) + H.c.]t2T 2

×
∫

dpidpjG(pj, εn)G(pj,−εn)G(pi,−εn)G(pi, εn)λ
2(εn,Ωq − εn) ,(G.17)

S
t,(b+c)
eff = z

∑

i

∑

Ωq,εn

[∆∗
i (Ωq)∆i(Ωq) + H.c.]t2T 2

×
∫

dpidpjG(pi, εn)G(pi,−εn)G(pi,−εn)G(pj,−εn)λ2(εn,Ωq − εn) .(G.18)

S0
eff = −T

V

∑

Ωµ

|∆i (Ωµ)|2
[

1

g
− 4πνFTτ

∑

2εn>Ωµ

λ (εn, εµ−n)

]

. (G.19)





Appendix H

Analytical evaluation of effective

action

Let us start with S
t,(a)
eff . First, we have to evaluate the integral

∫

dpidpjG(pj, εn)G(pj,−εn)G(pi,−εn)G(pi, εn) =

[
∫

dpiG(pi,−εn)G(pi, εn)

]2

,

(H.1)

in the diffusive limit, εn ≪ 1/τ . Using Cauchy’s Theorem, one gets easily
[
∫

dpiG(pi,−εn)G(pi, εn)

]2

= (2πνF τ)
2 , (H.2)

Then, one has to evaluate the sum

∑

εn

λ2(εn,Ωq − εn) =
1

τ 2

∑

εn

1

(|2εn − Ωq| +Dq2)2
, (H.3)

By considering individually the case of positive and negative values of εn, the

sum can be written as

∑

εn

1

(|2εn − Ωq| +Dq2)2
= 2

∑

εn>0

1

(2εn +Dq2)2
, (H.4)

where we just considered the static approximation, Ωq → 0. Since the sum diverges,

one first considers a finite sum and then its asymptotic behavior.

M
∑

εn>0

1

(2εn +Dq2)2
= −

M
∑

εn>0

∂

∂(Dq2)

(

1

2εn +Dq2

)

. (H.5)
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The sum is known, and latter expression reads

−
M
∑

εn>0

∂

∂(Dq2)

(

1

2εn +Dq2

)

= − 1

(4πT )2

{

Ψ′
(

1

2
+
Dq2

4πT
+M

)

− Ψ′
(

1

2
+
Dq2

4πT

)}

.

(H.6)

Taking the limit as M → 0, since Ψ′(x)
x→∞→ 1/2x then, definetively, in the

static approximation,

∑

εn

λ2(εn,Ωq − εn) =
2

(4πτT )2
Ψ′
(

1

2
+
Dq2

4πT

)

. (H.7)

Then, the effective action for two-particles tunnelling reads

S
t,(a)
eff =

1

4
(νF t)

2
∑

i,j

∑

Ωq

[∆∗
i (Ωq)∆j(Ωq) + H.c.]Ψ′

(

1

2
+
Dq2

4πT

)

. (H.8)

Now, we consider the representation in FT of the field ∆, too. First,

∆i(Ωq) =
∑

K

∆K(Ωq)e
iRi·K , (H.9)

Then, one can write

∑

i,j

[∆∗
i (Ωq)∆j(Ωq)] =

∑

ij

∑

Ki,Kj

∆∗
Ki

∆Kj
eiRi·(Kj−Ki)eiδ·Kj , (H.10)

with Rj = Ri + a, a being the vector conneting the center of two close grains. Then,

∑

i,j

[∆∗
i (Ωq)∆j(Ωq)] = z

∑

K

γK∆∗
K∆K , (H.11)

where γK is the structure factor, defined as γK = z−1
∑

a e
iK·a

Then, one can write the contribution, Eq. (G.17), as

S
t,(a)
eff =

z

2
(νF t)

2Ψ′
(

1

2
+
Dq2

4πT

)

∑

K,Ωq

γK|∆K|2 . (H.12)

In the same identical way, we can evaluate the contribution given by Eq. (G.18).

In this case, of course, the integral to evaluate is

∫

dpiG(pi, εn)G(pi,−εn)G(pi,−εn)

∫

dpjG(pj ,−εn) . (H.13)
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The second integral in last expression can be easily evaluated and it reads −iπνF sgn(εn).

Evaluating by means of Cauchy’s theorem the first one, one gets, for the whole integral

in Eq. (H.13), −2(πνF τ)
2. The sum appearing in Eq. (G.18) has been already evalu-

ated, Eq. (H.7). Then, using the FT on the field ∆, the action taking into account the

tunnelling between grains is

S
t,(b+c)
eff = −z

2
(νF t)

2Ψ′
(

1

2
+
Dq2

4πT

)

∑

K,Ωq

|∆K|2 . (H.14)

We can finally write the expression for the action St
eff ,

St
eff = −

(

2

π

)2
zgT

2V 2
Ψ′
(

1

2
+
Dq2

4πT

)

∑

Ωq

(1 − γK)|∆K|2 , (H.15)

where gT is the dimensionless conductance, gT = (πt/2δ)2.

Now, in order to get the expression of propagator, we have to evaluate S0
eff , Eq.

(G.19). The only thing we need to evaluate this contribution is the sum over a single

Cooperon. It can be performed in the same way as before, with the only difference

that the upper limit of the sum will be Debye’s energy. In the static approximation,

one gets

∑

2εn>|Ωq|
λ(εn,Ωq − εn) =

2

τ

1

4πT

{

Ψ

(

1

2
+
Dq2

4πT
+

ωD

4πT

)

− Ψ

(

1

2
+
Dq2

4πT

)}

, (H.16)

Since the critical temperature is defined as the value of T for which the prop-

agator has a pole, from the expression of fluctuation propagator inside a grain, on

gets
1

g
= νF

[

log
ωD

2πTC
− Ψ

(

1

2

)]

. (H.17)

Replacing latter expression in Eq. (G.19), and using Eq. (H.16), one gets for

the action

S0
eff = −νFT

V

∑

Ωq,K

[

log
T

TC
+ Ψ

(

1

2
+
Dq2

4πT

)

− Ψ

(

1

2

)]

|∆K|2 , (H.18)

where we Fourier tranformed the field ∆, as usual.

Finally, from Eqs. (H.15) and (H.18), we can write the full expression of the
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propagator, which reads

LK(Ωµ) = −ν−1
F

{

[

log
T

TC

+ Ψ

(

1

2
+
Dq2

4πT

)

− Ψ

(

1

2

)]

+

(

2

π

)2
zgTET

2g0T
Ψ′
(

1

2
+
Dq2

4πT

)

(1 − γK)

}−1

. (H.19)

In the limit of zero dimensional grain, Dq2 = 0, from Eq. (H.19) one obtains the

expression of the Cooper pair fluctuation propagator used in Eq. (5.50), where we did

not take the static limit yet.



Appendix I

DOS correction without tunneling

In this appendix, we want to show how to evaluate the DOS correction to thermal

conductivity for a granular metal without considering the tunneling: the correction we

will evaluate is just given by the renormalization of the density of states due to pairing

processes which do not involve tunneling.

The aim of this appendix is above all showing some calculations techniques

which will allow to evaluate the results we have presented in the previous chapters.

We start from Fig. 5.9(a), for which the response function reads

Q(DOS) (ων) = T 2t2a2
∑

j

∑

Ωµ

Lij (Ωµ)Σ (Ωµ, ων) . (I.1)

Eq. (I.1) is already written in the limit of zero dimensional grains. In the following,

often this limit is considered just at the end of calculations; this because some mathe-

matical steps can be easier to perform. Then, the limit will be performed at the end.

In Eq. (I.1)

Σ (Ωµ, ων) =
∑

εn

(εn + εn+ν)
2 λ2 (εn+ν, ε−n−ν+µ) I (εn,Ωµ, ων) , (I.2)

and

I (εn,Ωµ, ων) =

∫

(dp)G2 (p, εn+ν)G (p, ε−n−ν+µ)

∫

(dp′)G (p′, εn) . (I.3)
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By means of Cauchy’s theorem, one gets

∫

dp′

(2π)3
G(p′, εn) = −iπνF sgn(εn) , (I.4)

∫

dp

(2π)3
G2(p, εn + ων)G(q − p,Ωµ − εn − ων)

= [I ′1(εn > 0) + I ′2(εn < 0, εn + ων > 0) + I ′3(εn < 0, εn + ων < 0)] . (I.5)

with

I ′1 = −2iπνF τ
2 , I ′2 = −2iπνF τ

2 , I ′3 = 2iπνF τ
2 . (I.6)

The product of two integrals reads

I(εn,Ωµ, ων) = [I1(εn > 0) + I2(εn < 0, εn + ων > 0) + I3(εn < 0, εn + ων < 0)] , (I.7)

with

I1 = −2(πνF τ)
2 , I2 = 2(πνF τ)

2 , I3 = −2(πνF τ)
2 . (I.8)

We can write Σ(Ωµ, ων) as a sum of three terms Σ1 + Σ2 + Σ3, with

Σ1 = −2(πνF )2T
∑

εn>0

(2εn + ων)
2

(2εn + 2ων +Dq2)2
, (I.9)

Σ2 = 2(πνF )2T
∑

0<εn<ων

(2εn − ων)
2

(2εn +Dq2)2
, (I.10)

Σ3 = −2(πνF )2T
∑

εn>0

(2εn + ων)
2

(2εn +Dq2)2
, (I.11)

where we just wrote the second and third sum differently, by exploiting conditions on

the signs of εn in Eq. (I.7). Now, we show briefly how the sum can be performed, since

Σ1 and Σ3 diverge. First of all, let us write Σ1 = −2(πνF )2TS1 and Σ3 = −2(πνF )2TS3,

and we want to evaluate S1 and S3. They can be written as

S1 =
∑

εn>0

[

1 +
(ων +Dq2)2

(2εn + 2ων +Dq2)2
− 2(ων +Dq2)

(2εn + 2ων +Dq2)

]

, (I.12)

S3 =
∑

εn>0

[

1 +
(ων −Dq2)2

(2εn +Dq2)2
+

2(ων −Dq2)

(2εn +Dq2)

]

, (I.13)
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The first two terms in the sum are purely real, then they give no contributions

to conductivity, and we will no longer consider them. The other terms can be grouped

like

− 2ων

∑

εn>0

(

1

2εn + 2ων +Dq2
− 1

2εn +Dq2

)

− 2Dq2
∑

εn>0

(

1

2εn + 2ων +Dq2

+
1

2εn +Dq2

)

+ 2ωνDq
2
∑

εn>0

(

1

(2εn + 2ων +Dq2)2
− 1

(2εn +Dq2)2

)

+ (ω2
ν + (Dq2)2)

∑

εn>0

(

1

(2εn + 2ων +Dq2)2
+

1

(2εn +Dq2)2

)

. (I.14)

The way we have written last expression allows us to evaluate correctely the

sums, paying attention to the problems of convergence. Using the definition of digamma

function, [Larkin04], the four terms can be evaluated as

− 2ων

4πT

[

Ψ

(

1

2
+
Dq2

4πT

)

− Ψ

(

1

2
+

ων

2πT
+
Dq2

4πT

)]

(I.15)

− 2
Dq2

4πT
lim

Λ→∞

[

Ψ

(

1

2
+

ων

2πT
+
Dq2

4πT
+ Λ

)

− Ψ

(

1

2
+

ων

2πT
+
Dq2

4πT

)

+ Ψ

(

1

2
+
Dq2

4πT
+ Λ

)

− Ψ

(

1

2
+
Dq2

4πT

)

]

+
2ωνDq

2

(4πT )2

[

Ψ′
(

1

2
+

ων

2πT
+
Dq2

4πT

)

− Ψ′
(

1

2
+
Dq2

4πT

)

]

+
ω2

ν + (Dq2)2

(4πT )2

[

Ψ′
(

1

2
+

ων

2πT
+
Dq2

4πT

)

+ Ψ′
(

1

2
+
Dq2

4πT

)

]

.

The third and the fourth term in Eq. (I.14) have been evaluated as in Eq. (H.5).

By performing analitycal continuation ων → −iω, and taking the limit as ω → 0,



170 DOS correction without tunneling

one gets

Σ1 + Σ3 = −πν
2

2

{

− ω2

πT
Ψ′
(

1

2
+
Dq2

4πT

)

− 2Dq2 lim
Λ→∞

[

Ψ

(

1

2
+
Dq2

4πT
+ Λ

)

− Ψ′
(

1

2
+
Dq2

4πT
+ Λ

)

iω

2πT
− Ψ

(

1

2
+
Dq2

4πT

)

+ Ψ′
(

1

2
+
Dq2

4πT

)

iω

2πT

+ Ψ

(

1

2
+
Dq2

4πT
+ Λ

)

− Ψ

(

1

2
+
Dq2

4πT

)

]

− 2iωDq2

4πT

[

Ψ′
(

1

2
+
Dq2

4πT

)

− Ψ′′
(

1

2
+
Dq2

4πT

)

iω

2πT
− Ψ′

(

1

2
+
Dq2

4πT

)

]

+
(Dq2)2 − ω2

4πT

[

Ψ′
(

1

2
+
Dq2

4πT

)

− Ψ′′
(

1

2
+
Dq2

4πT

)

iω

2πT
+ Ψ′

(

1

2
+
Dq2

4πT

)

]}

. (I.16)

The only non vanishing contributions are the ones which are linear in ω; then,

neglecting the purely real terms, Eq. (I.16) reads

Σ1 + Σ3 = −πν
2
F

2

{

− iω

πT
Ψ′
(

1

2
+
Dq2

4πT

)

Dq2 − iω

8(πT )2
Ψ′′
(

1

2
+
Dq2

4πT

)

(Dq2)2

}

.

(I.17)

In the limit of zero dimensional grains, Dq2 goes to zero, and the second term

in latter expression is negligeable with respect the first one. Finally, the sum reads

Σ1 + Σ3 =
iων2

F

2T
Dq2Ψ′

(

1

2
+
Dq2

4πT

)

. (I.18)

From Eq.(I.10), Σ2 = 2(πνF )2TS2, and we want to evaluate S2. As we did above,

it can be written as

S2 =
∑

0<εn<ων

[

1 +
(ων +Dq2)2

(2εn +Dq2)2
− 2(ων +Dq2)

2εn +Dq2

]

. (I.19)
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Of course, S2 converges since it is finite. The first term in the sum just gives

ων/2πT . The seconde one reads

∑

0<εn<ων

(ων +Dq2)2

(2εn +Dq2)2
= −(ων +Dq2)2

4πT

∂

∂(Dq2)

[

Ψ

(

1

2
+

ων

2πT
+
Dq2

4πT

)

− Ψ

(

1

2
+
Dq2

4πT

)

]

= −−ω2 + (Dq2)2 − i2ωDq2

(4πT )2

[

Ψ′
(

1

2
− iω

2πT
+
Dq2

4πT

)

− Ψ′
(

1

2
+
Dq2

4πT

)

]

=
iω(Dq2)2

24(πT )3
Ψ′′
(

1

2
+
Dq2

4πT

)

, (I.20)

where we performed analytical continuation, developed over small ω, and took only con-

tributing terms. Staightforward, one can evaluate the third term in Eq.(I.19). Finally,

under the assumption Dq2 → 0,

Σ2 ≃ 2(πν)2T

[

− iω

2πT

]

, (I.21)

and the Eq.(I.2), in the limit of zero dimensional grains, turns out to be, by means of

Eqs.(I.18) and (I.21)

Σ(q,Ωk, ων) = −iπων2
F . (I.22)

Finally, we can evaluate the response function, Eq.(I.1), where the fluctuation prop-

agator, in diffusive regime and in the static approximation, Ωµ = 0, reads

L−1(Ωµ = 0) = −νF

[

ln
T

TC

]

. (I.23)

The response function will read

Q(ω) = −zT t
2a2

νF

[

− iπων2
F

1

log(T/TC)

]

. (I.24)



172 DOS correction without tunneling

Then, by considering the topologically equivalent diagram, the correction to thermal

conductivity given by the diagram in Fig. 5.9(a) is

δkDOS
1 = lim

ω→0

Q(iων)

Tων

∣

∣

∣

∣

∣

iων→ω+iη

= −2πνt2a2[ln(T/TC)]−1 . (I.25)

If one defines the dimensionless tunnelling conductance as gT = (πt/2δ)2, and

κ0 = 8gTTa
2/3π is the thermal conductivity for the granular sample, then Eq.(I.25)

can be written as

δkDOS

k0
= − 3

π2

1

gT

gT δ

Tc
[ln(T/TC)]−1 . (I.26)
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Maki-Thompson correction

As we have seen in Sec. 5.6.2, the linear response operator corresponding to

diagram in Fig. 5.9(b) reads

Q(MT ) (ων) = T 2t2a2
∑

j

∑

Ωµ

Lij (Ωµ)Σ (Ωµ, ων) , (J.1)

where

Σ (Ωµ, ων) =
∑

εn

(εn + εn+ν)
2 λ (εn+ν, ε−n−ν+µ)λ (εn, ε−n+µ) I (εn,Ωµ, ων) , (J.2)

and

I (εn,Ωµ, ων)

=

∫

(dp)G0 (p, εn+ν)G0 (p, ε−n−ν+µ)

∫

(dp′)G0 (p′, εn)G0 (p′, ε−n+µ) . (J.3)

Both integrals in Eq. (J.3) read 2πνF τ , and the sums to evaluate are

Σ1 = (2πνF )2T
∑

εn>0

(2εn + ων)
2

(2εn + 2ων)2εn

, (J.4a)

Σ2 = (2πνF )2T
∑

0<εn<ων

(2εn − ων)
2

2εn(−2εn + 2ων)
, (J.4b)

Σ3 = (2πνF )2T
∑

εn>0

(2εn + ων)
2

(2εn + 2ων)2εn
. (J.4c)
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The sums can be performed in the same way as we have seen before in the limit of zero

dimensional grains. Σ1 and Σ3 just give real contributions, while one finds

Σ2 = i2πν2
Fω . (J.5)

Then, in the static limit, the response function in Eq. (J.1) reads

Q(ω) = i2π(atνF )2ωT
∑

j

Lij(Ωµ = 0) . (J.6)

To evaluate the sum in the latter equation, we consider the expression of the Cooper

pair fluctuation propagator given in Eq. (5.50)

LK (Ωµ) = − 1

νF

1

ln T
Tc

+ π|Ωµ|
8Tc

+ z gT δ
Tc

(1 − γK)
. (J.7)

By means of Fourier transform,

Lij =
∑

K

eiRij ·KLK , (J.8)

where Rij is the vector between two sites. Then

∑

〈i,j〉
Lij = −1

ν

∑

〈i,j〉

∑

K

ei(Ri−Rj)·K

ε+ z gT δ
Tc

(1 − γK)
. (J.9)

For MT ones Rij = a, a being the distance between two sites. From the linear response

operator in Eq. (J.6), the MT correction reads

δκ(MT )

κ0

=
3

π2

1

gT

gT δ

Tc

∫

BZ

(dK)
γK

ǫ+ z gT δ
Tc

(1 − γK)
, (J.10)

where we have integrated over the first Brillouin zone.

The evaluation of DOS correction in presence of tunneling does not present

many differences with respect to the calculation of MT contribution. It can be easily

performed by means of Sections. I and J. With respect to MT correction, in Eq. (J.9),

Rij = Rii.



Appendix K

Aslamazov-Larkin correction

The evaluation of the AL correction to thermal conductivity is quite cumbersome

in the dynamical case. In the following, we report most of the steps necesessary to its

evaluation.

As we have seen in Sec. 5.6.3, AL diagrams can be built up starting from the

two blocks shown in Fig. 5.10, considering all their possible combination in pair. We

have called B1 the one in Fig. 5.10(a), and B2 the other one. The general expression

of the linear response operator is

Q(AL) (ων) = Tt4a2
∑

j,l

∑

Ωµ

Lij (Ωµ+ν)Lml (Ωµ)Bleft (ων ,Ωµ)Bright (ων ,Ωµ) , (K.1)

In the latter equation, Bleft and Bright can be either B1 or B2-type. The first problem

is the evaluation of the two different blocks. Let us start with Fig. 5.10(b), that is the

B2-type.

B2 (ων ,Ωµ) = T
∑

εn

(εn + εn+ν)λ (εn+ν, εµ−n)λ (εn, εµ−n) I(εn,Ωµ, ων) , (K.2)

where

I(εn,Ωµ, ων) =

∫

(dp)G (p, εn+ν)

∫

(dp′)G (p′, εµ−n)G (p′, εn)G (p′, εn+ν)

= I1 · I2 . (K.3)
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As already mentioned, because of the pole structure of the fluctuation propagator in

Eq. (5.50), one can neglect the ων dependence and keep just the one in Ωµ. The first

integral is known, and it reads I1 = −iπνF sgn(εn). For I2, one has to consider all the

possible signs of Ωµ and εn. The only non vanishing contributions are

I2 = i2πνF τ
2

×{θ(−Ωµ)[θ(Ωµ − εn) − θ(εn)] + θ(Ωµ)[θ(−εn)] − θ(εn − Ωµ)]} , (K.4)

where θ(x) is the step function. By means of Eqs. (K.3) and (K.4), the expression of

the block in Eq. (K.2) is

B2 (0,Ωµ) = −2(πνF )2T
∑

εn

2εn

(2εn − Ωµ)2

×{θ(Ωµ)[θ(εn − Ωµ) + θ(−εn)] + θ(−Ωµ)[θ(Ωµ − εn) + θ(εn)]} . (K.5)

Conditions on the signs of Ωµ and εn in Eq. (K.5) allow to write the block as

B2 (0,Ωµ) = −4(πνF )2TΩµ

{

θ(Ωµ)
∑

εn>0

1

(2εn + Ωµ)2
+ θ(−Ωµ)

∑

εn>0

1

(2εn − Ωµ)2

}

= −4(πνF )2TΩµ

{

[θ(Ωµ) + θ(−Ωµ)]
∑

εn>0

1

(2εn + |Ωµ|)2

}

= −4(πνF )2TΩµ
1

(4πT )2
Ψ′
(

1

2
+

|Ωµ|
4πT

)

= −π
2

8

ν2
F

T
Ωµ , (K.6)

where Ψ is the digamma function; we took the limit Ωµ → 0 in Ψ′ to get the result in

Eq. (K.6).

Now we have the expression of B2-type block, we want to evaluate the other

one. The B1-type block reads

B1 (ων ,Ωµ) = T
∑

εn

(εn + εn+ν)λ (εn+ν , εµ−n)λ (εn, εµ−n) I(εn,Ωµ, ων) , (K.7)

where, this time

I(εn,Ωµ, ων) =

∫

(dp)G (p, εn+ν)G (−p, εµ−n)

∫

(dp′)G (−p′, εµ−n)G (p′, εn)

= I1 · I2 . (K.8)
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The product reads

I1 · I2 = (2πνF τ)
2{θ(Ωµ)[θ(εn − Ωµ) + θ(−εn)] + θ(−Ωµ)[θ(εn) + θ(−εn + Ωµ)]} ,(K.9)

and the B1-type block reads

B1 (0,Ωµ) = (2πνF )2T
∑

εn

2εn

(2εn − Ωµ)2

×[θ(Ωµ)[θ(εn − Ωµ) + θ(−εn)] + θ(−Ωµ)[θ(εn) + θ(−εn + Ωµ)]]

= 8(πνF )2TΩµ

{

[θ(Ωµ) + θ(−Ωµ)]
∑

εn>0

1

(2εn + |Ωµ|)2

}

= 8(πνF )2TΩµ
1

(4πT )2
Ψ′
(

1

2
+

|Ωµ|
4πT

)

=
π2

4

ν2
F

T
Ωµ . (K.10)

Then, we found the important relation between the two types of blocs

B1(0,Ωµ) = −2B2(0,Ωµ) . (K.11)

To evaluate the AL correction, first of all, we observe that if we suppose that

the blocks depend on two indices, then, by means of Fourier transform, one can write

Bil =
∑

K

ei(Ri−Rl)KBK , (K.12)

where Ri = Rl + a. Then, for the diagram with two B1-type blocks, by means of

Fourier transform

∑

j,l

LijLmlBliBjm =
∑

K

γ2
KLKLKBliBjm . (K.13)

The latter equation for AL diagrams composed by two B2-type blocks reads

∑

j,l

LjlLljBjiBlm =
∑

K

LKLKBjiBlm . (K.14)

For a diagram with both the two type of blocks

∑

j,l

LjlLliBijBlm =
∑

K

γKLKLKBijBlm . (K.15)
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Taking into account that for the two last type of diagrams the multiplicity is four, and

that B1 and B2 are bound by Eq. (K.11), the sum of Eqs. (K.13), (K.14) and (K.15)

reads

4
∑

K

(γK − 1)2LKLKB2B2 . (K.16)

The total AL correction can be written as

Q(AL) (ων) = 4Tt4a2
∑

K

∑

Ωµ

(1 − γK)2LK(Ωµ + ων)LK(Ωµ)B2
2(ων ,Ωµ) . (K.17)

The value of the block B2 has been evaluated in Eq. (K.6), then Eq. (K.17) can be

written as

Q(AL) (ων) = a2g2
T

1

T

∑

K

∑

Ωµ

(1 − γK)2LK(Ωµ + ων)LK(Ωµ)Ω2
µ , (K.18)

where we used the dimensionless tunneling conductance defined in Eq. (5.3).

The sum over Ωµ can be performed transforming the sum into an integral by

means of the following expression, [Eliashberg61, Larkin04]

T
∑

Ωµ

f(Ωµ) =
1

4πi

∮

C0

dz coth
( z

2T

)

f(−iz) , (K.19)

with z = iΩµ; then,

T
∑

Ωµ

LK(Ωµ + ων)LK(Ωµ)Ω2
µ =

−1

4πi

∮

C0

dz z2coth
( z

2T

)

LK(−iz + ων)LK(−iz) .

(K.20)

The function in the integral is not analytical at ℑm(z) = 0 and ℑm(z) =

−iων , as shown in Fig. K.1, where ℑm(z) stands for the imaginary part of z. If the

contribution over the circumference goes to zero as the radius R → ∞, then the integral

reduces to
∮

C0

=

∫ ∞

−∞
dz z2coth

( z

2T

)

LR
K(−iz + ων)L

R
K(−iz)

+

∫ −∞

∞
dz z2coth

( z

2T

)

LR
K(−iz + ων)L

A
K(−iz)

+

∫ ∞−iων

−∞−iων

dz z2coth
( z

2T

)

LR
K(−iz + ων)L

A
K(−iz)

+

∫ −∞−iων

+∞−iων

dz z2coth
( z

2T

)

LA
K(−iz + ων)L

A
K(−iz) , (K.21)
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ων A A

R A

R R

Re(z)

Im(z)

Im(z)=−i

Figure K.1: The sum over Ωµ in the linear response function can be performed transforming
the sum into an integral along the indicated integration contour. The function in the integral
is not analytical at ℑm(z) = 0 and ℑm(z) = −iων . Crosses represent the poles of coth(z/2T ),
and A and R stand for advanced and retarded, respectively.

where the superscripts A and R stand for advanced and retarded, respectively.

In the third and the fourth integrals of Eq. (K.21), we set z = z′ − iων . Since

iων is the period of the coth(z/2T ), the contour integral reads

∮

C0

=

∫ ∞

−∞
dz z2coth

( z

2T

)

LR
K(−iz + ων)[L

R
K(−iz) − LA

K(−iz)]

+

∫ ∞

−∞
dz (z − iων)

2coth
( z

2T

)

LA
K(−iz + ων)[L

R
K(−iz) − LA

K(−iz)] .(K.22)

Performing the square in the second integral in the rhs of Eq. (K.22), retaining just

the terms proportional to z, and performing analytical continuation ων → −iω, the

sum over Ωµ can be written as

T
∑

Ωµ

LK(Ωµ + ων)LK(Ωµ)Ω2
µ = − 1

2π

{

∫ ∞

−∞
dz coth

( z

2T

)

ℑm(LR
K(−iz))

×
{

z2[LR
K(−iz − iω) + LA

K(−iz + iω)] − 2ωzLA
K(−iz + iω)

}}

. (K.23)
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To evaluate the conductivity, we need the imaginery part of the response function, and

then the imaginery part of Eq. (K.23). It can be written as

− 1

4πi

{

∫ ∞

−∞
dz coth

( z

2T

)

ℑm(LR
K(−iz))

{

z2[LR
K(−iz − iω) + LA

K(−iz + iω) − LR
K(−iz + iω) − LA

K(−iz − iω)]

−2ωz[LA
K(−iz + iω) − LR

K(−iz + iω)]

}}

. (K.24)

Taking the limit as demanded by linear response theory, Eq. (5.14), and exploiting the

definition of derivative, one finds

lim
ω→0

[

ℑm(Q(heat)
ret (ω))

ωT

]

= − 1

i4πT

{

∫ ∞

−∞
dz coth

( z

2T

)

ℑm(LR
K(−iz))

×
{

2z2

[

∂

∂z
(LR

K(−iz) − LA
K(−iz))

]

− 4izℑm(LR
K(−iz))

}}

= − 1

πT

{

∫ ∞

−∞
dz z2coth

( z

2T

)

ℑm(LR
K(−iz)) ∂

∂z
ℑm(LR

K(−iz))

−
∫ ∞

−∞
dz z coth

( z

2T

)

[ℑm(LR
K(−iz))]2

}

, (K.25)

From Eq. (5.50), the expression of the Cooper pair fluctuation propagator is

LK (Ωµ) = − 1

νF

1

ln T
Tc

+ π|Ωµ|
8Tc

+ z gT δ
Tc

(1 − γK)

= − 1

νF

1

mK + α|Ωµ|
, (K.26)

where mK ≡ ln T
Tc

+ z gT δ
Tc

(1 − γK) and α ≡ π/8Tc. Then,

LK(−iz) = − 1

νF

1

mK + α| − iz| , (K.27)

and

LR
K(−iz) = − 1

νF

1

mK − izα

= − 1

νFα

1

(δ − iz)
, (K.28)
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where δ = mK/α. Then, the imaginery part of LR
K(−iz) reads

ℑm(LR
K(−iz)) = − 1

νFα

z

(δ2 + z2)
. (K.29)

The most singular contribution is in the region z ∼ ǫ ≪ T , where the coth(z/2T )

behaves as ∼ 2T/z. We just consider the two integrals in the rhs of Eq. (K.25). They

can be written by means of previous equations as

∫ ∞

−∞
dz

[

z ℑm(LR
K(−iz)) ∂

∂z
ℑm(LR

K(−iz)) − [ℑm(LR
K(−iz))]2

]

= − 2

(νFα)2

∫ ∞

−∞
dz

z4

(δ2 + z2)3
, (K.30)

where the integral in the rhs of the latter equation can be easily evaluated. Finally,

from Eqs. (K.23) and (K.30), the sum over Ωµ reads

T
∑

Ωµ

LK(Ωµ + ων)LK(Ωµ)Ω2
µ =

12Tc

ν2
FmK

. (K.31)

From Eqs. (K.18) and (K.31), the AL correction finally reads

δκ(AL)

κ0

=
9

2π

1

gT

(

gT δ

Tc

)2 ∫

BZ

(dK)
(1 − γk)

2

ǫ+ z gT δ
Tc

(1 − γK)
. (K.32)
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