Effet Kondo dans une géométrie triterminale

Julien Salomez

Plan de l'exposé

- 1-Introduction à l'effet Kondo
- 2-Introduction de la géométrie triterminale
- 3-Etude des effets de taille finie dans une géométrie triterminale

3.1- Groupe de renormalisation et calcul perturbatif de la conductance à $T >> T_K$ - implications sur le calcul de la température Kondo

3.2- Conductance à $T < T_K$ - Approche bosons esclaves en champ moyen

3.3- Etude du système à $T \ll T_K$.

Première partie

Introduction à l'effet Kondo

Effet Kondo dans une géométrie triterminale – p.3/32

Effet Kondo dans un métal

Minimum de la résistance
 → interaction d'échange
 antiferromagnétique entre
 électrons de conduction et
 impuretés magnétiques

H =

$$\frac{1}{2}\sum_{kk'ss'}J_{kk'}c_{ks}^{\dagger}\vec{\sigma}_{ss'}.\vec{S}c_{k's'}$$

(Ascroft et Mirmin)

$$R \simeq aT^{5} + \frac{9\pi c_{imp}}{4|e|\rho^{2}v_{F}^{2}} \left(\rho J + (\rho J)^{2} \ln\left(\frac{D_{0}}{T}\right) + \dots\right)^{2}$$

• $T < T_K \sim D_0 \exp(-\frac{1}{\rho J}) \Rightarrow$ on sort du régime perturbatif

Formation à basse température d'un singulet de spin

Effet Kondo dans une géométrie triterminale – p.4/32

Points quantiques

• Point quantique du groupe de Delft:

 Intérêt des points quantiques: contrôle facile des paramètres
 Effet Kondo dans une géométrie triterminale – p.5/32

Bases de l'effet Kondo dans une nanostructure

Blocage de Coulomb et cotunneling dans un point quantique D

Bases de l'effet Kondo dans une nanostructure - suite

Nombre d'électrons de *D* impair \Rightarrow à basse température:

-Singulet de spin entre le point quantique et les électrons de conduction.-Résonance Kondo.

-La conductance augmente quand T diminue. Conductance unitaire à T = 0 (couplages symétriques).

(groupe de Delft)

(groupe de Delft)

Formalisme de transport

• Formule de Landauer et Büttiker:

$$I_p = \frac{2e}{h} \int \sum_q (T_{qp}(E)f_p(E) - T_{pq}(E)f_q(E))dE$$

Lien avec la matrice S de diffusion: $T_{pq} = |S_{pq}|^2$

- Formalisme de Keldysh pour décrire les systèmes hors équilibre:
 6 types de fonctions de Green.
- Formule de Meir-Wingreen (pour $\Gamma_L(\epsilon) \propto \Gamma_R(\epsilon)$):

 $I = \frac{4e}{h} \int_{-\infty}^{\infty} d\epsilon (f_L(\epsilon) - f_R(\epsilon)) (-Im(Tr(\Gamma(\epsilon)G_{dd}^r(\epsilon))))$

$$\Gamma(\epsilon) = \frac{\Gamma_L(\epsilon)\Gamma_R(\epsilon)}{\Gamma_L(\epsilon) + \Gamma_R(\epsilon)} \quad \Gamma_\alpha(\epsilon) = \pi \rho_\alpha(\epsilon) t_\alpha^2$$

Effet Kondo en présence d'effets de taille finie (Simon et Affleck)

- Nuage Kondo → ensemble des électrons participant à l'écrantage du spin du point quantique → non observé jusqu'ici.
- Nouvelle géométrie pour détecter la taille du nuage Kondo: point quantique inséré entre deux fils de taille finie.

• Effets de taille finie importants $\Leftrightarrow \xi_{K0} >> L \Leftrightarrow T_{K0} << \Delta$

Effet Kondo en présence d'effets de taille finie - densité d'état des fils (Simon et Affleck)

Cas hors résonance

Approximation de la densité d'état des fi ls par une somme de lorentziennes de largeur γ espacées de Δ

Cas à la résonance

Effet Kondo en présence d'effets de taille finie - conductance à la résonance en fonction de la température (Simon et Affleck)

 $T_{K0} >> \Delta \Rightarrow T_K^R = T_K^{NR} = T_{K0}$ $T_{K0} << \Delta \Rightarrow T_K^R \sim \gamma, T_K^{NR} << \gamma$

Deuxième partie

Introduction de la géométrie triterminale

Définition et intérêt de la géométrie triterminale

• Géométrie triterminale avec T_3 conducteur ou non.

- Intérêt de la géométrie triterminale pour sonder la densité d'état Kondo hors équilibre lorsque Γ₃ << Γ_L, Γ_R (Lebanon et Schiller, Sun et Guo).
- Lorsque Γ₃ >> Γ_L, Γ_R, intérêt de la géométrie triterminale pour découpler transport et écrantage.
 → spectroscopie de l'effet Kondo

Réalisation et modélisation du système

 Réalisation expérimentale (groupe Ensslin):

• Modèle d'Anderson:

$$H = \sum_{\alpha} H_{L\alpha} + \sum_{\alpha} H_{T\alpha} + H_D \qquad H_{L\alpha} = \sum_{k\sigma} (\epsilon_{k\alpha} + \mu_{\alpha}) c_{k\sigma\alpha}^{\dagger} c_{k\sigma\alpha}$$
$$H_{T\alpha} = \sum_{k\sigma} t_{k\alpha} c_{k\sigma\alpha}^{\dagger} d_{\sigma} + H.C. \qquad H_D = \sum_{\sigma} \epsilon_d d_{\sigma}^{\dagger} d_{\sigma} + U n_{\uparrow} n_{\downarrow}$$

Etude du système à température nulle par la théorie des liquides de Fermi

• Matrice de conductance:

$$G_{\alpha\beta} = \frac{2e^2}{h} \int d\epsilon \left(-\frac{\partial f}{\partial \epsilon}\right) \frac{4\Gamma_{\alpha}(\epsilon)\Gamma_{\beta}(\epsilon)}{\Gamma_L(\epsilon) + \Gamma_R(\epsilon) + \Gamma_3(\epsilon)} \left(-Im(G_{dd}^r(\epsilon))\right)$$

 \rightarrow valide quand on peut se ramener au cas sans interaction (exemple: théorie des liquides de Fermi).

• Matrice de conductance à T = 0:

$$G_{\alpha\beta} = \frac{2e^2}{h} \frac{4\Gamma_{\alpha}(0)\Gamma_{\beta}(0)}{(\Gamma_L(0) + \Gamma_R(0) + \Gamma_3(0))^2}$$

Forte suppression de la conductance à T = 0 lorsque
 Γ₃(0) >> Γ_L(0), Γ_R(0) → le nuage Kondo qui permet la conduction se développe essentiellement dans T₃.

Troisième partie

Etude des effets de taille fi nie dans une géométrie triterminale

3-1-

Groupe de renormalisation et calcul perturbatif de la conductance à $T >> T_K$ - implications sur le calcul de la température Kondo

Groupe de renormalisation et calcul perturbatif

 Principe du groupe de renormalisation: possibilité d'intégrer sur les degrés de liberté de haute énergie à condition de remplacer les couplages nus par des couplages renormalisés.

Points fi xes du groupe de renormalisation

$$J = 0 \qquad J = \infty$$

 Calcul perturbatif de la matrice de conductance à l'ordre 2 à haute température:

$$< I_{\gamma} >^{(2)} = \frac{e}{\hbar} \frac{3\pi}{4} \sum_{\beta} J_{\gamma\beta}^2 \int d\epsilon \rho_{\beta}(\epsilon) \rho_{\gamma}(\epsilon) (f_{\gamma}(\epsilon) - f_{\beta}(\epsilon))$$

 Ordre 3 avec couplages nus <>> ordre 2 avec couplages renormalisés.

Conductance à la résonance et hors résonance

• Matrice de conductance à la résonance à haute T sous l'hypothèse $\gamma << T << \Delta$ ($\alpha, \beta \neq 3$):

$$G_{3\alpha}^{(2)} = \frac{e^2}{\hbar} \frac{3\pi^2}{4} \frac{\Gamma_{\alpha}}{\Gamma_3(0)} \frac{1}{\ln^2\left(1 + \frac{\gamma^2}{T_K^2}\right)} \frac{\gamma}{T} s(\frac{T}{T_K}, \frac{\gamma}{T_K})^2$$

$$G_{\alpha\beta}^{(2)} = \frac{e^2}{\hbar} 3\pi \frac{\Gamma_{\alpha}\Gamma_{\beta}}{\Gamma_3(0)^2} \frac{1}{\ln^2 \left(1 + \frac{\gamma^2}{T_K^2}\right)} s\left(\frac{T}{T_K}, \frac{\gamma}{T_K}\right)^2$$
$$s\left(\frac{T}{T_K}, \frac{\gamma}{T_K}\right) = 1 + \frac{\ln \left(1 + \frac{\gamma^2}{T^2}\right)}{\ln \left(1 + \frac{\gamma^2}{T_K^2}\right)}$$

• La matrice de conductance à la résonance est une fonction universelle de $\frac{T}{T_K}$ et $\frac{\gamma}{T_K}$.

Température Kondo à la résonance et hors résonance

- T_K dépend de la structure fi ne de ρ_3 si et seulement si $T_{K0} < \Delta$.
- Dans ce cas, pour $\Gamma_3(\epsilon) >> \Gamma_L, \Gamma_R$:

$$T_K^R = \gamma \exp\left(-\frac{\pi^2 \gamma \tilde{\epsilon}_d}{2\Delta < \Gamma_3 >}\right) \quad T_K^{NR} = \Delta \exp\left(\frac{-\pi^2 \tilde{\epsilon}_d \Delta}{16 < \Gamma_3 > \gamma}\right)$$
$$\frac{1}{\tilde{\epsilon}_d} = \frac{1}{\epsilon_d + U} - \frac{1}{\epsilon_d}$$

• Interprétation physique de l'expression de T_K :

$$T_K^R = \gamma \exp(-\frac{\tilde{\epsilon}_d}{2t_3^2 \rho_3^R(0)}) \quad T_K^{NR} = \Delta \exp(-\frac{\tilde{\epsilon}_d}{2t_3^2 \rho_3^{NR}(0)})$$

 \rightarrow densité d'état effective $\rho_3(0)$ avec une largeur de bande effective γ à la résonance et Δ hors résonance.

3-2-

Conductance à $T < T_K$ - Approche bosons esclaves en champ moyen

Spectroscopie de la densité locale d'état du point quantique

- Méthode des bosons esclaves en champ moyen $U = \infty$ (dans la version la plus simple).
- Hamiltonien d'Anderson avec $d_{\sigma} = f_{\sigma}b^{\dagger}$.
- Contrainte: $b^{\dagger}b + \sum_{\sigma} f_{\sigma}^{\dagger}f_{\sigma} = 1$
- Approximation de champ moyen: $b \rightarrow < b >= b_0$.
- Détermination de b_0 et λ multiplicateur de Lagrange associé à la contrainte \rightarrow minimisation de l'énergie libre.
- Domaine de validité de l'approche bosons esclave en champ moyen: T < T_K
 → Les fluctuations thermiques de b autour de b₀ ne sont pas trop

importantes.

Spectroscopie de la densité locale d'état du point quan-

tique - cas hors résonance

- $\frac{\xi_{K0}}{l} << 1 \rightarrow \rho_d$ et ρ_3 sont en anti-résonance et ρ_d a une enveloppe de largeur $T_{K0} >> \Delta$.
- $\frac{\xi_{K0}}{l} >> 1 \rightarrow$ en plus du pic Kondo central, on a deux pics satellites en $\epsilon = \pm \frac{\Delta}{2}$.

Cas à la résonance: scission du pic Kondo

- Scission du pic Kondo à la résonance.
- Les deux pics ont une largeur γ et un espacement $2\sqrt{\gamma T_K}$.
- Condition pour la scission du pic Kondo: $\gamma < T_K$.

Cas à la résonance - scission du pic Kondo suite

Interprétation physique de la scission du pic Kondo grâce à un modèle sans interactions où T_3 se réduit à un unique niveau d'énergie ϵ_3 de largeur γ .

 \rightarrow scission du pic Kondo = effet sans interactions.

Image moléculaire:

Conductance en fonction de la température et de μ_3

• *G* fonction de *T*:

G fonction de μ_3 (T fi xée):

- Conductance à la résonance non monotone.
- Déviation à l'unitarité dans le cas $\frac{\xi_{K0}}{l} < 1$ et hors résonance.
- Forte suppression de la conductance hors résonance pour $\frac{\xi_{K0}}{l}$ suffi samment grand $\rightarrow T_K^R > T > T_K^{NR}$.

Etude du système à $T \ll T_K$

Généralisation de l'approche liquide de Fermi de Nozières pour une densité d'état non constante

- Hypothèses utilisées pour calculer Wⁱⁿ, probabilité par unité de temps qu'un électron subisse une diffusion inélastique par D:
 -A_{σσ'} indépendant de ε et T au deuxième ordre.
 -Généralisation des relations de Nozières faisant intervenir les coeffi cients du développement du déphasage.
- Taux de relaxation inélastique (pour Γ₃(ε) >> Γ_L, Γ_R):
 -Cas γ >> T:

$$W^{in}(\epsilon, T) = \pi \rho_3(0)^3 (\pi^2 T^2 + \epsilon^2) (|A_{\uparrow\downarrow}|^2 + \frac{1}{2} |A_{\uparrow\uparrow}|^2)$$

-Cas $\gamma \ll T$:

$$W^{in}(\epsilon,T) = \pi \rho_3(0)^3 \left(|A_{\uparrow\downarrow}|^2 + \frac{1}{2}|A_{\uparrow\uparrow}|^2\right) \frac{3\pi^2}{2} \frac{\epsilon^2 + \gamma^2}{9 + \left(\frac{\epsilon}{\gamma}\right)^4 + 10\left(\frac{\epsilon}{\gamma}\right)^2}$$

Généralisation de l'approche liquide de Fermi de Nozières pour une densité d'état non constante - suite Conductance à la résonance en fonction de la température:

• A basse *T*:

$$G_{LR}(T)/G_{LR}(0) = 1 + \pi^2 T^2 \left(\frac{c}{3\gamma^2} - \frac{1}{T_K^2}\right)$$

 \rightarrow A basse T, la conductance à la résonance croît avec la température pour γ suffi samment petit.

• A haute T: calcul numérique.

Le régime $\frac{T}{\gamma} >> 1$ n'est pas vraiment atteint. + hypothèses incertaines. Conclusions

Récapitulatif des résultats

- La géométrie triterminale permet de découpler transport et écrantage et elle est idéale pour l'étude des effets de taille fi nie.
- Récapitulatif des différents régimes pour $T_{K0} << \Delta$:

_	T	R	NR
_	T = 0	$G << \frac{2e^2}{h} \text{ pour } \Gamma_3(0) >> \Gamma_L, \Gamma_R$	
7	$T << T_K$	G(T) croissante à basse $Tpour \gamma suffi samment petit$	G(T) décroissante
	$T < T_K$	Scission du pic Kondo	Pic Kondo + pics satellites de ρ_d aux maximums de ρ_3
7	$T >> T_K$	T_K Le calcul perturbatif défi nit $T_K: T_K^R >> T_K^{NR}$	

Perspectives

• Effets de taille fi nie en présence d'une énergie de charge E_G de T_3 .

Analyse basée sur le groupe de renormalisation \Rightarrow si $T_{K0} \ll \Delta \ll E_G \ll U \ll D_0$, le nuage Kondo se

forme dans L et R hors résonance et dans T_3 à la résonance.

- Etude de la dynamique de formation et de destruction du nuage Kondo en mettant T₃ dans un régime de blocage de Coulomb mais L et R dans un régime de transport séquentiel.
- Perspectives expérimentales \rightarrow valeurs typiques: $-\delta E$: 0.1 à 0.5meV
 - -U: 1 à 3meV
 - - T_{K0} : 0.1 à 0.5K

-Taille de T_3 en dessous laquelle on a des effets de taille fi nie: quelques μm Effet Kondo dans une géométrie triterminale – p.32/32