

école normale supérieure de Lyon

Quantum optics for electrons propagating along a chiral edge channel

P. Degiovanni (ENS Lyon)

Ch. Grenier (ENS Lyon)

G. Fève (LPA - ENS)

Journée information quantique, Grenoble, june 2009.

- Introduction and motivation
- An approach to electron quantum optics
- A model for linear detectors
- Detector induced relaxation and decoherence
- Conclusion & perspectives

Quantum optics devices

ENS

For photons

Photon beams

Beam splitter

Mirrors

Light source

Single photon source

For electrons

Edge channels

Quantum Point Contact

Sample edges

Voltage source

On demand single electron source

G. Fève *et al*, Science **316**, 1169 (2007)

Introduction & motivation

Photons

Bosons

"True" vacuum

Non interacting

Electrons

Fermions

Fermi sea

Coulomb interactions

Photon quantum optics

Coherence within the QED framework

Glauber, Phys. Rev. Lett. **10**, 84 (1963) Phys. Rev. **130**, 2529 (1963) Phys. Rev. **131**, 2766 (1963)

What is the equivalent for electron quantum optics ? To what extent do these "little differences" matter ?

- Introduction and motivation
- An approach to electron quantum optics

/ar

- A model for linear detectors
- Detector induced relaxation and decoherence
- Conclusion & perspectives

Glauber's correlators

$$\mathcal{G}_{\rho_{0}}^{(n)}(\underline{x}|\underline{x}') = \operatorname{Tr}\left(\prod_{j=n}^{1} E^{+}(x_{j},t_{j}).\rho_{0}.\prod_{j=1}^{n} E^{-}(x_{j}',t_{j})\right) \qquad \underline{x} = (x_{j},t_{j})_{j=1...n}$$

$$\overset{\text{destruction operators}}{\stackrel{\text{destruction operators}}}$$
Photodetection signals
$$\begin{array}{c} \text{power input} \\ \text{Output signal} \\ I_{D}(t) \end{array}$$

$$\begin{array}{c} \text{power input} \\ I_{D}(t) \end{array}$$

$$\begin{array}{c} \text{Photons} \\ \text{Photons} \end{array}$$

Single photon coherence

Detector properties: spectral width, efficiency etc...

Electron quantum optics

No Vo

ENS

Electron coherence

n-particle reduced density operator

$$\mathcal{G}_{\rho_0}^{(e)}(\underline{x}|\underline{x}') = \operatorname{Tr}\left(\prod_{j=n}^1 \Psi(x_j, t_j). \rho_0. \prod_{j=1}^n \Psi^{\dagger}(x'_j, t'_j)\right)$$

Electrodetection signals

Tunneling from the conductor into the detector:

$$H_{\rm t} = \hbar(\psi^{\dagger}(x_D) O + O^{\dagger}\psi(x_D))$$

Current flow into the detector:

$$I_D(t) = \int_0^t \mathcal{G}_{\rho_0}^{(e)}(x_D, \tau | x_D, \tau') K_D(\tau - \tau') d\tau d\tau'$$

Single electron coherence

Detector properties: spectral width, efficiency etc...

Electron quantum optics

Electrodetection using a dot

Detector's properties

$$K_D(\tau) = v_F \int g_d(\Omega) e^{i\Omega\tau} \frac{d\Omega}{2\pi}$$

Single electron excitations

Deviation to the Fermi distribution
$$\delta n(\Omega)$$

Sum rule: $\int \delta n(\Omega) d\Omega = 1$

EN

Courtesy F. Pierre

Electrodetection signal

Injection rate ν_0

$$\overline{I} = e \int (n_S - n_D)(\omega) g_d(\omega) \frac{d\omega}{2\pi} + e\nu_0 \int \delta n(\omega) g_d(\omega) d\omega$$

Electron quantum optics

Electrodetection bandwidth

Narrow band detection

Use of a quantum dot as an energy filter

Directly probes $\delta n(\omega)$ and gives access to energy relaxation!

See work in progress by F. Pierre et al (LPN Marcoussis)

EN

Courtesy F. Pierre

Broad band detection

In a chiral system: $I(x,t) = ev_F n(x,t)$

$$\mathcal{G}_{\rho_0}^{(e)}(x_D, t+0^+|x_D, t) - \mathcal{G}_F^{(e)}(x_D, t+0^+|x_D, t) = \langle n(x_D, t) \rangle$$

Average current: 1st order coherence Noise of the current: 2nd order coherence

Basic questions

Decoherence

Behavior of $\mathcal{G}_{\rho_0}^{(e)}(x,t|y,t)$ as a function of x-y?

Coherence length at time t? $l_c(t)$

Evolution of $l_c(t)$ in time ?

Energy relaxation

Fourier transform of $\mathcal{G}_{\rho_0}^{(e)}(x,t|x,0)$ with respect to time.

Real time evolution of an energy resolved single electron excitation above the Fermi sea ?

$$\mu_F - \sum_{-\infty}^{+\infty} \varphi_0(x) \psi^{\dagger}(x) |F\rangle$$

Influence of Coulomb interactions within the conductor ? (intrinsic effects) Influence of the electromagnetic environment? (extrinsic effects)

Detector induced decoherence

Initial state

Single electron coherent wave packet above the Fermi sea.

Final state

Single electron coherence ? Energy relaxation ?

Electron quantum optics

EN

- Introduction and motivation
- An approach to electron quantum optics

AR'

- A model for linear detectors
- Detector induced relaxation and decoherence
- Conclusion & perspectives

Linear capacitive detectors

Equivalent circuit

Effective description

R and *C* are effective parameters

Relaxation resistance: $R = R_K/2$ for a coherent single channel capacitor.

Electrochemical capacitance: $C^{-1} = C_g^{-1} + C_D^{-1}$

Prêtre, Thomas and Büttiker, Phys. Rev. B **54**, 8130 (1996). Nigg and Büttiker, Phys. Rev. B **77**, 085312 (2008). Gabelli *et al*, Science **313**, 5786 (2006).

ENS

Step 1: solve the edge + detector dynamics exactly

Within the bosonization framework, the equations of motion are linear.

The solution is encoded into the edge plasmon / detector's mode scattering.

Step 2: compute the exact many body state for the edge

Bosonization says that a localized electron is a coherent state for the edge plasmonic modes.

Phys. Rev. B 62, 10706 (2000)

Step 3: compute the single electron coherence

Once the edge channel many body state is known, decompose excitations into single electron excitations and electron/hole pairs.

The RC-circuit model

Voltage seen by edge electrons: V(x,t) = f(x)U(t)Equation of motion for the edge: $(\partial_t + v_F \partial_x)\phi(x,t) = \frac{e\sqrt{\pi}}{h}V(x,t)$

Dynamics of the RC circuit: $-Q_g(t) = Q_{in}(0,t) + Q_{out}(0,t)$

See also Blanter, Hekking, Büttiker, Phys. Rev. Lett. 81, 1925 (1998)

Solving the model leads to plasmon scattering:

Elastic scattering: linearity of the coupling + passive system Unitarity: $S(\omega)^{\dagger} = S(\omega)^{-1}$ energy conservation

Scattering of coherent plasmons

Factorized final state with:

Voltage drives generate coherent plasmon states

(at T = 0 K)

$$\beta_{\omega} = \langle b_{\rm in}(\omega) \rangle \qquad \qquad \alpha_{\omega} = \langle a_{\rm in}(\omega) \rangle$$

$$\beta_{\omega} = -\frac{e}{h} \frac{V_e(\omega)}{\sqrt{\omega}} e^{i\omega l/2v_F}$$

$$\alpha_{\omega} = -\frac{e}{h} \frac{iV_c(\omega)}{\sqrt{\omega}} \sqrt{\frac{R_K}{2R}}$$

I. Safi, EPJD 12, 451 (1999)

Scattering of coherent plasmons

Finite frequency admittances

Definition:

$$I_{\alpha}(\omega) = \sum_{\beta} g_{\alpha\beta}(\omega) V_{\beta}(\omega)$$
Charge conservation:

$$\sum_{\alpha} g_{\alpha\beta}(\omega) = 0$$

$$\sum_{\beta} g_{\alpha\beta}(\omega) = 0$$

$$Gauge invariance:$$

$$\sum_{\beta} g_{\alpha\beta}(\omega) = 0$$

$$Gauge invariance:$$

$$\sum_{\beta} g_{\alpha\beta}(\omega) = 0$$

Büttiker et al, Phys. Rev. Lett. 70, 4114 (1993) & Phys. Rev. B 54, 8130 (1996)

Relation to plasmon scattering

$$g_{ee}(\omega) = \frac{e^2}{h} (1 - t_b(\omega) e^{i\omega l/v_F})$$

Büttiker model with total screening

gauge invariance & charge conservation

To summarize

Explicit model used for illustration

Büttiker like model: RC circuit capacitively coupled to an edge channel Valid up to $\omega l/v_F \lesssim 2\pi$

More realistic models could be used!

Plasmon scattering is equivalent to finite frequency admittances

$$\phi_{\alpha}^{(\text{out})}(\omega) = \sum_{\beta} \mathcal{S}_{\alpha,\beta}(\omega) \,\phi_{\beta}^{(\text{in})}(\omega)$$
$$g_{\alpha\beta}(\omega) = \frac{e^2}{h} (\delta_{\alpha,\beta} - \mathcal{S}_{\alpha,\beta}(\omega))$$

 $\mathcal{S}_{ee}(\omega) = e^{i\omega l/v_F} t_b(\omega)$

- Introduction and motivation
- An approach to electron quantum optics

/ar

- A model for linear detectors
- Detector induced relaxation and decoherence
- Conclusion & perspectives

Scattering of a single electron wave packet

Where is the electron ?

Bare electrons
$$\Psi(x) = \frac{1}{\sqrt{2\pi a}} U^{\dagger} e^{i\sqrt{4\pi}\phi_R(x,t)}$$

$$\Psi^{\dagger}(x) |F\rangle = \frac{1}{\sqrt{2\pi a}} \bigotimes_{\omega > 0} |-\lambda_{\omega}(x)\rangle \quad \text{where} \quad \lambda_{\omega}(x) = -\frac{1}{\sqrt{\omega}} e^{-i\omega x/v_F}$$

Dressed electrons

Neutral charge density wave

Decoherence & relaxation at the edge

EN

The chiral Fermi gas

Coherent wave packet above the Fermi surface: $\int_{-\infty}^{+\infty} \varphi_0(x) \psi^{\dagger}(x) |F\rangle$ Wick's theorem: $G^{(e)}(x, y) = G^{(e)}_{F}(x, y) + G^{(e)}_{WD}(x, y)$ $\mathcal{G}_{F}^{(e)}(x,y) = \frac{i}{2\pi} \frac{1}{v - x + i0^{+}} \qquad \qquad \mathcal{G}_{WP}^{(e)}(x,y) = \varphi_{0}(x) \varphi_{0}^{*}(y)$

The chiral edge coupled to the detector

 $\mathcal{G}^{(e)}(x,y) = \mathcal{G}^{(e)}_{\mathrm{mv}}(x,y) + \mathcal{G}^{(e)}_{\mathrm{wp}}(x,y)$ Generalization of Wick's theorem:

W

here
$$\mathcal{G}_{mv}^{(e)}(x,y) \mapsto \mathcal{G}_{F}^{(e)}(x,y)$$
 in the limit of vanishing coupling $\mathcal{G}_{wp}^{(e)}(x,y) \mapsto \mathcal{G}_{WP}^{(e)}(x,y)$

to energy relaxation

ENS

1

Energy resolved single electron excitation:

Electron distribution function

$$\int \mathcal{G}_{k_0}^{(e)}(x,y)e^{-ik(x-y)}d(x-y) = Ln_F(k) + \delta n(k)$$

Fermi sea Single electron
$$\delta n(k) = Z(k_0)\delta(k-k_0) + \delta n_r(k,k_0) \qquad \int \delta n(k) \, dk =$$

Quasi particle peak Regular part

Single particle limit at low energy

Simple relaxation model

p(q) probability for loosing momentum q

Outcoming electron distribution:

$$\delta n(k) = p(k_0 - k) + Z(k_0)\delta(k - k_0) \qquad k > 0$$

$$\delta n(k) = 0 \qquad k < 0$$

Particle conservation: p(k) = -Z'(k)

Validity range

At low coupling: the Fermi sea remains spectator.

For low energy excitations: probes frequencies where $|t_b(\omega) - 1|$ is small enough.

Large energy excitations $k_0 \rightarrow +\infty$

Wave packet contribution

$$\mathcal{G}_{wp}^{(e)}(x,y) \mapsto \varphi_t(x)\varphi_t(y)^* \times \mathcal{D}_{tot}(x,y)$$
$$\mathcal{D}_{tot}(x,y) = \exp\left(\int_0^{+\infty} 2\Re(1-t_b(\omega))\left(e^{i\frac{\omega}{v_F}(y-x)}-1\right)\frac{d\omega}{\omega}\right)$$

$$2\Re(1-t_b(\boldsymbol{\omega})) = |\boldsymbol{r}_b(\boldsymbol{\omega})|^2 + |1-t_b(\boldsymbol{\omega})|^2$$

Extrinsic decoherence due to the detector

Intrinsic decoherence (e/h pairs)

Very similar to the **dynamical Coulomb Blockade theory**: see Ingold & Nazarov review for example.

But here it arises as a limiting regime of a more general approch!

ENS

 $\frac{R/R_K}{V_F R_K C} = 0.002$

on ENS

Decoherence & relaxation at the edge

To summarize

ENS

Non perturbative approach to single electron relaxation

- Only depends on the finite frequency admittance;
- Has simple limiting regimes at high and low energies

IR: simple relaxation modelUV: analogous to the dynamical Coulomb blockade

• Low energy behavior of inelastic scattering probability: $\sigma_{in}(\omega) = 1 - Z(\omega/v_F)$ $g(\omega) = -iC_{\mu}\omega + R_q(C_{\mu}\omega)^2 + \dots \qquad R_q = R + R_K/2$ At $R \neq 0 \qquad \sigma_{in}(\omega) \simeq \frac{R}{R_K} (\omega R_q C_{\mu})^2$

Quasi particle not destroyed by the detector !

- Introduction and motivation
- An approach to electron quantum optics

/ar

- A model for linear detectors
- Detector induced relaxation and decoherence
- Conclusion & perspectives

Summary

Quantum optics formalism for electrons à la Glauber

Exact solution for the coupling of a chiral edge channel to a linear detector.

Equivalence of the finite frequency admittance and plasmon scattering

Exact results for detector induced decoherence and relaxation of a single electron excitation above the Fermi level in a chiral edge channel.

Conclusion and perspectives

Perspectives (work in progress)

Extension to finite temperatures (easy)

Discussion of *e*/*e* interactions

Problem of dephasing at low temperatures

Discussion of interchannel interactions

Experiments on v = 2 *edge states*

Neel project: spin propagation along edge channels

Improvement of detector modeling

Description of the state emitted by the on-demand single electron source (e/h pairs ?)

Single electron quantum tomography

LPA project: quantum optics with coherent energy resolved single electron excitations

Conclusion & perspectives