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Quantum optics devices

For photons For electrons
Photon beams Edge channels

Beam splitter Quantum Point Contact

Light source Voltage source

Mirrors Sample edges

Single photon source On demand single electron source

G. Fève et al, 
Science  316, 1169 (2007)
Introduction & motivation
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Photons vs electrons: little differences

Photons Electrons
Bosons Fermions

Non interacting Coulomb interactions

“True” vacuum Fermi sea

Photon quantum optics

Phys. Rev. 130, 2529 (1963)
Phys. Rev. 131, 2766 (1963)

Glauber, Phys. Rev. Lett. 10, 84 (1963)Coherence within the QED framework

What is the equivalent for electron quantum optics ?

To what extent do these “little differences” matter ?

Introduction & motivation
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x = (x j, t j) j=1...nG (n)
ρ0 (x|x′) = Tr

(
1

∏
j=n

E+(x j, t j).ρ0.
n

∏
j=1

E−(x′j, t j)

)
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Quantum optics coherence (Glauber)

Glauber’s correlators

Photodetection signals

ID(t)Output signal

Photons

power input

ID(t) =
Z t

0
G (1)

ρ0 (xD,τ|xD,τ′)KD(τ− τ′)dτdτ′

Single photon coherence Detector properties:
spectral width, efficiency etc...

Electron quantum optics

creation operatorsdestruction operators



ID(t) =
Z t

0
G (e)

ρ0 (xD,τ|xD,τ′)KD(τ− τ′)dτdτ′

G (e)
ρ0 (x|x′) = Tr

(
1

∏
j=n

ψ(x j, t j).ρ0.
n

∏
j=1

ψ†(x′
j, t

′
j)

)

signal

tunneling

2DEG

Detector
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Electron coherence

n-particle reduced density operator

Electrodetection signals

Ht = h̄(ψ†(xD)O+O†ψ(xD))

Tunneling from the conductor into the detector:

Current flow into the detector:

Detector properties:
spectral width, efficiency etc...

Single electron coherence

Electron quantum optics
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Electrodetection using a dot

KD(τ) = vF

∫
gd(Ω)eiΩτ dΩ

2π

Detector’s properties

δn(Ω)∫
δn(Ω)dΩ =1

Single electron excitations

Deviation to the Fermi distribution

Sum rule:

I = e

∫
(nS − nD)(ω)gd(ω)

dω

2π
+ eν0

∫
δn(ω)gd(ω) dω

ν0Electrodetection signal Injection rate

Energy Distribution of Non-Equilibrium Electrons in the Quantum Hall Regime

C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly, and F. Pierre∗
CNRS, Laboratoire de Photonique et de Nanostructures (LPN) - Phynano team, route de Nozay, 91460 Marcoussis, France

(Dated: July 17, 2008)

We present a new scheme to measure and tune the energy distribution of electrons f(E) and its
implementation on a 2D electron gas in the quantum hall regime at filling factor 2. The energy
distribution is extracted from the current across a tunable quantum dot. Electrons in the probed
edge channel are driven out-of-equilibrium with a voltage biased quantum point contact located
0.8 µm uphill. The measured f(E) resembles a double step that can be reproduced by the weighted
sum of two Fermi functions as predicted by the non-interacting electron model.

PACS numbers: 73.43.Fj, 73.23.-b, 71.10.Ay

Established phenomena exhibit novel behaviors once
mesoscopic devices are driven out-of-equilibrium. For ex-
ample, the Kondo effect [1], the Fermi-edge singularity
[2], the dynamical Coulomb blockade [3], and the su-
perconducting proximity effect [4] are deeply modified.
Some of these effects may result in new components for
future functional mesoscopic devices. Recently, it has
been shown that the supercurrent across a superconduc-
tor/normal/superconductor junction can be reversed by
applying a voltage to the normal region, thereby real-
izing a controllable π-junction [5]. In most cases, the
important quantity at the root of these new behaviors is
the non-equilibrium energy distribution function f(E) of
electronic excitations. From a fundamental standpoint,
tools to measure and tune this function give access to
the energy exchange rates [6] and can thereby provide
information on the inelastic mechanisms that is comple-
mentary to quantum phase coherence time measurements
[7]. This work extends such tools for electrons in 2D elec-
tron gases. The discrete electronic levels of a quantum
dot (QD) are used as adjustable energy filters to measure
f(E). The latter is tuned out-of-equilibrium in an edge
channel (EC) of the quantum Hall regime (QHR) with a
voltage biased quantum point contact (QPC). The com-
parison of the measured f(E) with the non-interacting
electron prediction is a stringent test of the pertinence of
this model in the QHR.

Measurements of f(E) in mesoscopic devices were first
performed a decade ago on metallic circuits using a super-
conducting tunnel probe [6]. More recently, the accessible
experimental conditions were extended to high magnetic
fields using dynamical Coulomb blockade [3]. In semicon-
ductor mesoscopic circuits, a number of experiments have
demonstrated the injection and detection of hot electrons
[8]. However, until now, a non-equilibrium (non-Fermi)
distribution function f(E) could not be measured. In
this work, we extract f(E) from the current across a QD
with well separated electronic energy levels. In the elastic
sequential tunneling regime, only electrons whose energy
resonates with one of the discrete levels in the QD can
pass through it [9]. Consequently, the QD behaves as an
energy filter. The principle of energy filtering was pre-
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FIG. 1: (a) Schematic representation of fD,S(E) spectroscopy
with a single active electronic level of tunable energy Elev(VG)
in the quantum dot (QD). (b) The current Idot and ∂Idot/∂VG

are proportional to, respectively, f(E) and ∂f(E)/∂E sepa-
rately in the source (S) and drain (D) electrodes for a large
enough potential difference applied between S and D. (c) E-
beam micrograph of the sample. Metal top gates appear
brighter. Electrons propagate counter clockwise along two
edge channels (EC) of the quantum Hall regime. The outer
EC (continuous white lines) is partly transmitted (dashed
lines) across the quantum point contact (QPC) and the QD.
The inner EC (not shown) is always reflected. The QPC feeds
the outer EC in the drain with non-equilibrium electrons (left
inset) whose energy distribution fD(E) is measured with the
QD. The gates partly covered by the insets are grounded and
do not influence the electron paths.

viously demonstrated with two QDs [10]. In the simple
case of a single active electronic level (the other levels
being always occupied or empty) of well defined energy
Elev, the current across the QD can be written [11]:

Idot = Imax
dot (fS(Elev)− fD(Elev)), (1)

where the subscripts S and D refer to, respectively, the
source and drain electrodes, fS,D(Elev) is the energy dis-
tribution function of the corresponding electrode evalu-
ated at Elev and Imax

dot is the maximum current amplitude
which depends on the tunnel rates between QD and elec-

Courtesy F. Pierre

Electron quantum optics
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Electrodetection bandwidth

G (e)
ρ0 (xD, t +0+|xD, t)−G (e)

F (xD, t +0+|xD, t) = 〈n(xD, t)〉

I(x, t) = evFn(x, t)

Broad band detection
In a chiral system:

Average current: 1st order coherence
Noise of the current: 2nd order coherence

Electron quantum optics
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Some of these effects may result in new components for
future functional mesoscopic devices. Recently, it has
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applying a voltage to the normal region, thereby real-
izing a controllable π-junction [5]. In most cases, the
important quantity at the root of these new behaviors is
the non-equilibrium energy distribution function f(E) of
electronic excitations. From a fundamental standpoint,
tools to measure and tune this function give access to
the energy exchange rates [6] and can thereby provide
information on the inelastic mechanisms that is comple-
mentary to quantum phase coherence time measurements
[7]. This work extends such tools for electrons in 2D elec-
tron gases. The discrete electronic levels of a quantum
dot (QD) are used as adjustable energy filters to measure
f(E). The latter is tuned out-of-equilibrium in an edge
channel (EC) of the quantum Hall regime (QHR) with a
voltage biased quantum point contact (QPC). The com-
parison of the measured f(E) with the non-interacting
electron prediction is a stringent test of the pertinence of
this model in the QHR.

Measurements of f(E) in mesoscopic devices were first
performed a decade ago on metallic circuits using a super-
conducting tunnel probe [6]. More recently, the accessible
experimental conditions were extended to high magnetic
fields using dynamical Coulomb blockade [3]. In semicon-
ductor mesoscopic circuits, a number of experiments have
demonstrated the injection and detection of hot electrons
[8]. However, until now, a non-equilibrium (non-Fermi)
distribution function f(E) could not be measured. In
this work, we extract f(E) from the current across a QD
with well separated electronic energy levels. In the elastic
sequential tunneling regime, only electrons whose energy
resonates with one of the discrete levels in the QD can
pass through it [9]. Consequently, the QD behaves as an
energy filter. The principle of energy filtering was pre-

VD1VD2

VGB=4.25T

D S

200
nm

E   (V )lev    G

(c)

(a)

(b)

-eη V
G G

-eVD1-eVD2 E0

τ

1
fD

E0

1
fS

E

fD fS

Idot dI   /dVdot         G

0 0 11

Idot

FIG. 1: (a) Schematic representation of fD,S(E) spectroscopy
with a single active electronic level of tunable energy Elev(VG)
in the quantum dot (QD). (b) The current Idot and ∂Idot/∂VG

are proportional to, respectively, f(E) and ∂f(E)/∂E sepa-
rately in the source (S) and drain (D) electrodes for a large
enough potential difference applied between S and D. (c) E-
beam micrograph of the sample. Metal top gates appear
brighter. Electrons propagate counter clockwise along two
edge channels (EC) of the quantum Hall regime. The outer
EC (continuous white lines) is partly transmitted (dashed
lines) across the quantum point contact (QPC) and the QD.
The inner EC (not shown) is always reflected. The QPC feeds
the outer EC in the drain with non-equilibrium electrons (left
inset) whose energy distribution fD(E) is measured with the
QD. The gates partly covered by the insets are grounded and
do not influence the electron paths.

viously demonstrated with two QDs [10]. In the simple
case of a single active electronic level (the other levels
being always occupied or empty) of well defined energy
Elev, the current across the QD can be written [11]:

Idot = Imax
dot (fS(Elev)− fD(Elev)), (1)

where the subscripts S and D refer to, respectively, the
source and drain electrodes, fS,D(Elev) is the energy dis-
tribution function of the corresponding electrode evalu-
ated at Elev and Imax

dot is the maximum current amplitude
which depends on the tunnel rates between QD and elec-

Courtesy F. Pierre

Narrow band detection
Use of a quantum dot as an energy filter

See work in progress by F. Pierre et al (LPN Marcoussis)

Directly probes              and gives access to 
energy relaxation!

δn(ω)
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Basic questions

Decoherence
G (e)

ρ0 (x, t|y, t)Behavior of as a function of        ?

t

x− y

Evolution of  in time ?lc(t)

Coherence length at time   ? lc(t)

Energy relaxation

G (e)
ρ0 (x, t|x,0)Fourier transform of               with respect to time.

Real time evolution of an energy 
resolved single electron excitation 
above the Fermi sea ? µF

ε0

Influence of Coulomb interactions within the conductor ? (intrinsic effects)
Influence of the electromagnetic environment? (extrinsic effects)

Z +∞

−∞
ϕ0(x)ψ†(x) |F〉

Electron quantum optics



Entangled 
final state

Final state

Single electron coherence ?
Energy relaxation ?
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Detector induced decoherence

edge channel

detector

|Di〉

µF

ε0

Initial state
Single electron coherent wave packet
above the Fermi sea.

Electron quantum optics
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Linear capacitive detectors

2DEG

(a) (b)

R

C

Equivalent circuit

QPC

Coupling capacitance

2DEG

2DEG

Mesoscopic “detector”

R C    and     are effective parametersEffective description
Relaxation resistance:   for a for a coherent single channel capacitor.R = RK/2
Electrochemical capacitance:  C−1 = C−1

g +C−1
D

Prêtre, Thomas and Büttiker, Phys. Rev. B 54, 8130 (1996).
Nigg and Büttiker, Phys. Rev. B 77, 085312 (2008).
Gabelli et al, Science 313, 5786 (2006).

A model for linear detectors
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Method

Step 1: solve the edge + detector dynamics exactly

Within the bosonization framework, the equations of motion are linear.

The solution is encoded into the edge plasmon / detector’s mode scattering.

Step 3: compute the single electron coherence
Once the edge channel many body state is known, decompose excitations into 
single electron excitations and electron/hole pairs.

Step 2: compute the exact many body state for the edge
Bosonization says that a localized electron is a coherent state for the edge 
plasmonic modes.

Phys. Rev. B  62, 10706 (2000)

A model for linear detectors
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The RC-circuit model

Qc(t) = −Qe(t)

C(U(t)− Vc(t)) = Qc(t)

Capacitor charge:

Voltage drop:

V (x, t) = f(x)U(t)Voltage seen by edge electrons:

−Qg(t) = Qin(0, t)+Qout(0, t)Dynamics of the RC circuit:

(∂t + vF∂x)φ(x, t) =
e
√

π
h

V (x, t)Equation of motion for the edge:

Blanter, Hekking, Büttiker, Phys. Rev. Lett. 81, 1925 (1998)See also

Qe(t) = −e

∫
f(x)n(x, t) dx

|x| > l/2f (x) = 0 for

l/2−l/2

Here for ex:

A model for linear detectors

2DEG

−Qc(t)

Qc(t) gate

lead

Qe(t)
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The RC circuit model: solution

edge channel
detector

S(ω) =
(

ta(ω) rb(ω)
ra(ω) tb(ω)

)
Plasmon scattering:

b-modes

a-modes

Solving the model leads to plasmon scattering:

S(ω)† = S(ω)−1Unitarity:

Elastic scattering: linearity of the coupling + passive system

energy conservation

A model for linear detectors



⊗

ω>0

|αω〉

⊗

ω>0

|βω〉
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Scattering of coherent plasmons

T = 0 K

edge channel
detector

S(ω) =
(

ta(ω) rb(ω)
ra(ω) tb(ω)

)
Plasmon scattering:

b-modes

a-modes

A model for linear detectors

⊗

ω>0

|α′
ω〉

(
α′

ω

β′
ω

)
= S(ω).

(
αω

βω

)

⊗

ω>0

|β′
ω〉

Factorized final state with:
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Scattering of coherent plasmons

αω = 〈ain(ω)〉

αω = − e

h

iVc(ω)√
ω

√
RK

2R

x=0
!2x=

- !2x=x=- !
x=+ !

Vd(t)Ve(t) V(t)C R
I (t)dI (t)e U(t) aoutbout

ainbin

x=0 !2x=- !2x=
C R

x=- ! x=+ !

kk k0 k0

a)

b) h"

Voltage drives generate coherent plasmon states T = 0 K(at                 )

A model for linear detectors

βω = 〈bin(ω)〉

βω = − e

h

Ve(ω)√
ω

eiωl/2vF

I. Safi, EPJD 12, 451 (1999)
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Scattering of coherent plasmons

∑

β

gαβ(ω) = 0
∑

α

gαβ(ω) = 0

Charge conservation: Gauge invariance:

Cee = −Cec = C

Ccc = −Cce = C
Qα =

∑

β

CαβVβ ⇒
Büttiker model with total screening

gauge invariance 
& charge conservation

Iα(ω) =
∑

β

gαβ(ω) Vβ(ω)

Finite frequency admittances

Definition:

gee(ω) =
e2

h
(1− tb(ω) eiωl/vF )Relation to plasmon scattering

A model for linear detectors

Büttiker et al, Phys. Rev. Lett. 70, 4114 (1993) & Phys. Rev. B 54, 8130 (1996)
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To summarize

φ(out)
α (ω) =

∑

β

Sα,β(ω) φ(in)
β (ω)

See(ω) = eiωl/vF tb(ω)

gαβ(ω) =
e2

h
(δα,β − Sα,β(ω))

Plasmon scattering is equivalent to finite frequency admittances

Explicit model used for illustration

ωl/vF ! 2π

Büttiker like model: RC circuit capacitively coupled to an edge channel

Valid up to

More realistic models could be used!

A model for linear detectors
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Entangled 
final state

Z
ϕt(y)

(
O

ω>0
|− tb(ω)λω(y)〉⊗ |− rb(ω)λω(y)〉)

)
dy

detector’s 
excitationsedge excitations

ENS Ly
o

nScattering of a single electron 
wave packet

T = 0 K
O

ω>0
|0ω〉

Z
ϕ0(y)

(
O

ω>0
|−λω(y)〉

)
dy

µF

ε0

edge channel
detector

S(ω) =
(

ta(ω) rb(ω)
ra(ω) tb(ω)

)
Plasmon scattering:

b-modes

a-modes

Decoherence & relaxation  at the edge



1√
2πa

O

ω>0
|− tb(ω)λω(x)〉= ei

R ∞
0

dω
ω ℑ(tb(ω))ψ†(x) |g(x)〉

Dressed electrons

ψ†(x) |F〉=
1√
2πa

O

ω>0
|−λω(x)〉 λω(x) =− 1√

ω
e−iωx/vF

ENS Ly
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Where is the electron ?

bare electron |g(y)〉=
O

ω>0
|(1− tb(ω))λω(y)〉

e/h pairs

Neutral charge density wave

ψ(x) =
1√
2πa

U†ei
√

4πφR(x,t)Bare electrons

where

Decoherence & relaxation  at the edge
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From single electron coherence

G (e)(x,y) = G (e)
F (x,y)+G (e)

WP(x,y)

G (e)
WP(x,y) = ϕ0(x)ϕ∗

0(y)G (e)
F (x,y) =

i
2π

1
y− x+ i0+

Z +∞

−∞
ϕ0(x)ψ†(x) |F〉

The chiral Fermi gas
Coherent wave packet above the Fermi surface:

Wick’s theorem:

G (e)
mv(x,y) !→ G (e)

F (x,y)

G (e)
wp (x,y) !→ G (e)

WP(x,y)

G (e)(x,y) = G (e)
mv(x,y)+G (e)

wp (x,y)

The chiral edge coupled to the detector

where in the limit of vanishing coupling

Generalization of Wick’s theorem:

Decoherence & relaxation  at the edge



δn(k) = Z(k0)δ(k − k0) + δnr(k, k0)
∫

δn(k) dk = 1
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to energy relaxation

Fermi sea Single electron

Electron distribution function
∫
G(e)

k0
(x, y)e−ik(x−y)d(x− y) = L nF (k) + δn(k)

Quasi particle peak Regular part

Decoherence & relaxation  at the edge

G(e)
k0

(x, y)
∫

eik0xψ†(x) |F 〉 dx

Energy resolved single electron excitation:

propagation



p(k) = −Z ′(k)

δn(k) = p(k0 − k) + Z(k0)δ(k − k0)

p(q) q

k > 0
k < 0δn(k) = 0
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Single particle limit at low energy

Simple relaxation model

probability for loosing momentum 

Outcoming electron distribution: 

Particle conservation:

|tb(ω)− 1|

Validity range

At low coupling: the Fermi sea remains spectator.

For low energy excitations: probes frequencies where 
is small enough.

Decoherence & relaxation  at the edge



Dtot(x,y) = exp
(Z +∞

0
2ℜ(1− tb(ω))(ei ω

vF
(y−x)−1)

dω
ω

)

2ℜ(1− tb(ω)) = |rb(ω)|2 + |1− tb(ω)|2

G (e)
wp (x,y) !→ ϕt(x)ϕt(y)∗×Dtot(x,y)

k0→+∞
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Single particle limit at high energies

Extrinsic decoherence due to the detector Intrinsic decoherence (e/h pairs)

Large energy excitations

Wave packet contribution

The electron remains far from the 
Fermi surface

Decoherence & relaxation  at the edge

Very similar to the dynamical Coulomb Blockade theory: see Ingold & 
Nazarov review for example.

But here it arises as a limiting regime of a more general approch!

Validity condition:



R/RK = 0.002
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Relaxation of single electron excitations

l
vFRKC

= 1/2

Energy relaxation

Plasmon transmission

Quasi particle peak

IR behavior

UV behavior

Decoherence & relaxation  at the edge
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Relaxation of a single electron excitation

l
vFRKC

= 1/2

Plasmon transmission

Energy relaxation Quasi particle peak R = RK/2

IR behavior

UV behavior

Decoherence & relaxation  at the edge
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To summarize

Non perturbative approach to single electron relaxation

• Only depends on the finite frequency admittance;

• Has simple limiting regimes at high and low energies

IR: simple relaxation model
UV: analogous to the dynamical Coulomb blockade

σin(ω) = 1− Z(ω/vF )

g(ω) = −iCµω + Rq(Cµω)2 + . . . Rq = R + RK/2

R != 0 σin(ω) ! R

RK
(ωRqCµ)2

• Low energy behavior of inelastic scattering probability:

At

Quasi particle not destroyed by the detector !

Decoherence & relaxation  at the edge
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Conclusion and perspectives

Summary

Quantum optics formalism for electrons à la Glauber

Exact results for detector induced decoherence and relaxation 
of a single electron excitation above the Fermi level in a chiral edge 
channel.

Exact solution for the coupling of a chiral edge channel to a 
linear detector.

Conclusion & perspectives

Equivalence of the finite frequency admittance and plasmon 
scattering
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Perspectives (work in progress)

Conclusion and perspectives

Extension to finite temperatures (easy)

Discussion of interchannel interactions

Discussion of e/e interactions
Problem of dephasing at low temperatures

ν = 2Experiments on      edge states 

LPA project: quantum optics with coherent 
energy resolved single electron excitations

Improvement of detector modeling

Description of the state emitted by the on-demand single electron 
source (e/h pairs ?)

Single electron quantum tomography

Conclusion & perspectives

Neel project: spin propagation along edge channels


