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Searching for thermal signatures of persistent currents in normal-metal rings
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5Université Grenoble 1/CNRS, LPMMC UMR 5493 - B.P. 166, 38042 Grenoble, France
(Received 18 January 2013; revised manuscript received 1 March 2013; published 15 March 2013)

We introduce a calorimetric approach to probe persistent currents in normal metal rings. The heat capacity
of a large ensemble of silver rings is measured by nanocalorimetry under a varying magnetic field at different
temperatures (60, 100, and 150 mK). Periodic oscillations versus magnetic field are detected in the phase signal
of the temperature oscillations, though not in the amplitude (both of them directly linked to the heat capacity).
The period of these oscillations (�0/2, with �0 = h/e the magnetic flux quantum) and their evolution with
temperature are in agreement with theoretical predictions. In contrast, the amplitude of the corresponding heat
capacity oscillations (several kB) is two orders of magnitude larger than predicted by theory.
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I. INTRODUCTION

At very low temperatures T , a small isolated metal ring
carries a weak but nondissipative current that is not destroyed
even by the presence of disorder in the ring.1 It follows from
very general arguments that this persistent current I is periodic
in the magnetic flux � threading the ring:2,3

I (�,T ) =
∞∑

m=1

Im(T ) sin

(
2πm

�

�0

)
, (1)

where �0 = h/e is the magnetic flux quantum. The typical
magnitude of the persistent current in a ring of circumference
L is I ∼ eETh/h̄, where ETh = h̄D/L2 is the Thouless energy
and D is the diffusion coefficient determined by the scattering
of electrons from the disorder in the ring. For L ∼ 1 μm, we
find I ∼ 1 nA. The precise value of I and the direction in which
this current is flowing are determined by the configuration of
impurities and are thus random.

Due to the weak magnitude of the persistent current,
only the first two harmonics m = 1, 2 in Eq. (1) were
observed experimentally.4–10 They were also in the focus
of numerous theoretical studies (see Refs. 11–18 for a
representative selection of theoretical works). The ensemble
of the existing literature indicates that the statistical properties
of the first harmonics I1 can be understood within the model of
noninteracting electrons, whereas the second harmonics I2 is
dominated by interaction effects. In the experiments performed
on single rings5,9 or on small ensembles of identical rings,7,10

both the first and the second harmonics of I have been detected.
Hence, the measured period of current oscillation with �

is �0. The mean values of I1 and I2, their variances, and
possibly the full probability distributions can be measured.18

On the contrary, if large ensembles of rings (up to 107 rings in
Ref. 4) are used,4,8 averaging over all the rings of the ensemble
inevitably takes place and one only has access to the average
current 〈I 〉. Because 〈I1〉 = 0,19 the measured signal is mainly
due to the second harmonics 〈I2〉 �= 0. The observed current
then oscillates with a period �0/2.

The properties of the first harmonics I1 of the persistent
current are nowadays relatively well understood. If early ob-
servations were somewhat contradictory,5,7 more recent works
have demonstrated an impressive agreement between experi-
ment and the noninteracting electron theory.9,10,18 The second
harmonics I2, on the contrary, still represents a challenge for
both theory and experiment. Even though a consensus exists on
the importance of electron-electron interactions to explain its
properties, the calculation assuming repulsive interactions12,14

yields the magnitude of 〈I2〉 which is significantly smaller
than the one measured in the experiments. In addition,
the paramagnetic response of the rings at small magnetic
field predicted by the theory, disagrees with observations.4,8

Diamagnetic response can be obtained in a theory assuming
attractive interactions.13 However, interactions which are
sufficiently strong to reproduce the experimentally observed
values of 〈I2〉 would induce a transition to the superconducting
state at temperatures which are too high to be compatible with
known properties of (some of the) metals used in the persistent
current experiments: copper, gold, and silver. Indeed these
metals do not exhibit superconductivity even at the lowest
temperatures accessible experimentally (down to 0.1 mK16).
A possible solution to this problem has been recently proposed
by Bary-Soroker et al.:17 A tiny amount of magnetic impurities
can destroy the superconductivity but has little impact on the
persistent current. Two new parameters—the spin-scattering
rate 1/τs and the bare superconducting transition temperature
T 0

c of the material without magnetic impurities—appear in
the theory and allow for a reasonable explanation of the
experiments reported in Refs. 4 and 7.

Motivated by the recent progress in the research on
persistent currents in normal metal rings, we propose here a
new way of detecting these currents. Our approach is radically
different from the one employed in all previous experiments:
If these anterior works relied on the measurement of the rings’
magnetic moment (either using a more or less sophisticated
version of a SQUID magnetometer,4,5,7,9 coupling the rings
to a superconducting microresonator,8 or using an elegant
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FIG. 1. (a) Scanning electron microscope (SEM) image of a
single silver mesoscopic ring, the scale bar represents 200 nm.
(b) SEM image of the array of rings.

micromechanical detector10), we propose to focus on the
rings’ heat capacity. Our idea stems from the basic principles
of thermodynamics. On the one hand, the heat capacity at
constant pressure is given by Cp = −T (∂2F/∂T 2)p, where
F is the thermodynamic free energy. On the other hand, the
persistent current is I = −∂F/∂�. Therefore, we find

∂C

∂�
= T

∂2I

∂T 2
. (2)

From here on we omit the subscript ‘p’ of the heat capacity to
lighten the notation. Equations (1) and (2) imply that

C(�,T ) = C(0,T ) +
∞∑

m=1

Cm(T )

[
1 − cos

(
2πm

�

�0

)]
,

(3)

where Cm(T ) = (T �0/2πm)∂2Im(T )/∂T 2. The heat capacity
C is therefore also a periodic function of the magnetic flux �.

Equation (2) shows that the dependence of C on � is
intimately related to the dependence of I on T . This link
between C and I was already exploited by Yang and Zhou
to investigate the impact of spin-orbit coupling on both
the persistent current and the heat capacity in the model
of noninteracting electrons,20 as well as by (some of the)
present authors to study the entrance of magnetic vortices
into superconducting loops.21–23 The experiments reported
here are, however, much more involved than those performed
in the superconducting state: Not only do we work at much
lower temperatures (T ∼ 100 mK instead of T ∼ 1 K), but
also the variations of the heat capacity to detect are much
weaker (�C ∼ kB instead of �C ∼ 103 kB).

II. EXPERIMENTAL SETUP

Our sample (Fig. 1) is composed of N = 5 × 106 nonin-
teracting silver rings (2r = 600 nm diameter, w � 140 nm
arm width, d = 34 nm thickness, total mass m = 330 ng).
The silver rings are deposited by e-gun evaporation under
10−6 mb vacuum. Thanks to the high purity of the silver
the phase coherence length is large, of about 10 μm at the
temperature of 100 mK, which is far above the diffusive ring
circumference L.24 The specific heat of silver at T = 0.1 K
can be estimated to be of the order of 10−6 J/gK, and hence
the magnetic-field-independent part of the heat capacity of
the rings is expected to be 3.3 × 10−13 J/K; representing
approximately 10% of the total heat capacity. The rings have
been patterned by electron beam lithography on the thermal
sensor made of a suspended silicon membrane (size 4 mm × 4

FIG. 2. (Color online) Schematic drawing of the experimental
setup of heat capacity measurement on a suspended silicon mem-
brane. The internal oscillation signal of the lock-in 1 is used to pilot
the voltage current convertor used to apply the current to the heater.
The lock-in 2 is used to measure the resistance of the heater, and then
estimate the power dissipated. The oscillation of temperature Tac is
measured on the lock-in 1 at the second harmonic (2f). The scale bar
represents 1 mm.

mm, thickness ∼5 μm). The transducers, a copper heater, and a
highly sensitive NbN thermometer are integrated on each side
of the membrane (see Fig. 2), the silver rings being located
between the two elements.25

A sketch of the ac calorimetry technique that we use is
given in Fig. 2 and described in detail in previous articles.26–28

It consists of applying an ac current through the heater; here at a
frequency felec = 30 Hz. This induces oscillations Tac(t) of the
temperature of the suspended membrane. These oscillations
are detected by the thermometer. For a specific experimentally
determined operating frequency, quasiadiabatic conditions are
fulfilled, allowing measurements of the specific heat. The
typical signal obtained from the lock-in amplifier is composed
of a modulus measuring a root mean square (rms) voltage
proportional to the temperature oscillation of the membrane
(T rms

ac ∝ V rms
ac ) and of a phase ϕ, both related to the heat

capacity through the equations

Tac(t) = P0

ωC
cos(2ωt + ϕ), (4)

tan(�ϕ) = 2ωC

K
, (5)

where P0 is the power dissipated in the heater, ω = 2πfelec is
the electrical excitation frequency, C is the heat capacity of
the membrane, and K is the thermal conductance between the
membrane and the heat bath (for more details see Refs. 21, 26,
27, and 29). The setup is cooled down to very low temperatures
using a dilution fridge, equipped with a superconducting
coil supplying a magnetic field H normal to the plane of
the rings. As compared to previous measurements,21–23 the
thermometry has been adapted to work at very low temperature
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FIG. 3. (Color online) Top panel: Voltage at twice the excitation
frequency versus time at T = 200 mK. Inset of the bottom panel:
Histogram of the noise extracted from the measurement presented in
the top panel. Bottom panel: Heat capacity C of silver rings versus
temperature in the absence of magnetic field.

and the arm width has been increased from 40 to 150 μm
to allow measurements at a higher frequency. Consequently,
δTdc = Tmembrane − Tcryostat decreased and we were able to
obtain temperatures compatible with the purpose of our study
(T � 70 mK on the membrane for a regulated temperature of
50 mK of the sample holder).29

III. EXPERIMENTAL RESULTS

Figure 3 shows a scan of the heat capacity versus the
temperature of the membrane. The heat capacity measured
at the lowest temperature is around 10 pJ/K, with the error
not exceeding 0.1 pJ/K. It must be noticed that this value
corresponds to the heat capacity of the whole sample (rings
+ membrane). In the inset of Fig. 3 we show a histogram of
the noise measurement obtained from the upper panel of this
figure, indicating a noise of �0.8 nV/

√
Hz.

Our experimental method to detect persistent currents is
based on scanning the heat capacity versus the applied mag-
netic field, at a constant temperature. During the measurement,
two components of the temperature oscillation are recorded:
the modulus and the phase. Both bring physical information
about the heat capacity variations [see Eqs. (4) and (5)].

A typical scan is shown in Fig. 4. Starting at H = 0 mT, we
slowly increase the field to 50 mT by small steps (�1 mT). C is
measured at each H for signal integration times of the order of
10 s. In order to improve the sensitivity and to detect the very
weak oscillations, we realized a hundred identical scans by
carrying out cycles between H = −50 mT and H = 50 mT.
These data are averaged during the signal processing described
below.

FIG. 4. Phase of the temperature oscillation (at the top) and
modulus of the temperature oscillations, expressed in terms of heat
capacity using Eq. (4) (at the bottom), of mesoscopic silver rings
versus magnetic field measured at T = 150 mK.

The measurements were performed at three different
temperatures: T = 60, 100, and 150 mK. For each of
them, the temperature of the sensor membrane oscillates
with an amplitude of ∼10% compared to the control
temperature.

IV. DATA PROCESSING

In order to detect a periodicity in our data, a Fourier
analysis of the phase of the temperature oscillation and of
its amplitude, expressed in terms of heat capacity using Eq.
(4), has been performed. As a first step, the low frequency trend
observed in every scan has been removed with a third-order
polynomial regression. As a second step, the power spectral
densities have been calculated as follows. The autocorrelation
function of the signal x(H ) (where x is the modulus or the
phase),


x(H ) = lim
M→∞

1

2M

∫ M

−M

x(H ′)x(H ′ − H )dH ′, (6)

is first estimated for every scan. Averaging over a hundred of
scans is then performed to reduce the noise. The power spectral
density Sx(ν) is calculated as the Fourier transform of the
averaged autocorrelation function 
̄x(H ). The power spectral
densities (referred to PSD in the following) of both the phase
of the temperature oscillation and the modulus of the heat
capacity [extracted from Eq. (4)] for the three temperatures
60, 100, and 150 mK are displayed in Fig. 5.

We first stress that the high peaks observed for all curves
at a low frequency ν ∼ 0.05 mT−1 are a reminiscence of
the trend which has not been completely removed by the
polynomial regression. These peaks do not carry any useful
signal. Unfortunately they can mask any physically interesting
signatures of persistent currents that might be present at low
frequencies and would correspond to the first harmonics C1 of
the heat capacity.

In addition to the low-frequency peak, our spectral analysis
of the phase of the temperature oscillation (upper panel of
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FIG. 5. (Color online) Power spectral densities of the average
signal for phase [upper panel (a)] and in the lower panel (b), the PSD
of the modulus of the heat capacity [extracted from Eq. (4)]. In the
upper panel the red and the blue curves have been shifted from the
green for clarity, and in the medium panel only the red curve has
been shifted by 10−30 (J/K)2 mT. The vertical straight lines delimit
the frequency range in which signatures of persistent currents are
expected.

Fig. 5) reveals peaks at ν � 0.11 mT−1 (the period is 9 mT).
This value corresponds to a half of flux quantum through a
ring of 264 nm in radius. Our rings have the inner radius of
220 nm and the outer radius of 360 nm. Thus, the observed
spectral peak is in the range of frequencies in which signatures
of the second harmonics of heat capacity oscillations C2 are
expected. However, as it can be seen from the lower panel of
Fig. 5, no clear signature of spectral peaks at ν � 0.11 mT−1 is
observed in the modulus of heat capacity, although the phase
and the modulus of the oscillating heat capacity signal are
related through Eq. (5). The reason for observing a peak in
the phase signal but not in the modulus signal most probably
resides in a lower sensitivity on the modulus signal. At 100
mK, the sensitivity obtained for the modulus is ∼10−14 J/K
or ∼10−20 J/K (∼100 kB) per ring (a sensitivity of �C/C �
5 × 10−4) as compared to the sensitivity obtained for the phase
estimated to be of the order of �ϕ/ϕ � 3 × 10−5.

In order to compare our measurements with theoretical
predictions, we estimated the average amplitude of the second
harmonics of heat capacity oscillations |〈C2(T )〉| from the area
below the curves of Fig. 5 (see Table I).

V. COMPARISON WITH THEORY

We compare our results with the predictions of two theoreti-
cal models: The model of Ambegaokar and Eckern (AE)12 and
the model of Bary-Soroker, Entin-Wohlman and Imry (BEI).17

Both models rely on taking into account interactions between
electrons in the rings, but the interactions are repulsive in the
AE model and attractive in the BEI model. In order to suppress
the superconductivity that strong attractive interactions may
induce, the latter model includes scattering of electrons by
magnetic impurities.

Even if the applicability of the AE model to realistic
experiments is made questionable by the disagreement of the
sign of the current that it predicts with measurements,8 it is
still of great interest to describe experimental data.10 Using
Eq. (18) of Ref. 12 and our Eq. (2), we readily obtain

〈
CAE

2 (T )
〉 = kB ×

[
4

9π
N (0)V̄

]
kBT

ETh
exp

(
− kBT

3ETh

)
, (7)

where N (0) is the electronic density of states at Fermi energy
and V̄ is the mean value of the attractive interaction potential.12

Using the data from Ref. 8, where silver rings similar to ours
were studied, we estimate N (0)V̄ � 0.37 and ETh/kB � 40
mK. The resulting dependence of 〈CAE

2 〉 on temperature is
shown in Fig.6 by a dashed line, with the scale given on
the right. The theoretical Eq. (7) reproduces the trend of the
temperature dependence of our data that has a maximum at
T � 3ETh/kB ≈ 100 mK. But the values of |〈CAE

2 〉| are 2
orders of magnitude smaller than the data.

In the BEI model, assuming attractive interactions in
combination with scattering on magnetic impurities,17 we find〈

CBEI
2 (T )

〉
= −kB × 4T

ETh

kB

∞∑
n=−∞

∫ ∞

0
dx sin(2πx)

× ∂2

∂T 2

{
� ′[Fn

(
x,T ,T 0

c ,τs

)]
ln

(
T/T 0

c

) + �
[
Fn(x,T ,T 0

c ,τs)
] − �(1/2)

}
,

(8)

where �(x) and � ′(x) are the digamma function and its
derivative, respectively, τs is the spin-scattering time, T 0

c is the
bare superconducting transition temperature in the absence of
magnetic impurities (i.e., at τs → ∞), and Fn(x,T ,T 0

c ,τs) =
(1 + |n|)/2 + (1/2πτs + πx2ETh/kB)/T . The minus sign in
Eq. (8) reflects the diamagnetic nature of the persistent
current in this model, in contrast to the paramagnetic current
leading to Eq. (7). It follows from the comparison of the
theory with previous measurements of persistent currents4,7

that it is reasonable to choose T 0
c = 0.1ETh/kB.17 At the

same time, s = 1/πT 0
c τs should exceed 0.87 to suppress the

superconductivity at all temperatures. We set s = 1 and show
the absolute value of the resulting heat capacity |〈CBEI

2 〉| in
Fig. 6 by a solid line.

VI. DISCUSSION

Interestingly, the two theoretical approaches considered
above yield very similar results both for the magnitude
of heat capacity oscillations (|〈C2〉| ∼ 10−2 kB) and for its
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TABLE I. The amplitude of the second harmonics of heat capacity oscillations |〈C2〉| is extracted from the curves of Fig. 5 (upper panel).
First, the area A of the spectral peak is estimated (second column). For this purpose we fit the curves of the upper panel of Fig. 5 with smooth
polynomials and evaluate the integral of the difference between the data and the fit taken between the vertical lines. Next, the associated heat
capacity is calculated using Eq. (5) with ϕ = √

2A (column 5). Finally, the heat capacity is divided by the number of rings N = 5 × 106 to
obtain the signal per ring (last column).

T (mK) Area A (deg2) Phase ϕ (deg) tan ϕ K(W/K) |〈C2〉| (J/K) |〈C2〉|/ring (kB)

60 2.9 × 10−8 2.4 × 10−4 4.2 × 10−6 7.5 × 10−9 8.5 × 10−17 1
100 25.1 ×10−8 7.1 ×10−4 1.2 ×10−5 1.8 ×10−8 6.1 ×10−16 9
150 4.5 ×10−8 3 ×10−4 5.2 ×10−6 2.7 ×10−8 3.5 ×10−16 5

temperature dependence (maximum values of |〈C2〉| reached
at T ≈ 100 mK for experimental parameters). Whereas the
latter temperature dependence is in agreement with our
measurements, the predicted magnitude of the heat capacity
oscillations is far too small to explain the observed |〈C2〉| ∼
kB. This discrepancy may result from the insufficiencies of the
theoretical models, as well as from the uncontrolled errors in
the estimation of the absolute values of heat capacities in our
experiment.

On the theory side, the two models considered here were
previously shown to be compatible with experiments (see
Refs. 12 and 17). They provided reasonable results for the
magnitude and the temperature dependence of persistent
currents measured in Refs. 4 and 7. It should be noted, however,
that, on the one hand, the heat capacity is proportional to
the second derivative of the persistent current I with respect
to temperature [see Eq. (2)] and hence it is sensitive to fine
details of the temperature dependence of I that might not be
captured by the theory. Equation (8), for example, changes
sign for T ≈ 30 mK, leading to a peculiar low-temperature
behavior of the heat capacity in Fig. 6. This is due to the change
of the shape of 〈I2(T )〉 curve from convex to concave. Also
the surface states (evanescent states), when included in the
theoretical model, may modify its predictions significantly.30

In addition, it was noticed by several authors that other
phenomena (such as, e.g., the fluctuations of electron spin
density31 or the ambient electromagnetic field32) may induce
magnetic flux-periodic currents in mesoscopic rings. These

FIG. 6. (Color online) Average amplitude of the second harmonic
C2 of the heat capacity oscillations with the magnetic field. Points
show the experimental results from Table I, with the scale on the left.
Lines show theoretical predictions: Eq. (7) (dashed blue line) and
Eq. (8) (solid red line), scale on the right.

currents can be comparable or even larger than the persistent
currents. Given the large signals measured in our experiments
and taking into account that our calorimetric technique may be
particularly sensitive to currents that dissipate heat, we believe
that it is likely that these phenomena may be important in our
setup. Because Eq. (2) does not hold for these nonequilibrium
processes, it remains to be seen if and how they could be
included into the theoretical model.

The disagreement between theory and experiment seen
in Fig. 6 might also stem from the difficulties in obtaining
quantitatively correct values of heat capacity, intrinsic to
the extreme difficulty of the measurements: Measuring very
low thermal signals at extremely low temperatures. These
difficulties are obvious already from the comparison of
the heat capacities extracted from the absolute value and
the phase of the voltage signal measured in our experiment
(compare the two panels of Fig. 5).

VII. CONCLUSION

We introduced a calorimetric approach to the study of
persistent currents in mesoscopic rings made of normal metals.
The approach relies on the measurement of periodic variations
of heat capacity of a large ensemble of rings with magnetic
field. Under the experimental conditions reported here, the
approach was at the limit of its sensitivity, the signal being
strongly masked by noise. Despite this, we estimated the
amplitude of heat capacity oscillations to be of the order of
several kB per ring at ∼100 mK. The amplitude is two orders
of magnitude larger than expected from the existing theories
which, however, correctly predict the range of temperatures
where the heat capacity signal is maximum. Further experi-
ments and theoretical investigations are necessary to elucidate
the sources of this discrepancy.

Both experiment and theory suggest that, in contrast to the
persistent current I , the heat capacity C of an ensemble of
mesoscopic rings is not a monotonic function of temperature.
In particular, the average value of its second harmonic
C2 vanishes for T → 0. More experiments having better
sensitivity will be necessary to evidence the real position of
this maximum.
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