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Abstract. We review our theoretical and experimental work done on light propa-
gation and scattering in magnetic fields.

1 Introduction

For more than one century, we have known that Maxwell’s equations provide
a complete description of the propagation of classical electromagnetic waves.
For applications in daily life, it has become customary to describe the interac-
tion of matter on a macroscopic level, i. e., without worrying about individual
atoms, but looking only at charge distributions on scales large compared to
the atomic scale. Microscopic charges and currents are described by the po-
larization density vector P and the magnetization M . It is important to
realize that this description is only approximate. Cases are known for which
the macroscopic Maxwell equations seem to break down since they do not
predict the observed behavior [1,2,3]. Macroscopically, it is still possible to
consider a charge density ρ and a current density J , but we will focus on
dielectric materials for which both of them vanish.

A solution of Maxwell’s equations becomes feasible when so-called consti-
tutive relations are put forward that relate the microscopic parameters P and
M to the macroscopic electromagnetic fields E and B. Constitutive relations
are subject to symmetry relations [4]. For instance P is, like the electrical
field E, a polar (parity-odd) vector that changes sign upon space inversion.
On the other hand, the magnetic field B is a pseudovector, invariant under
a space inversion, but variant upon time-reversal. One symmetry allowed,
a constitutive relation for the polarization density P could be [4]

P = χ0E + χ1∂tE × B + χ2(B · B)E + χ3(E · B)B + · · · . (1)

For simplicity, we have adopted an isotropic medium so that all constitutive
parameters χn are scalars and not second-rank tensors. In the above equation,
many other terms are possible, and we have — for future use — just collected
the terms linear in the electrical field and without time derivatives of the mag-
netic field. They are still nonlinear in the magnetic field, which complicates
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the solution of the macroscopic Maxwell equations. A dramatic simplification
occurs if the magnetic field B is in fact a low-frequency, external field B0

that is orders of magnitude larger than that of the electromagnetic field itself.
In that case, the constitutive relation linearizes to

P (ω) = χ(ω,B0) · E(ω) , (2)

with the electrical susceptibility tensor,

χij(ω,B) = χ0δij + χ1ω iεijkBk + χ2B
2δij + χ3BiBj . (3)

We have inserted harmonic waves with frequency ω. The dielectric tensor
is defined as ε ≡ 1 + χ. The constitutive relation above is purely linear in
the electromagnetic field E and demonstrates that magneto-optics can be
considered a particular case of nonlinear optics. If we disregard the existence
of the microscopic magnetization M , an “unwarrantable refinement at opti-
cal frequencies” according to Landau, Lifshitz and Pitaevskii [5], Maxwell’s
equations and the constitutive equation (2) for P can be combined to give
one linear “Helmholtz equation”,

∇ × ∇ × E(ω, r) +
ω2

c20
χ(r,B0) · E(ω, r) =

ω2

c20
E(ω, r) . (4)

The fascinating analogy of this equation to the Schrödinger eigenvalue equa-
tion has frequently been emphasized [6,7,8] and is often of great use in finding
its solutions, using results from quantum mechanics. As in Schrödinger’s the-
ory, conservation of electromagnetic energy is guaranteed when the electro-
magnetic “potential” χ is a hermitan operator, i. e., χij = χ̄ji. This happens
when all coefficients χn in (3) are real-valued.

2 Magneto-Optics of Homogeneous Media

Local, homogeneous media are characterized by a susceptibility that is in-
dependent of r. Equation (4) can now easily be solved upon inserting plane
waves,

E(ω, r) = e(ω,k) exp(ik · r) , (5)

with a yet unknown polarization vector e. The wave equation (4) reduces to
the so-called “Fresnel equation”,

det
[
k2 − kk − ω2

c20
− χ(B0)ω2

]
= 0 , (6)

which provides the complex dispersion law ω(k).
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The different terms in (3) correspond to different well-known magneto-
optical effects. Let us first concentrate on the term χ2 in (3). We easily obtain
the dispersion law given by

n2
ω2

c20
≈

(
k ± V c0

n
B0

)2
, (7)

where we dropped small terms quadratic in the magnetic field and introduced
the complex index of refraction n ≡ √

1 + χ0, as well as the Verdet constant
V ≡ 1

2χ1ω
2. If χ0 and χ1 are both real-valued, (7) locates the “constant-

frequency” surfaces in k space around two spheres, translated over a distance
V B/n from the origin along and opposite to the magnetic field (Fig. 1). Their
separation is largest when the k vector is parallel to the magnetic field (the
so-called “Faraday” geometry) and vanishes when they are mutually orthog-
onal (the “Voigt” geometry). The two spheres lift the degeneracy of the two
states of circular polarization ±, resulting in two different group velocities for
different circular polarizations. For linearly polarized light in the Faraday ge-
ometry, this leads to a rotation of the polarization vector along the magnetic
field over an angle V Br, with r the distance of propagation. This is called
the Faraday effect. If χ0 has an imaginary part, the light will be absorbed.
A nonzero value of Imχ1 implies different absorption for different states of
circular polarization. This is called magnetic circular dichroism (MCD).

The terms involving χ2 and χ3 in (3) are quadratic in the magnetic field
and generate a uniaxial symmetry in the dielectric tensor. The resulting linear
birefringence is called the Cotton–Mouton effect. This effect is often much
smaller than the Faraday effect and has a crucial difference from the Faraday
effect. Only the Faraday effect satisfies the relations,

εij(B0) = εji(−B0) �= εji(B0) . (8)

The equality is a general consequence of the time-reversal symmetry of matter
+ magnet [5]; the minus-sign is due to the fact that the magnetic field is

Fig. 1. Dispersion law for the Faraday effect. The degeneration of the two circular
states ± of polarization is lifted. Their constant frequency surface is shifted along or
opposite to the magnetic field. They remain degenerate only for wave vectors per-
pendicular to the magnetic field, but the group velocity for both modes is deflected
along the magnetic field
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a pseudovector. The inequality implies that the Faraday effect, contrary to the
Cotton–Mouton effect, breaks time-reversal symmetry only in the subsystem
of matter. This aspect gives the Faraday effect an important role in the more
general context of light propagation in the presence of broken symmetries.

2.1 Magnetodeflection of Light

The bending of electrons in a magnetic field caused by the Lorentz force
lies at the very base of many electronic phenomena in disordered metals
and semiconductors, such as the Hall effect and the magnetic suppression of
weak localization. The question naturally arises whether light propagating
in non-scattering, homogeneous media is also deflected by a static transverse
magnetic field. Some aspects of the deflection of light by a magnetic field
have already been discussed in [5]. Those effects, as has been estimated, are
very small [9], which may explain why, to our knowledge and surprise, they
have never been observed until recently. A different kind of magnetodeflec-
tion has been reported in absorbing homogeneous media [10]. The question
whether light is bent by magnets in homogeneous media has recently been
raised again by ’t Hooft and Van der Mark [11]. This topic is part of a much
broader discussion on the properties of macroscopic electromagnetic fields
inside dielectrics, that still yields new results, despite its long history [12,13].

In a nonabsorbing medium, the direction of wave propagation is unam-
biguously given by the group velocity vG = dω/dk. The absence of absorption
also guarantees that vG is parallel to the Poynting vector S = (c0/4π)E×B,
a theorem that is left as an exercise in [5]. From (7), for the group velocity
in the presence of the Faraday effect,

v±
G =

c0
n

k̂ ± V c20
ωn2

B0 . (9)

On the basis of this equation, the optical energy flow can be deflected by
a magnetic field. We note that the deflection is only in the direction of the
magnetic field and no “magnetotransverse” term, perpendicular to both mag-
netic field and wave vector is present.

From Maxwell’s equations, we can calculate the Poynting vector (c0/4π)
E × B,

S±(B0) ∝ Renk̂ ± Re
(
V c0n

ωn

)
B0 + Im

(
V c0n

ωn

)
k̂ × B0 . (10)

In this expression, we have allowed for absorption and magnetic circular
dichroism. They cause differences between the directions of the Poynting
vector and the group velocity. In particular, the Poynting vector contains
a magneto-transverse component k̂ × B0.

In nonlocal media, the electromagnetic current density is known to be
different from the Poynting vector [5,14,15]. In media with local response,
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the Poynting vector is widely accepted as the current density. The conflict
above with the group velocity puts the validity of the Poynting vector as
the energy flow at stake in absorbing media. Arguments based on energy
conservation and macroscopic Maxwell equations show that the energy flow
of an electromagnetic wave is given by the more general expression

S̃ ≡ c0
4π

E × B +∇× T , (11)

where T is some vector field to be determined [16]. The ambiguity in the
energy flow, reflected by the existence of the second term in (11), is well ap-
preciated in standard textbooks on electrodynamics [4,16,17,18] but is always
discarded.

2.2 Bending of Light by Magnetic Fields

To experimentally test the various predictions for the direction of energy
flow, we determined the deflection of light upon propagation in several ho-
mogeneous dielectrics in a transverse magnetic field [19]. The setup is shown
schematically in Fig. 2. A light beam of a given polarization state is normally
incident on the sample, placed in a transverse magnetic field, alternating at
8Hz. The transmitted light is detected by two-quadrant split photodiodes,
whose interconnecting axis can be directed along the B0 axis or the k × B0

axis. The difference between the photodiode signals represents a magnetic-
field-induced lateral displacement of the beam after passage through the
sample. From (10), it is clear that this displacement can be determined by
subtracting the B0 axis displacement signals for left- and right-circularly
polarized light, according to

S+(B0)− S−(B0)
S

=
2V c0
nω

B0 . (12)

Fig. 2. Schematic setup of the deflection experiment. As shown, the displacement
of the beam in the k×B direction is detected. By rotating the photodiode assembly
over 90◦ along k, the B axis displacement is detected. Taken from Rikken and Van
Tiggelen [19]
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Figure 3 confirms the displacement along the magnetic field, predicted by (9).
Note that the observed deflection is only of the order of 10−7 radians. Our
estimated inaccuracy is well below this value. This is the first experimental
observation of deflection of light in a magnetic field. The good agreement
with theory also gives us confidence in our experimental setup.

A comment on these conclusions was published by ’t Hooft, Nienhuis, and
Paaschens [20]. They argued that exactly in Voigt geometry, the eigenmodes
are both linearly polarized, none of which suffer from magnetodeflection.
They explained our experiments by a “misalignment” of only 10−7mrad of
the magnetic field. Their considerations are correct but do not affect the
magnetodeflection predicted by (12) [21]. Our He–Ne laser has a nearly
diffraction-limited angular divergence of 10−3mrad. The photodiodes mea-
sure the deflection of the intensity weighted wave vector average. Therefore,
only a fraction of 10−4 of the light flux propagates within the critical range.
This fraction will not be deflected. The remainder behaves conform to our
description using circularly polarized eigenmodes. For our experiment, the
improved deflection theory of ’t Hooft et al., therefore, would introduce a rel-
ative correction in the deduced deflection angle of the beam of 10−4, which
is far below the experimental relative uncertainty of this angle (±5× 10−2).

We have also carefully looked for the magnetotransverse bending present
in the Poynting vector (10) and proportional to the magnetic circular dichro-
ism ImV . Experimentally, we found no significant deflection at the level of
two orders of magnitude below the theoretical prediction of (10) [19]. To our

Fig. 3. bB axis displacement δ versus sample length L [laser wavelength 632.8 nm,
sample material is Plexiglas (n = 1.49, V = 4.5mrad/Tm) and magnetic field
strength B = 0.48T.] Dashed line is a linear fit to the data points. Inset shows
the dependence of the deflection angle θ = δ/L on magnetic field strength, also for
Plexiglas. Dashed line is a linear fit to the data points



Manipulating Light with a Magnetic Field 281

knowledge, this is the first time that the widely accepted Poynting vector
definition, its direction in particular, is experimentally proven to be incorrect
and that the more general relation (11) must be invoked. The absence of
a magnetotransverse deflection in homogeneous absorbing media emphasizes
the different impact of a magnetic field on absorbing and scattering media;
as will be shown below, the latter exhibits such a reflection.

It seems indeed possible to find a choice for T that reconciles the energy
flow as expressed by (11) with the group velocity, which in turn is consistent
with our experimental observation. We emphasize that this choice is not
necessarily unique. Although we have not clarified the physical significance of
such remarkable, albeit unavoidable, choices for T , these findings contribute
to the ongoing discussion on the interpretation of the Poynting vector as the
flow of electromagnetic energy [23].

3 Magneto-Optics of Heterogeneous Media

3.1 Single Magneto-Mie Scattering

To undertake a study of magneto-optics of heterogeneous media, one is
obliged first to understand the magneto-optics of one small spherical par-
ticle. Already in the 1970s, Ford and Werner [24] made an extensive study
of magneto-Mie scattering. The small perturbation of the Faraday effect, of
the order of 10−4, to the standard Mie problem [25], justifies a perturbation
theory linear in the magnetic field, quite similar to the standard treatment
of the Zeeman effect in atomic orbitals.

The first-order magneto-optical change in the differential cross section
dσ/dΩ(k → k′) can be guessed from symmetry arguments. Let us consider
a Mie sphere made of a dielectric constant given by (3). Being a scalar,
the magneto cross section linear in B0 must be proportional to either
k · B0, k′ · B0 or det(k,k′,B0). Being pseudoscalars, the first two options
are parity-forbidden. The only expression allowed by symmetry and linear in
the magnetic field is

1
σtot

dσ
dΩ

(k → k′;B0) = F0(θ) + F1(θ) det(k,k′,B0) . (13)

This cross section also obeys the reciprocity principle

dσ
dΩ

(k → k′;B0) =
dσ
dΩ

(−k′ → −k;−B0) . (14)

F0(θ) is the phase function of the conventional Mie problem [25] and — by
rotational symmetry — depends only on the angle θ between k and k′. For
the same reason, F1 can depend only on the angle θ. In [26], we developed
a method for calculating F1(θ). For a Rayleigh scatterer, the Born approxi-
mation can be used which leads to F1(θ) ∼ (V/k) cos θ.
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It is well known that for applications in multiple scattering, the anisotropy
of the cross section is important [6]. For Mie spheres, this anisotropy is quan-
tified by the “anisotropic factor” 〈cos θ〉, which is cos θ averaged over F0(θ).
This factor discriminates forward (cos θ > 0) from backward (cos θ < 0) scat-
tering. In magneto-Mie scattering, a second anisotropy shows up that discrim-
inates “upward” from “downward” scattering (Fig. 4). If the magnetic field is
perpendicular to both the incident and outgoing wave vectors, (13) predicts
a difference between upward and downward flux, both defined with respect
to the magnetotransverse direction k×B0. The magnetoanisotropy η1 of one
scatterer can be quantified exactly as the normalized difference between total
flux upward and total flux downward. An easy calculation yields [26]

η1 ≡ 2π
∫ π

0

dθ sin3 θF1(θ) . (15)

If η1 �= 0, we shall speak of “magnetotransverse light scattering.” No magne-
totransverse anisotropy survives for one Rayleigh scatterer, as can easily be
checked by filling in F1 ∼ cos θ. At least two Rayleigh scatterers are required
to generate a net effect [26], or, alternatively, a Mie sphere with finite size
(Fig. 5).

Fig. 4. Scattering geometry for magnetotransverse scattering from a Mie sphere,
given an incident plane wave from the left

3.2 Multiple Magnetoscattering of Light

In principle, when the medium is heterogeneous, light is scattered and con-
cepts like “Faraday rotation” become ill-defined. Even in a random medium,
it seems possible to define a dielectric constant associated with the “effective
medium”. When small particles of the heterogeneous medium are magnetoac-
tive, the effective medium is undoubtedly magnetoactive as well. The wave
will undergo a Faraday effect on its way from one scatterer to the other. Since



Manipulating Light with a Magnetic Field 283

Fig. 5. Polar plot of the phase function associated with the magneto cross section
of Mie scatterers with size parameter x = 2πa/λ = 5. Solid line denotes positive
magneto cross section, symbols denote negative magneto cross section. Magnetic
field is directed perpendicular to the plot. Taken from Lacoste et al. [26]

the typical distance between two scattering events is typically the mean free
path �, we expect a typical Faraday rotational angle of

α ≈ VeffB� cos θ , (16)

with Veff some effective medium Verdet constant and θ the angle between the
wave vector and the magnetic field. If the matrix is inert and the scatterers
have a Verdet constant V and volume fraction f , the choice Veff ≈ fV does
not a priori seem unreasonable.

Alternatively, the Faraday effect can be understood as a magnetically in-
duced phase shift φ = σVeffB� cos θ of a wave with circular polarization σ.
Since multiple scattering tends to randomize the state of circular polarization,
the magnetic field induces a net zero phase shift of a wave. This excludes the
Faraday effect as a direct phenomenon in multiple scattering. Nevertheless,
novel effects in multiple scattering can exist that have the Faraday effect at
their origin. The typical fluctuation of the magnetically induced phase shift in
multiple scattering,

√〈φ2〉 ≈ |VeffB�|, is likely to be a parameter quantifying
the impact of Faraday effect in multiple scattering, just like the parame-
ter ωcτ (the cyclotron motion executed by an electron during one mean free
time) is known to quantify magnetic effects in electronic transport. Three
magneto-optical scattering phenomena are now known to exist: the photonic
Hall effect, photonic magnetoresistance, and the magnetic supression of co-
herent backscattering.
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The influence of a magnetic field on coherent backscattering will not be
discussed here. Experimental work by Maret et al. demonstrated that in-
terference phenomena in multiple scattering are suppressed by an external
magnetic field due to the broken time-reversal symmetry [27]. The universal
parameter governing the suppression is indeed found to be VeffB0� [28], as
confirmed by numerical simulations [29] and calculations with point scatter-
ers [30] as well as Mie spheres [31].

The physics of multiple scattering can best be understood by adopting
a diffusion picture for the multiply scattered light. This familiar picture as-
serts that the average local current density J is due to a gradient in electro-
magnetic energy density ∇ρ. The so-called Fick’s law reads [6],

J(r) = −D · ∇ρ(r) , (17)

with Dij the diffusion tensor. Because the current and the gradient are both
parity-odd vectors, D must be parity-even. Fick’s law breaks time-reversal
symmetry since D is believed to be a positive definite tensor, and only the
current changes sign upon time-reversal. This symmetry breaking is due to
the ensemble-average that has been assumed implicitly in (17) and makes
macroscopic transport phenomena irreversible.

The impact of a magnetic field on light diffusion can be understood qual-
itatively by realizing that the magnetic field is a pseudovector. Onsager re-
lations apply to transport coefficients and thus also to the diffusion tensor,

Dij(B0) = Dji(−B0) , (18)

so that,

Dij(B0) = D0δij + DH(B0)εijk(B0)k
+D⊥

(
δijB

2
0 − (B0)i(B0)j

)
+ D‖(B0)i(B0)j . (19)

The first term is just the ordinary, isotropic diffusion tensor. The second
term induces an energy current perpendicular to the energy gradient and the
magnetic field, i. e., is magnetotransverse. In analogy to a similar effect for
electrons in disordered semiconductors, we will refer to this as the photonic
Hall Effect (PHE). The last two terms are quadratic in the magnetic field
and make the current along the magnetic field different from that perpen-
dicular. We will call this photonic magnetoresistance (PMR). Similar effects
occur in the so-called Beenakker–Senftleben effect, describing the influence
of a magnetic field on the thermal conductivity of paramagnetic and dia-
magnetic gases [32]. In the following subsections, we discuss the relation of
these macroscopic effects to their microscopic equivalents discussed earlier,
and report on their experimental verification.
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3.3 Theory of Magnetodiffusion

One of the aims of multiple scattering theory is to establish a link between
the macroscopic and the microscopic world. More specifically, we want to
understand, qualitatively and quantitatively, the diffusion tensor (19) from
the magneto cross section of one particle.

A rigorous theory for the photonic Hall effect was recently developed by
Lacoste and Van Tiggelen [33,34]. Using a microscopic transport theory, a re-
lation was found between the photonic Hall effect of one Mie particle, quan-
tified by the parameter η1 in (15), and the magnetotransverse diffusion DH
defined in (19),

DHB0
D0

=
1
2

η1
1− 〈cos θ〉 =

π

1− 〈cos θ〉
∫ π

0

dθ sin3 θF1(θ) . (20)

Such a relation is intuitively reasonable, provided that single scattering is the
basic building block of multiple scattering, which is true when the mean free
path is much bigger than the wavelength. This was assumed in deriving (20).
Perhaps less intuitive is the presence of the average cosine 〈cos θ〉 of the
scattering cross section in (20). This parameter can be very close to one, as for
large dielectric spheres [25], which greatly amplifies the relative importance
of the photonic Hall effect. This factor was absent in an earlier calculation,
which used Rayleigh point scatterers [35] but turned out to be important
to come to a quantitative agreement between theory and experiments. Note
that, by (20), DH/D0 should be independent of the scatterer concentration,
provided it is small enough to ignore cluster effects.

In view of the familiar relation D = 1
3vE�

∗ of the diffusion constant in
terms of the speed of light and the mean free path �∗ [6], one can write the
ratio DHB0/D0 as a ratio of two transport mean free paths. This is more
convenient for later purposes. This ratio can be used to define what we call
the “photonic Hall angle”. In electronic transport, this would be σxy/σxx with
σij the conductivity tensor, directly proportional to the diffusion tensor [36].

In Fig. 6, we show �∗⊥/�∗ as a function of the size parameter, for a contrast
in the index of refraction of m ≡ nS/nm = 1.128, corresponding to CeF3 in
glycerol. For particles sizes around 4 µm, we calculate �∗⊥/�∗ = +0.06VBλ
which, for V = −1100 rad/Tm (at temperature T = 77K) and vacuum wave-
length λ0 = 0.457 µm yields �∗⊥/�∗ = −2× 10−5/T. The experimental value
is �⊥/�∗ ≈ −1.1± 0.3× 10−5/T for a 10 vol.% suspension [22].

A theory for the photonic magnetoresistance, i. e., the diffusion coeffi-
cients D⊥ and D‖ in (19), has so far been developed only for pointlike scat-
terers with Verdet constant V and volume fraction f [37], for which the
prediction is

D⊥
D0

= −12
5

(fV B0�)
2
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Fig. 6. Ratio DH/D0 (photonic Hall angle) of magnetotransverse diffusion to
isotropic diffusion, in units of the dimensionless parameter 2πV B/k, as a func-
tion of size parameter x = ka (a is the particle radius). Solid line corresponds to
Mie spheres with index of refraction m = 1.28; dashed line is the Rayleigh–Gans
approximation, valid as m → 1. Taken from Lacoste and Van Tiggelen [33]

and

D‖
D0

= −6
5
(fV B0�)

2
. (21)

This calculation always implies a negative magnetoconductance (positive
magnetoresistance) proportional to the typical fluctuations in the magnet-
ically induced phase shift between two collisions. This property is expected
to be valid in general. In the dilute regime, the ratios D⊥,‖/D0 are expected
to be independent of the concentration of the scatterers.

3.4 Experiments on Magnetodiffusion

For experimental observation of the photonic Hall effect, scatterers with
a large Verdet constant are required. This can be found in materials con-
taining large concentrations of rare-earth ions like Ce3+, Ho3+, or Dy3+. In
these paramagnetic materials, the Verdet constant is inversely proportional
to temperature and can thus be further enhanced by cooling.

The photonic magnetotransport phenomena were measured by phase-
sensitive detection of the magnetically induced changes in the scattered and
transmitted intensities. An alternating magnetic field B0(t) = B0 cosΩt
with B0 ≈ 1T and Ω ≈ 40Hz was applied perpendicularly to the illumi-
nating and collecting light guides. Monochromatic illumination was provided
by an argon ion laser or with an incandescent lamp in combination with
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a narrow-band interference filter. The scattered light was measured with sil-
icon photo-diodes or photomultipliers outside the magnetic field region (see
Fig.7). Both linear and quadratic magnetic field responses can be measured
this way at the fundamental and second-harmonic frequencies Ω and 2Ω,
respectively. The mean free path �∗ of the light in these scattering media
was determined by measuring their optical transmission T by an integrating
sphere and using T = 1.6 �∗/L, where L is the sample thickness [38].

To deduce the various diffusion coefficients from our measurements, we
have to know their relation to the current emerging from our cylindrical
sample. This engineering part of the experiment was examined by solving the
diffusion equation, with diffusion constant D0 for a cylinder geometry with
radius R and length L, with radiative boundary conditions at the surface and
on the sides [38]. We adopted a source at a depth x0 ≈ � at one side of the
cylinder with a radial profile Jin(R) across the output of the multimode fiber
used in the experiment. The magnetotransverse current can be calculated
from this solution using Fick’s law (17). These calculations demonstrated the
following relation for the normalized photonic Hall effect:

η ≡ Iup − Idown
1
2 (Iup + Idown)

= F

(
L

R

)
�H
R

. (22)

The function F depends only on the ratio of the length and width of the
cylinder, not on the mean free path. For the experimental value L/R = 2.6,
we estimated F ≈ 5. A measurement of η thus gives direct access to the
magneto-transverse transport mean free path �H.

Fig. 7. Schematic setup for the observation of the photonic Hall effect. F = optical
fiber, PD = photo-diode, B is the magnetic field
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The role of sample geometry for the photonic magnetoresistance is easier
to obtain since a slab geometry and an integrating sphere suffice. The total
transmission coefficient, normalized to the one measured without magnetic
field, is obtained from

∆T (B0 =‖,⊥)
T

=
D‖,⊥B20

D0
. (23)

All geometry-dependent factors cancel since they are the same with and with-
out the magnetic field.

3.4.1 Normal Photonic Hall Effect

The photonic Hall effect is qualified by the difference of transverse photon
flux ∆ I⊥ = IL − IR, normalized by the transversely scattered intensity I =
1
2 (IL + IR). This ratio should be proportional to the ratio of the magneto-
transverse mean free path and the transverse dimension, as stated by (22).
We estimate a systematic error of at least a factor of 2 in attributing values
to �H and �∗ on the basis of Fick’s law. Another uncertain factor is the broad
size distribution of the scatterers.

The results shown in Fig. 8 confirm the predicted linear magnetic field de-
pendences of this quantity. By normalizing it by the magnetic field, we obtain
the photonic Hall effect per Tesla which is characteristic for a given scatter-
ing sample. Figure 9 shows the temperature dependence of the photonic Hall
effect per tesla. As the only temperature-dependent parameter in the scat-
tering process is the Verdet constant, the observed linear dependence on the

Fig. 8. Normal photonic Hall effect vs. magnetic field, showing linear behavior.
Sample was EuF2 in resin, observed with light of wavelength λ = 457 nm. Taken
from Rikken et al. [42]
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Fig. 9. Photonic Hall effect (per tesla) vs. temperature. The plot confirms the 1/T
behavior predicted for paramagnetic scatterers. Sample was EuF2 in resin, observed
with light of wavelength λ = 457 nm. Taken from Rikken et al. [42]

inverse temperature confirms the linear relation between η and the Verdet
constant. Figure 10 shows the mean free path �∗ and η as a function of the
volume fraction of scatterers. We see that for large f , where �∗ becomes much
smaller than the sample thickness and we are entering the multiple scatter-
ing regime, the Hall angle seems to become independent of f . The value for
the magnetotransverse scattering length that we deduce at that point, us-
ing (22), is �H/B = −1 nm/T, i. e., �H/�∗ ≈ −1.1× 10−5/T, which is in good
agreement with the Mie theory [33] discussed earlier. The inset shows the
normalized photonic Hall effect for several different scatterers, as a function
of the Verdet constant of the scatterers. The sign of the magnetotransverse
photon flux was deduced from the phase angle of the lock-in. The linear re-
lation that is observed, including the sign, cannot simply be explained by
the linearity with the Verdet constant because the index of refraction also
varies considerably among the different samples. Nevertheless, our magneto-
Mie theory for CeF3 theory reproduces this linearity for the photonic Hall
effect assuming polydisperse samples containing ZnS, Al2O3, TiO2, CeF3,
and EuF2 [34]. The calculated photonic Hall effect changes rapidly as a func-
tion of particle size and can even change sign, but on average, the sign of
the photonic Hall effect reflects the sign of the Verdet constant. The esti-
mated anisotropic factor for our sample equals 〈cos θ〉 ≈ 0.9. Therefore, the
amplification factor 1/(1− 〈cos θ〉) for the photonic Hall effect is significant
and improves theoretical predictions considerably for Rayleigh scatterers [35].
The pertinent role of the sign of the photonic Hall effect makes the analogy
with the behavior of electrons and holes in the electronic Hall manifest again.
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Fig. 10. Photonic Hall effect (per tesla) vs. volume fraction f of CeF3 particles at
a temperature T = 77K. Also plotted is the transport mean free path as a function
of volume fraction (left vertical axis) which decays basically as 1/f (dashed). Taken
from Rikken and Van Tiggelen [21]

In this analogy, the Verdet constant of the scatterer takes over the role of
electronic charge.

3.4.2 Photonic Hall Effect in Inverted Media

So far, we considered media with magnetoactive scatterers in a passive ma-
trix. One might argue that in electronic magnetotransport, the effect of the
magnetic fields occurs mainly between the scattering events. This raises the
question whether a photonic Hall effect exists in “inverted” media, consisting
of passive scatterers in a magnetoactive matrix.

The inverted medium is mathematically much more difficult to handle,
and therefore no theoretical description is available at present. Martinez and
Maynard [29] studied the inverted medium using a Monte-Carlo simulation
but did not treat magnetodiffusion. Intuitively, there is no reason to believe
that the photonic Hall effect differs from that in normal media. For volume
fractions around f ≈ 50%, it is in fact impossible to discriminate between
scatterers and matrix.

In the experiments [39], we used two different matrices, a saturated aque-
ous dysprosium chloride solution and a dysprosium nitrate glass. These are
transparent apart from a few narrow and weak 4f–4f transitions of the
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Dy3+ ion. The following values were found for the optical parameters at
a wavelength of 457 nm: The refractive index of the solution nm = 1.44,
the Verdet constant V = −19 rad/Tm at 300K, the refractive index of the
glass nm = 1.53, and its Verdet constant V = −59 rad/Tm at 300K. Scat-
tering samples were prepared by adding Al2O3 particles to the matrix. The
average size of these particles was 1 µm with a 50% size dispersion. The
refractive index of these scatterers was ns = 1.72. Their volume fraction f
ranged between 0.5 and 10%.

We measured �∗ as a function of the volume fraction f of the solution
samples and found that over a large range of volume fractions, �∗ ∝ f−1.
Figure 11 confirms the predicted linear magnetic field dependence of the
photonic Hall angle. It is important to note that the sign of the photonic
Hall effect in inverted media with paramagnetic scatterers is the same as that
obtained in normal media, where the magneto-optical activity is concentrated
in paramagnetic scatterers. The temperature dependence is implied in Fig. 11.
As the only temperature-dependent parameter in the scattering process is the
Verdet constant, the observed linear dependence on the inverse temperature
confirms the linear relation between the normalized photonic Hall effect and
the Verdet constant of the matrix, which identifies the Faraday effect between
the scatterers as its physical origin.

Fig. 11. Inverted photonic Hall effect vs. the magnetic field and the temperature
(inset). As for the normal photonic Hall effect, the inverted photonic Hall effect is
linear in the magnetic field and inversely proportional to temperature. Sample was
Al2O3 particles with volume fraction f = 4.2% imbedded in a dysprosium nitrate
glass. Wavelength of the light was λ = 457 nm. Taken from Düchs et al. [39]
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Fig. 12. Inverted photonic Hall effect vs. volume fraction of inert Al2O3 scatterers
in a dysprosium nitrate glass, measured at a temperature T = 77K. Taken from
Düchs et al. [39]

The effect of scatterer concentration on the photonic Hall effect is shown in
Fig. 12 for the glass samples. Upon decreasing the scatterer volume fraction,
an increase in the normalized photonic Hall effect is obtained, until at a low
volume fraction, the photonic Hall effect decreases and even changes sign.
The increasing photonic Hall effect with decreasing volume fraction can be
understood as a mean free path effect; Fig. 13 shows the photonic Hall effect
as a function of the mean free path of the high volume fraction samples in
the top panel of Fig. 12. It shows the linear dependence of the photonic
Hall effect on the mean free path as long as this is much smaller than the
sample dimensions, i. e., in the multiple scattering regime. For smaller volume
fractions, i. e., longer mean free paths, this no longer holds and for the lowest
volume fractions, one enters the single scattering regime which apparently
gives an opposite sign for the magnetotransverse photon flux. The volume
fraction at which this turnover occurs is higher for the glass samples because
the refractive index difference between scatterer and matrix is smaller for
these samples; so the mean free path is longer than for a solution sample at
the same scatterer concentration.

For “normal” media, our experiments have shown empirically that the
normalized photonic Hall effect in the multiple scattering regime is pro-
portional to VeffB�∗ for the range of concentrations studied, where Veff =
fVs [22]. We now propose the empirical expression for arbitrary two-
component media in the multiple scattering regime:

η = G[fVs + (1− f)Vm]�∗ . (24)
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Fig. 13. Inverted photonic Hall effect vs. mean free path, measured in the multiple
scattering regime (i. e., relatively large f in Fig. 12). Sample was the same as in
Fig. 12. Taken from Düchs et al. [39]

The factor G can depend only on the shape of the sample, but this was not
studied. For the experiments done so far, the value G ≈ 1×10−2 covers both
the normal and the inverted photonic Hall effect.

3.4.3 Photonic Hall Effect in Absorbing Media

Absorption is a specific property of classical waves and has no equivalent in
charge transport. Therefore, we conducted experiments on the photonic Hall
effect in the presence of absorption [40].

We first investigated the role of absorption in the scatterers. To that end,
we used particles of HoF3, obtained by chemical precipitation, and put them
in a transparent, inert homogeneous matrix. The particles had an average
radius r ≈ 0.5 µm and a broad size distribution between r = 0.2 µm and
r = 5 µm, that was determined using scanning electron microscopy. The
Ho3+ ions have a narrow 4f–4f transition 5I8 →5 F4 around λ ≈ 534 nm. By
varying the wavelength of the diffusing light over a few tens of nanometers,
we were able to scan across the absorption band, thereby strongly varying the
imaginary part of the index of refraction κs, without significantly affecting
the other optical parameters. The real part of the refractive index is ns = 1.6
outside the absorption peak, and it varies only by 0.004 around the absorption
peak.

The absorption spectrum in Fig. 14 was measured with a UV-vis spec-
trometer at room temperature from a thin slab of HoF3 powder dispersed
in an index-matched resin at 23 vol%. The absorption maximum blueshifts
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from λ = 534 nm at T = 300K toward λ = 529 nm at T = 85K. From the
measurements carried out at T = 300K on samples of different thickness,
we concluded that the imaginary part of the refractive index is κs ≈ 0.0012
at λ = 535 nm and T = 300K and the absorption length in the multiple
scattering samples is La ≈ 31± 6 µm at λ = 535 nm. We assumed that these
values stay the same at T = 85K when corrected for the blueshift. Other
optical parameters undergo only minor changes: the Verdet constant of HoF3
is ReVs ≈ 400 rad/Tm and was seen to vary by only 20% across the absorp-
tion band (Fig. 14a). The magnetic circular dichroism ImVs is estimated to
be smaller than 1 rad/Tm [41] in this spectral range. We estimate a variation
∆ �∗/�∗ ≤ 0.25 in the mean free path across the absorption band due to the
change of the complex index of refraction ns + iκs with λ. The resin ma-
trix had a refractive index nm ≈ 1.566 at 589 nm. Samples were prepared by
mixing HoF3 powder at a volume fraction of f = 23% with the liquid resin,
followed by curing. We measured a transport mean free path �∗ ≈ 70±26 µm
in the transparent spectral region of HoF3.

We observed again a linear magnetic field dependence of ∆ I⊥/I⊥. This
linear behavior was independent of the amount of absorption. Figure 15 con-
tains the main result: It shows the normalized photonic Hall effect η as a func-
tion of wavelength around the absorption maximum. Outside the absorption
band, we obtain negative values for η. These values agree in sign and mag-
nitude with the results obtained in [22] and [42] for similar paramagnetic

Fig. 14. Verdet constant (a) and absorption profile (b) for HoF3 powder in
resin, both at room temperature, around a wavelength of 535 nm. Taken from
Wiebel et al. [40]
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Fig. 15. Observed photonic Hall for a HoF3 powder scanned along the absorption
profile. The solid line is the prediction of Mie theory. Taken from Wiebel et al. [40]

scatterers. As the absorption increases, the photonic Hall effect η decreases
to zero and rapidly changes sign around the absorption band center. The sign
change of η seems to occur at the wavelength where La roughly equals �∗.
In the center of the absorption band, we obtain values for the photonic Hall
effect that are roughly four times larger than those measured in the transpar-
ent region of HoF3. At this wavelength, the absorption length La ≈ 31 µm
is smaller than �∗ and much smaller than the sample dimensions. As the
maximum value of the photonic Hall effect coincides with the wavelength of
maximum absorption, we conclude that the observed changes in the photonic
Hall effect are dominated by absorption effects. Variations of other relevant
optical parameters would have led to only minor changes in the photonic Hall
effect.

To investigate the impact of absorption in the medium outside the scat-
terers, we prepared samples of similar, but transparent CeF3 scatterers in the
same resin matrix that was made absorbing by dissolving an organic dye into
it. Values up to κm ≈ 0.001 were obtained this way, i. e., comparable to the
values of κs for the absorbing scatterers in the transparent matrix. We found
no significant variation of the normalized photonic Hall effect η with increas-
ing κm. Quite surprisingly, we see that the role of absorption in the matrix
is very different from that of absorption in the magnetoactive scatterers.

The Mie theory developed by us to calculate the photonic Hall effect of
spherical scatterers of arbitrary size [26,33] allows for the inclusion of absorp-
tion inside the scattering particles but does not allow for absorption in the
matrix. In the calculation, we assume a complex refractive index ns + iκs(λ)
and use κs(λ) obtained from the absorption spectra in Fig. 14, corrected for
the low temperature blueshift. We took ReVs = 400 rad/Tm and �∗ = 70 µm
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and completely disregarded ImVs. The geometry factor F in (22) was kept
constant, although we estimate theoretically that this factor may increase
by perhaps a factor of 2 in the range of absorption covered in this experi-
ment. The broad size distribution of the scatterers was taken into account
by averaging our numerical results over particle sizes between 0.2 and 5 µm.
The results were found quite independent of the exact choice of the particle
size distribution. As shown in Fig. 15, they show good agreement with the
experimental results. Note that no adjustable parameters are used, as all of
them were determined experimentally. The good agreement suggests that the
observed wavelength dependence of the photonic Hall effect η is mainly due
to the effect of absorption on the magneto cross section of one Mie particle.
Our numerical study can be summarized by the simple relation

η = (α + βκs)VsB0�∗ , (25)

where α and β are parameters that may depend on sample geometry, refrac-
tive index contrast, size- and shape-distribution of the scatterers, etc., but
not on the Verdet constant, absorption of the matrix, or magnetic field and
concentration.

3.4.4 Photonic Magnetoresistance

Now that the analogy between the electronic and the photonic Hall effect
seems to be well established, one can wonder whether electronic magnetore-
sistance also has a photonic equivalent. The photonic magnetoresistance was
measured by performing phase-sensitive detection at 2Ω on the magnetically
induced change of the transmitted intensity and normalizing by the total
transmitted intensity. In this experiment, the magnetic field was aligned per-
pendicularly to the direction of transmission (see inset, Fig. 16). This ratio
is then taken equal to the ratio of the magnetoresistive and normal diffusion
coefficients, as expressed by (23). Based on the outcome (21) for Rayleigh
scatterers, we used the relation,

∆T

T
∼ − (fV B0�

∗)2 , (26)

as a starting point for our experiments.
Figure 16 shows our results for the transmission modulation at 2Ω as

a function of the square of the magnetic field amplitude. Both curves, mea-
sured for different particle sizes and for different volume fractions, reveal
a quadratic field dependence. From the lock-in phase, we deduce that for
these samples, the transmission decreases with increasing magnetic field, i. e.,
∆ I/I ∝ −B2.

As in the photonic Hall effect, the explicit dependence of the transmission
modulation on the Verdet constant can be conveniently studied by varying
the temperature. Figure 17 shows the relative transmission modulation at 2Ω
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Fig. 16. Transmission modulation at 2Ω versus the square of the magnetic field
strength. Temperature is 105K. Full symbols represent samples with an average
particle diameter of 2 �m and a volume fraction f = 17%. Open symbols are for
an average particle diameter of 0.4 �m and a volume fraction f = 10%. Lines
are fit to the data points. The inset shows a schematic setup. Light is guided
through an optical fiber F1 (diameter 1mm) to the sample S, which consists of
EuF2 powder in a polymer disk. Forwardly scattered light is collected by a light
guide F2 and detected by a silicon photodiode PD outside the magnetic field region.
The magnetic field is directed perpendicularly to the plane of the drawing. Taken
from Sparenberg et al. [43]

as a function of the square of the inverse temperature at constant magnetic
field. The observed linear dependence confirms the quadratic dependence of
the photonic magnetoresistance on V .

On the basis of (26), we expect that the magnetoresistance should become
independent of f , once we are in the diffusive regime. This is demonstrated
in Fig. 18: for high volume fractions, where �∗ is smaller than the sample
thickness, the observed transmission modulation is independent of f . For
low volume fractions, the mean free path is no longer small compared to the
sample thickness, and diffusion theory should break down. Experimentally, we
see that at low concentrations, the transmission modulation is proportional
to the concentration, which is consistent with what may be anticipated from
low order scattering events. In the diffusive regime, the data shown in Fig. 18
all fall on the same curve when plotted against the square of �∗. This indicates
that that the proportionality factor in (26) is independent of scatterer size.

We conclude that (26) qualitatively covers our observations of photonic
magnetoresistance. This identifies the Faraday effect as the underlying mech-
anism. Now, we come to a quantitative comparison. Using relation (23), we
obtain the value ∆D⊥/D0 ≈ −3 × 10−5T−2 for the 0.4 µm particles and
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Fig. 17. Transmission modulation (magnetoconductance) at 2Ω versus the inverse
square of the temperature. Sample is EuF2 powder in a polymer disk, subject to
a magnetic field of B = 0.36 T. The EuF2 particles have an average diameter of
0.4 �m and volume fraction f = 17%. Solid line is a linear fit to the data points.
Taken from Sparenberg et al. [43]

Fig. 18. Transmission modulation (magnetoconductance) at 2Ω versus the volume
fraction of the EuF2 scatterers, observed at a wavelength λ = 457 nm. Full symbols
represent samples with an average particle diameter of 2 �m, and open symbols
denote an average particle diameter of 0.4 �m. Taken from Sparenberg et al. [43]
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∆D⊥/D0 ≈ −7 × 10−5T−2 for the 2-µm particles at 105K. It is important
to note that the theory of [37] is valid only for monodisperse Rayleigh scat-
terers. The small particles, d ≈ 0.4 µm, are in the Rayleigh–Gans scattering
regime [25], since |ns − nm| � 1 and 2(m− 1)x ≈ 0.4, where x ≡ nmk d/2 is
the so-called size parameter and m ≡ ns/nm. The Rayleigh–Gans theory for
spheres [25] gives, for m = 1.051 and d = 0.4 µm, the value f · �∗ = 25 µm.
The difference from our measurement f · �∗ ≈ 8.3 µm is sufficiently small
to be attributed to systematic errors and polydispersity. By the absence of
a Rayleigh–Gans theory for magnetodiffusion, we shall compare our exper-
imental results to the prediction for monodisperse Rayleigh scatterers, that
follows directly from (21):

∆D⊥
D0

= −243
5

m2 (V d)2

(m2 − 1)4x8
. (27)

For the observed range of diameters 0.3 µm < d < 0.5 µm, (27) provides
a theoretical range −2×10−6T−2 > ∆D⊥/D0 > −4×10−5T−2, which agrees
in sign and order of magnitude with the experimental value ∆D⊥/D0 ≈ −3×
10−5T−2 at 105K. The 2-µm scatterers are no longer in the Rayleigh–Gans
regime, and a prediction on the basis of Rayleigh scattering theory is even less
justifiable. Nevertheless, we emphasize that the scaling relation (26) is found
to apply to all samples that we investigated, which strongly suggests that the
Faraday effect is the universal mechanism of photonic magnetoresistance.

3.4.5 Conclusions and Acknowledgments

This work has attempted to review our theoretical and experimental studies of
the magneto-optics of random media. A magnetic field breaks time-reversal
symmetry in light propagation; the most well-known manifestation of this
breaking is the Faraday effect. Our study therefore contributes to the more
general study of waves in complex media [44] with broken spatial or temporal
symmetries, like human tissue and seismic media, or highly disordered media.
At the same time, since the magnetic field enables us to manipulate the phase
shifts of the multiply scattered light waves externally, magneto-optical studies
are in many ways the “photonic equivalents” of the successful mesoscopic
studies of charge transport in a magnetic field.

Most of this work was carried out in close collaboration with our students
Anja Sparenberg, David Lacoste, Georg Düchs, Sabine Wiebel, Anne Napier-
ala, and Cornelius Strohm whom we would like to thank for their efforts and
enthusiasm. It is a pleasure to thank Profs. Roger Maynard and Peter Wyder
for their continuous interest and support.

Note Added in Proof

Magneto-transverse scattering has recently also been seen for surface-plasmon
polaritons (G. Düchs, A. Sparenberg, G. L. J. A. Rikken, P. Wyder, Phys.
Rev. Lett. 87, 127902-1 (2001)
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