

Trapping quasiparticles in superconducting qubits

G. Catelani

Yale:

Jülich/Aachen:

L. Glazman R. Schoelkopf M. Devoret <u>G. Viola(Chalm</u>ers) R. Riwar A. Hosseinkani CEA Saclay:

P. Bertet M. Stern (Bar Ilan) MIT:

S. Gustavsson W. Oliver

Outline

- intro & background
- single-junction qubits:
 - theory
 - transmon experiments (w/ theory):
 - thermal quasiparticles
 - parity switching & dephasing
- quasiparticle dynamics:
 - vortices
 - normal-metal traps
- summary

Qubits for quantum computation

Qubit: <u>coherent</u>, controllable two-level system

Q: how coherent?

A: coherence time much longer than gate operation time (error correction is possible if ratio $>10^2 - 10^4$)

• one of five requirements: DiVincenzo criteria [Fortschr. Phys. 48, 711 (2000)] (initialization, quantum gates, measurement, scalability)

Physical qubits:

 natural systems (trapped ions & neutral atoms, nuclear spins in molecules, photons, ...)

 solid state devices (charge/spin of electrons in quantum dots, NV centers in diamond, P in Si, <u>superconducting devices</u>, ...)

Superconducting qubits

Many flavors:

- Cooper pair box
- phase qubit
- flux qubit
- quantronium
- transmon
- Iluxonium

۰...

two basic ingredients:

- superconductor (AI, Nb)
- tunnel junction (AIO_x)

Qubit coherence times

Relaxation in superconducting qubits

Possible relaxation mechanisms:

• quasiparticles

intrinsic excitations in a superconductor

Q: are QPs a limiting factor in current experiments?

QPs in a bulk superconductor

density of states:

$$\frac{N_s(E)}{N(0)} = \frac{d\xi}{dE} = \begin{cases} \frac{E}{(E^2 - \Delta^2)^{1/2}} & (E > \Delta) \\ 0 & (E < \Delta) \end{cases}$$

$$\frac{N(E)}{N(0)}$$

$$\frac{N(E)}{V(0)}$$

$$\frac{N(E)}{V(0)}$$
Normal
$$\frac{E - E/T_{eff}}{V(0)}$$

$$\frac{E - E/T_{eff}}{T_{eff}}$$

$$\frac{E - E/T_{eff}}{T_{eff}}$$

$$\frac{E - E/T_{eff}}{T_{eff}} = C$$

AC losses:
$$\sigma'(\omega) \propto n_{\rm qp}$$

 $n_{\rm qp} = 4N(0) \int_{\Delta}^{\infty} dE \frac{E}{\sqrt{E^2 - \Delta^2}} f(E)$
low frequencies: $\omega \ll \Delta$

generalization of Mattis-Bardeen formula PRB 82, 134502 (2010)

Single-junction qubit (no QPs)

Single-junction qubit (with QPs)

qp Hamiltonian

 $\hat{H}_{\rm qp} = \sum_{k} E_k \hat{\gamma}_k^{\dagger} \hat{\gamma}_k$ $E_k = \sqrt{\xi_k^2 + \Delta^2}$ non-degenerate gas of excitations above gap

non-degenerate gas of

qp tunneling

$$\hat{H}_T \sim \tilde{t} \sum \left(i \sin \frac{\hat{\varphi}}{2} \right) \hat{\gamma}_L^{\dagger} \hat{\gamma}_R + \text{H.c.}$$

Transition rates and relaxation $\hat{H} = \hat{H}_{\omega} + \hat{H}_{\mathrm{up}} + \hat{H}_T$ perturbation $\hat{H}_T \sim \tilde{t} \sum \left(i \sin \frac{\hat{\varphi}}{2} \right) \hat{\gamma}_L^{\dagger} \hat{\gamma}_R + \text{H.c.}$ $\omega_{if} = E_i - E_f$ Fermi golden $\Gamma_{i \to f} = 2\pi \sum_{\{\lambda\}_{qp}} \langle \langle |\langle f, \{\lambda\}_{qp} | H_T | i, \{\eta\}_{qp} \rangle |^2 \delta \left(E_{\lambda,qp} - E_{\eta,qp} - \omega_{if} \right) \rangle \rangle_{qp}$ rule: quantum statistical qubit (phase) states qp states averaging cold qp $T_{\rm eff} \ll \omega_{if}$ qp and phase dynamics separate: $\Gamma_{i\to f} = \left| \langle f | \sin \frac{\hat{\varphi}}{2} | i \rangle \right|^2 S_{\rm qp} \left(\omega_{if} \right)$ $S_{\rm qp}(\omega) \propto \frac{1}{\sqrt{\omega}} x_{\rm qp} \propto {\rm Re} Y_{\rm qp}^{hf}$ non-linear qubit-qp qp current qp density admittance interaction spectral density (normalized) (magnitude)

3D Transmon

Transmon exp. 1: thermal qp

transition rate:

$$\Gamma_{1\to 0} = \omega_p \frac{x_{\rm qp}}{2\pi} \sqrt{\frac{2\Delta}{\omega_p}} 2$$

$$x_{\rm qp} = x_{eq} + \underline{x_{ne}}$$

non-equilibrium $qp density < 4x10^{-7}$

thermal qp density

$$x_{eq} = \sqrt{\frac{2\pi T}{\Delta}} e^{-\Delta/T}$$

frequency shift: $\operatorname{Re} \delta \omega(T) = -\frac{1}{2} \omega_p x_{eq} \left(\frac{1}{\pi} \sqrt{\frac{2\Delta}{\omega_p}} + 1 \right)$

Phys. Rev. Lett. 107, 240501 (2011)

Transmon exp. 2: parity switching

D. Riste' et al., Nat. Commun. 4, 1913 (2013)

PRB 89, 094522 (2014)

Transmon exp. 2: parity switching

Dephasing in transmon

D. Riste' et al., Nat. Commun. 4, 1913 (2013)

PRB 89, 094522 (2014)

Partial summary

- evidence for out-of-equilibrium qp
- qp effects on qubits:
 - relaxation
 - pure dephasing
 - frequency shift
- experimental test with transmons:
 - relaxation by thermal qp
 - parity switching
- other tests:
 - fluxonium (qp interference)
 - phase qubit
 - flux qubit

Transmon exp. 3: qp dynamics

Transmon exp. 3: qp dynamics

Transmon exp. 4: normal-metal traps

1. tunneling from S to N, rate Γ_{tr}

2a. relaxation to energy below the gap, rate Γ_r 2b. escape from N to S, rate Γ_{esc} heed relaxation faster than escape for trapping to work

Problem: $\Gamma_{esc} \sim v_{S}(\varepsilon) = \frac{\epsilon}{\sqrt{\epsilon^{2} - \Delta^{2}}}$ diverges near the gap (!)

...but averaging over energies gives finite effective trapping rate Γ_{eff}

• fast relaxation
$$\Gamma_{\rm r} \gg \sqrt{\frac{\Delta}{T_{\rm eff}}} \Gamma_{\rm esc} \longrightarrow \Gamma_{\rm eff} \approx \Gamma_{\rm tr}$$

• slow relaxation $\Gamma_{\rm r} \lesssim \sqrt{\frac{\Delta}{T_{\rm eff}}} \Gamma_{\rm esc} \longrightarrow \Gamma_{\rm eff} \approx \sqrt{\frac{T_{\rm eff}}{\Delta}} \Gamma_{\rm r}$

Effective trapping and diffusion

Transmon exp. 4: normal-metal traps

 $\Gamma_{\rm eff} \approx 242 \rm kHz \quad T_{\rm fr} = 13 m K$ $\Gamma_{\rm eff} \approx 374 \rm kHz \quad T_{\rm fr} = 50 m K$

• slow relaxation $\Gamma_{\rm eff} \approx \sqrt{\frac{T_{\rm eff}}{\Delta}} \Gamma_{\rm r}$

Phys. Rev. B 94, 104516 (2016)

2 traps

- Estimate losses
- Proximity effect

optimal placement for 1 trap

	/
V	\sim
• 🗸	

Summary

- theory of qubit relaxation, dephasing, and frequency shift due to quasiparticles
- valid in and out of equilibrium
- tested in various experiments:
 - transmon
 - fluxonium (qp interference)
 - phase qubit
 - flux qubit
- quasiparticles dynamics & trapping
 - vortices
 - normal islands

 multi-qubit systems, nanowire junctions, atomic point contacts, ...