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Abstract
We study probability distributions of eigenvalues of Hermitian and non-
Hermitian Euclidean random matrices that are typically encountered in the
problems of wave propagation in random media.
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1. Introduction

Random matrix theory is a powerful tool of statistical physics [1] with important applications
in the field of quantum and wave transport in random media [2–4]. A special class of random
matrices are Euclidean random matrices with elements Fij defined with the help of some
function f (ri , rj ): Fij = f (ri , rj ). Here, ri (i = 1, . . . , N ) are randomly chosen points in
the Euclidean space [5, 6]. Euclidean random matrices appear in various physical contexts
and were previously considered to interpret the ‘boson peak’ in supercooled liquids [7] or
to study slow relaxation in glasses and scalar phonon localization [8], to cite a few recent
examples. The purpose of this paper is to study eigenvalue distributions of certain large
Euclidean random matrices that appear in problems of wave propagation in random media.
Because, in the simplest case of scalar waves, the propagation is described by a scalar wave
equation, the function f that will be of interest to us is Green’s function G(ri , rj ) of the
Helmholtz equation(∇2 + k2

0 + iη
)
G(ri , rj ) = −4π

k0
δ(ri − rj ), (1)

where η is a positive infinitesimal. It is easy to check that G(ri , rj ) = exp(ik0|ri −rj |)/k0|ri −
rj |. 1

1 We restrict ourselves to three-dimensional space in this paper.
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Statistical properties of the ensemble of matrices Ĝ with elements Gij = (1−δij )G(ri , rj )

for N � 1 are of primary importance in the context of Anderson localization of
electromagnetic [9–11] and matter [12] waves. The same matrices appear in the studies
of collective spontaneous emission in dense atomic systems [13–17]. The interplay between
Anderson localization and Dicke superradiance can also be described by this ensemble of
matrices [18] and properties of their eigenvalues are important for understanding of random
lasers [19, 20] and dynamic instabilities in nonlinear random media [21]. Meanwhile, the
matrix Ĝ is non-Hermitian, its eigenvalues are complex and their probability distribution is
difficult to access. This is why in several works dealing with superradiance [14, 16–18] the
imaginary part of Ĝ, a matrix with elements sin(k0|ri − rj |)/k0|ri − rj |, was considered. This
real symmetric matrix is much easier to study and in many situations it still contains some of
the important aspects of the full problem. Similarly, the real part of Ĝ, a matrix with elements
cos(k0|ri − rj |)/k0|ri − rj |, is relevant for understanding the collective Lamb shifts in dense
atomic systems [15, 17].

Despite the importance of the three matrices Ĝ, Ŝ = Im Ĝ and Ĉ = Re Ĝ introduced
above, little is known about statistical properties of their eigenvalues. In the general case,
the eigenvalue distribution of Ĝ was studied only numerically [9–11]. Some analytic results
are available in the limit of high density of points ri inside a sphere: ρ = N/V → ∞
[14–17], when the summation in the eigenvalue equation

∑
j Gijψj = λψi can be replaced

by integration. The purpose of this paper is to partially fill this gap by considering eigenvalue
distributions of the three matrices above at finite densities ρ, with the distances between
neighboring points ri that are larger than, comparable, or smaller than the wavelength
λ0 = 2π/k0. This situation is of particular importance in the context of wave propagation
in random media because in order to observe phenomena due to scattering of waves on the
heterogeneities of the medium, the density of scattering centers (or scatterers) should be neither
too low (in this case the scattering is negligible), nor too high (in this case the medium responds
as an effective homogeneous medium). One of the possible experimental realizations of a
strongly scattering system is a cloud of cold atoms in which propagation of quasi-resonant light
(wavelength λ0) is studied2. Nowadays such clouds are routinely created at densities ρλ3

0 � 1,
allowing observation of interesting phenomena due to the multiple scattering of light [22, 23].
This justifies the importance of properly understanding the low-density regime. However,
the most interesting phenomena for waves in an ensemble of point-like scattering centers
are known to take place at densities ρλ3

0 � 1, when interference effects become important,
eventually leading to Anderson localization (see, e.g., [24–26] and references therein). Our
results may be useful for understanding Anderson localization and its interplay with other
collective phenomena (such as Dicke superradiance) [18].

2. Summary of main results

Before presenting the details of calculations, let us list our main results.

• A general framework is developed to deal with Hermitian Euclidean matrices (section 3).
We show how the theory of asymptotically free random variables can be applied in this
context.

• The approach developed in section 3 is applied to study the probability distribution p(λ)

of real eigenvalues λ of the real symmetric random matrix Ŝ corresponding to N points in
a box of side L (section 4). We show that when β = 2.8N/(k0L)2 < 1, p(λ) is given by

2 Light is a vector wave but here we restrict ourselves to a scalar approximation.
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the famous Marchenko–Pastur law with β = varλ as the only parameter. For β > 1, the
Marchenko–Pastur law is no longer applicable.

• The probability distribution p(λ) of real eigenvalues λ of the real symmetric random
matrix Ĉ is studied (section 5). We show that p(λ) depends on two parameters: β and
the number of points per wavelength cube ρλ3

0. Analytic results are in agreement with
numerical simulations for ρλ3

0 � 30 and any β. In the low-density limit ρλ3
0 � 1, p(λ)

exhibits a transition from the Wigner semi-circle law for β � 1 to the Cauchy distribution
for β � 1.

• As the first example of non-Hermitian Euclidean matrices, in section 6, we study the
complex symmetric matrix X̂ = Ĉ + i(Ŝ ′ − Î), where two different and independent sets
of points {ri} and {r′

i} are used to define the matrices Ĉ and Ŝ ′. For β < 1, the probability
distribution of complex eigenvalues λ of X̂ is obtained by combining the results for Ŝ and
Ĉ obtained in sections 4 and 5, respectively, in the framework of the theory of free random
variables. The domain of existence of eigenvalues of X̂ undergoes a transformation from a
circular to a triangular shape as β increases from 0 to 1. For β � 1, numerical simulations
show that the support of the distribution on the complex plane takes an ‘inverted T’ shape.

• The non-Hermitian matrix Ĝ = Ĉ + i(Ŝ − Î) with elements given by Green’s function
of the Helmholtz equation (1) is studied in section 7 by means of extensive numerical
simulations. We find that at low density ρλ3

0 � 30 and for β � 1 the domain of existence
of eigenvalues of Ĝ on the complex plane coincides with that of X̂ and is given by a
circle of radius

√
2β centered at (0, 1

2β). At larger β, the domain remains approximately

a circle with the same center but a larger radius R ≈
√

2β + ( 1
2β)2. When the density ρλ3

0

reaches a critical value of approximately 30, a ‘hole’ opens in the eigenvalue distribution
that otherwise still keeps its circular shape.

• The numerically evaluated marginal distributions of real and imaginary parts of the
eigenvalues λ of the matrix Ĝ roughly follow the laws obtained for the eigenvalues of the
matrices Ĉ (for ρλ3

0 � 30) and Ŝ (for 1
2β < 1), respectively. For 1

2β > 1, the distribution
of 	 = Imλ + 1 approaches the 1/	 law.

• The mean minimum value of Imλ is approximately given by 〈min(Imλ)〉 � −1+2.3/(N×
ρλ3

0)
2/3 for ρλ3

0 � 10 and decays faster at higher densities. The mean maximum value of
Imλ is roughly 〈max(Imλ)〉 � 1

2β + R.

The above mathematical results have important applications in a number of physical
problems of contemporary interest, as discussed in section 8. In particular, they provide an
additional insight into the cooperative spontaneous emission of large atomic clouds (section
8.1), Anderson localization (section 8.2), and random lasing (section 8.3).

3. General framework

Consider a singly-connected three-dimensional region of space V. Let {ψm(r)} be an
orthonormal basis in V, such that∫

V

d3r ψm(r)ψ∗
n (r) = δmn. (2)

We will now show that an arbitrary N × N Euclidean random matrix F̂ with elements

Fij = f (ri , rj ), i, j = 1, . . . , N, (3)

where f is a sufficiently well-behaved function of ri , rj ∈ V , can be represented as

F̂ = Ĥ T̂ Ĥ †. (4)

3
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Here, Ĥ is an N × M matrix with elements

Him =
√

V

N
ψm(ri ). (5)

We use V to denote the considered three-dimensional region of space as well as its volume, T̂

is an M × M matrix to be defined below, and the dagger ‘†’ denotes Hermitian conjugation.
The size M of the matrix T̂ can be arbitrary and, in fact, M will be infinite for the majority of
functions f (ri , rj ).

To establish (4), we write the ij th element of the matrix F̂ explicitly as

Fij = V

N

∑
m,n

Tmnψm(ri )ψ
∗
n (rj ), (6)

where we used (5) and the definition of matrix multiplication. Multiplying this equation by
ψ∗

m′(ri )ψn′(rj ), integrating over ri and rj , and using the orthogonality of the basis functions
ψm(r), we readily obtain

Tmn = N

V

∫
V

d3ri

∫
V

d3rj f (ri , rj )ψ
∗
m(ri )ψn(rj ). (7)

It is easy to check that with the elements Tmn of T̂ defined by (7), (4) is indeed obeyed.
When the points {ri} are randomly chosen inside V, F̂ and Ĥ become random matrices,

whereas T̂ is always a non-random matrix independent of {ri} and determined uniquely by the
function f , the region V, and the choice of the orthonormal basis {ψm(r)}. We will limit our
consideration to the case when the spatial integral of any basis function ψm(r) that contributes
to (6) vanishes3:∫

V

d3r ψm(r) = 0. (8)

The elements Him of Ĥ are then independent random variables having zero means and variances
equal to 1/N :

〈Him〉 = 1

V

∫
V

d3ri

√
V

N
ψm(ri ) = 0, (9)

〈HimH ∗
jn〉 = 1

V 2

∫
V

d3ri

∫
V

d3rj

V

N
ψm(ri )ψ

∗
n (rj ) = 〈Him〉〈H ∗

jn〉 = 0, i �= j, (10)

〈HimH ∗
in〉 = 1

V

∫
V

d3ri

V

N
ψm(ri )ψ

∗
n (ri ) = δmn

N
. (11)

The representation (4) is very useful because it can be dealt with using the powerful
mathematical arsenal of the so-called free random variable theory [27–29]. Without going
into details, we remind the reader that for random matrices, the notion of asymptotic freeness
[27] is equivalent to the notion of statistical independence that we are familiar with for random
variables. Three fundamental objects of the free random variable theory, defined for any
Hermitian matrix F̂ , will be useful for us in this paper: the usual Green’s function

G(z) = 1

N

〈
Tr

1

z − F̂

〉
, (12)

3 This restricts the class of functions f (ri , rj ) to which our analysis applies but will be sufficient for us here.
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the Blue function B(z) equal to the functional inverse of G(z):

B[G(z)] = z, (13)

and the S-transform of the probability distribution of eigenvalues defined through an auxiliary
function χ(z):

S(z) = 1 + z

z
χ(z), (14a)

1

χ(z)
G
[

1

χ(z)

]
− 1 = z. (14b)

If two Hermitian random matrices Â and B̂ are asymptotically free, the Blue function
BĈ(z) of their sum Ĉ = Â+B̂ is equal to the sum of individual Blue functions BÂ(z) and BB̂(z),
minus 1/z. The S-transform of the matrix product Ĉ = ÂB̂ can be found by multiplying the
individual S-transforms of Â and B̂. Once the Blue function or the S-transform corresponding
to the random matrix Ĉ is found, its Green’s function G(z) can be calculated either from (13)
or from (14a) and (14b). The probability density of the eigenvalues λ of Ĉ is then determined
in the usual way:

p(λ) = − 1

π
lim
ε→0+

ImG(λ + iε). (15)

The functions G(z), B(z) and S(z) all contain the same full information about the statistical
distribution of eigenvalues λ as p(λ). Green’s function can be represented as a series
with coefficients in front of consecutive powers of 1/z equal to statistical moments of λ:
G(z) = ∑∞

n=0〈λn〉/zn+1. We have, therefore,

〈λn〉 = 1

(n + 1)!

dn+1G(z)

d(1/z)n+1

∣∣∣∣
z→∞

, (16)

where z is assumed real. Using this equation and (13), we readily derive an expression for
〈λn〉 in terms of B(z):

〈λn〉 = 1

(n + 1)!

[
−B2(z)

B ′(z)
d

dz

]n [
−B2(z)

B ′(z)

]∣∣∣∣∣
z→0

, (17)

where B ′(z) = dB(z)/dz. If we introduce the R-transform R(z) = B(z) − 1/z [28], the
average eigenvalue and the variance become 〈λ〉 = R(0) and varλ = 〈(λ−〈λ〉)2〉 = R′(z)|z→0,
respectively.

For matrices F̂ of the form (4), the free random variable theory provides a number of
mathematical theorems that we will exploit in this paper. In particular, one shows [28] that

SF̂ (z) = 1

z + M/N
ST̂

(
N

M
z

)
, (18)

if T̂ is a Hermitian non-negative random matrix independent of Ĥ and the limits N, M → ∞
are taken at a constant M/N . Using (18), we derive a relation between the Blue function of F̂

and Green’s function of T̂ :

BF̂ (z) = 1

z

{
1 +

M

N

[
1

z
GT̂

(
1

z

)
− 1

]}
. (19)

A particular case that we will consider in the remainder of this paper is when the region
V is a square box of side L (see figure 1(a)). A convenient set of basis functions is then given
by ‘plane waves’:

ψm(r) = 1√
V

eiqm·r, (20)

5
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(a) (b)

Figure 1. (a) We consider N points randomly distributed in a 3D cube of side L. (b) Regions in the
Fourier space. For the sinc random matrix, only region 2 contributes to the matrix T̂ . In contrast,
for the cosc random matrix, T̂ has contributions from regions 1 and 3 but not from region 2.

where qm = {qmx
, qmy

, qmz
}, qmx

= mx�q with mx = ±1,±2, . . . (and similarly for qmy
and

qmz
), and �q = 2π/L. Equation (7) is then simply a double Fourier transform of the function

f (ri , rj ) in the box and the representation (4) stems from the Fourier series expansion of
f (ri , rj ), without the harmonics corresponding to qm = 0.

4. Eigenvalue distribution of the sinc matrix

We start by considering the real symmetric N × N Euclidean matrix F̂ = Ŝ with elements
defined through the cardinal sine (sinc) function:

Sij = f (ri − rj ) = sin(k0|ri − rj |)
k0|ri − rj | . (21)

Here, k0 is a constant and the vectors ri define positions of N randomly chosen points inside a
3D cube of side L.

The first important property of the matrix Ŝ is the positiveness of its eigenvalues: λ > 0.
Indeed, the Fourier transform of the function f (�r) in (21) is positive and hence f (�r) is a
function of positive type. An Euclidean matrix defined through a function of positive type is
positive definite and hence has only positive eigenvalues. The matrix T̂ corresponding to Ŝ

can be found from (7):

Tmn = N

V 2

∫
V

d3r1

∫
V

d3r2
sin(k0|r1 − r2|)

k0|r1 − r2| e−iqmr1+iqnr2 . (22)

Unfortunately, it is impossible to calculate this double integral exactly in a box. However,
introducing new variables of integration R = 1

2 (r1 + r2) and �r = r2 − r1, and limiting the
integration over �r to the region |�r| < L/2α, with α ∼ 1 a numerical constant to be fixed
later, we obtain an approximate result

Tmn � N

V 2

∫
V

d3R e−i(qm−qn)R
∫

|�r|<L/2α

d3�r
sin(k0�r)

k0�r
ei(qm+qn)�r/2

= δmn

2π2N

k0qmV

L

2απ

{
sinc

[
(qm − k0)

L

2α

]
− sinc

[
(qm + k0)

L

2α

]}
. (23)

This expression is still too involved to be useful. In order to simplify it, we note that the second
sinc function in (23) is always smaller than 2α/k0L (because qm = |qm| > 0 and k0 > 0) and
hence can be dropped in the limit of large k0L � 1 considered in this paper. Furthermore,

6
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because the first sinc function in (23) is peaked around qm = k0, we replace it by a boxcar
function �[(qm − k0)L/2απ ], where �(x) = 1 for |x| < 1

2 and �(x) = 0 otherwise. The
coefficient in front of (qm −k0) in the argument of � is chosen to ensure that the integral of the
latter over qm from 0 to ∞ is equal to the same integral of the sinc function. We then obtain

Tmn � 2π2N

k2
0V

L

2απ
�

[
(qm − k0)

L

2πα

]
δmn (24)

which is different from zero only for qm’s inside a spherical shell of radius k0 and thickness
2πα/L (i.e. in region 2 of figure 1(b)). In addition, for all qm’s inside the shell the value of
Tmn is the same and is equal to N/M , with M = α(k0L)2/π � 1 being the number of qm’s
inside the shell. Equation (4) then yields

Ŝ = N

M
ĤĤ † (25)

which is equivalent to (4) with an M × M matrix T̂ = (N/M)Î, where Î is the identity
matrix. We then readily find GT̂ (z) = (1/M) Tr[z − (N/M)Î]−1 = (z − N/M)−1 and from
(19): BŜ(z) = (1 − βz)−1 + 1/z with β = N/M . This is the Blue function of the famous
Marchenko–Pastur law [28, 30]:

p(λ) =
(

1 − 1

β

)+

δ(λ) +

√
(λ − λmin)+(λmax − λ)+

2πβλ
, (26)

where λmin,max = (1 ∓ √
β)2 and x+ = max(x, 0). The distribution of eigenvalues of the

matrix (21) is therefore parameterized by a single parameter β equal to the variance of this
distribution, as it is easy to check from (26): var(λ) = β.

Although we derived (26) using the machinery of free random variables applied to
Euclidean matrices as discussed in section 3, it represents a somewhat trivial example of
application of this technique because the matrix T̂ in (4) turns out to be proportional to the
identity matrix Î. Equation (26) was first derived long before the theory of asymptotically
free random variables was introduced [30]. It can be established using various approaches,
such as, e.g., the diagrammatic technique [31]. However, to our knowledge, the fact that this
distribution describes eigenvalues of the Euclidean matrix Ŝ was never noticed before. The
advantage of using the free random variable theory to study Euclidean random matrices is
that (26) now appears as a special (and apparently the most trivial) case of a wide class of
distributions describing matrices of the form (4).

Note that despite the fact that our derivation of (26) was based on several approximations,
the average value of λ, 〈λ〉 = 1, following from this equation is exact. The second moment of
λ can also be found directly from (21). For k0L � 1 and in the limit N → ∞, we find

〈λ2〉 = 1

N
〈Tr Ŝ2〉 = 1 +

aN

(k0L)2
, (27)

where the numerical constant a is given by

a = 1

2

∫
unit cube

d3u1

∫
unit cube

d3u2
1

|u1 − u2|2 � 2.8, (28)

with the integrations running over the volume of a cube of unit side. By requiring that the
second moment 1 + β of the distribution (26) coincides with (27), we can now fix the value of
α that remained arbitrary until now. We obtain α = π/a � 1.12 and

β = 2.8N

(k0L)2
. (29)

In figure 2, we present a comparison of (26) with the results of direct numerical
simulations. The latter amounts to generating N random points ri inside a 3D cube, using

7
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Figure 2. Probability density of eigenvalues of a square N × N Euclidean matrix Ŝ with elements
Sij = sin(k0|ri − rj |)/k0|ri − rj |, where the N points ri are randomly chosen inside a 3D cube of
side L. Numerical results (blue solid lines) obtained for N = 104 after averaging over 10 realizations
are compared to the Marchenko–Pastur law (26) (red dashed lines) with β = 2.8N/(k0L)2 for
several densities ρ of points (λ0 = 2π/k0).

these points to define a random N × N matrix Ŝ according to (21), and to diagonalizing Ŝ

using the standard software package LAPACK [32]. The procedure is repeated several times
and a histogram of all eigenvalues λ is created. This histogram approximates the eigenvalue
distribution p(λ). As we see from figure 2, the agreement between numerical results and the
Marchenko–Pastur law (26) is good for β < 1 but (26) fails to describe p(λ) when β becomes
larger than unity. The reason for this is easy to understand if we go back to (22), (23) and
(24). Indeed, when we approximate the result of integration in (22) by (24), we reduce the
infinite-size matrix T̂ to a matrix of finite size M × M . By definition, the rank of the latter
matrix is inferior or equal to M. The rank of Ŝ = Ĥ T̂ Ĥ † cannot be larger than the rank of
T̂ and hence is also bounded by M from above when we use (24). When β > 1, implying
M < N , the representation (4) only gives us access to M of N eigenvalues of Ŝ, which is not
sufficient to reconstruct the probability density p(λ). In order to access the regime of β > 1,

one needs to find a better approximation to (22) than (24).
Note that the eigenvalue distribution of the matrix Ŝ has been studied numerically by

Akkermans et al in the context of light propagation in atomic gases (see figure 1 of [18])
without proposing any analytical approximation to it. The parameter β ∼ N/(k0L)2 has been
introduced in that work as a ratio of the number of atoms N to the number of transverse optical
modes N⊥ ∝ (k0L)2. The same parameter appeared in [14–17] as a super-radiant decay rate
in a cold atomic gas. Hence, the results of this section complement and extend the works
[14–18].

8
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5. Eigenvalue distribution of the cosc matrix

Let us now consider an Euclidean random matrix with elements defined using the cardinal
cosine (cosc) function:

Cij = f (ri − rj ) = (1 − δij )
cos(k0|ri − rj |)

k0|ri − rj | . (30)

The prefactor 1 − δij allows us to deal with the divergence of the function cos(x)/x for
x → 0. However, in the beginning of our analysis, we will ignore this prefactor and will use
Cij = cos(k0|ri − rj |)/k0|ri − rj | for all i, j (the diagonal elements of Ĉ are thus infinite).
Proceeding as in the previous section, we find

Tmn � 4πN

k0V

1

q2
m − k2

0

δmn (31)

under the same approximations as in (23) (i.e., we extended integration over �r to the whole
space). The matrix T̂ defined by (31) has infinite size.

The divergence of (31) for qm → k0 can be traced back to the neglect of the finiteness of
the volume V when extending integration over �r to the whole space. Taking into account the
fact that �r cannot exceed a maximum value of the order of L, the divergence is regularized
and the resulting Tmn changes sign rapidly but continuously in a strip of width ∼ 1/L around
qm = k0. In the following, we will neglect the contribution of qm’s inside the spherical shell
corresponding to this strip because (i) the shell has small thickness in the limit of k0L � 1 that
we are interested in and (ii) qm’s situated symmetrically with respect to the surface qm = k0

yield contributions of roughly equal magnitudes but opposite signs which approximately
cancel. More precisely, we will exclude a shell of thickness 2πα′/L around qm = k0 and will
use (31) outside this shell (see figure 1(b)). The numerical constant α′ ∼ 1 will be fixed later.
The matrix Ĉ therefore takes the form

Ĉ = −Ĥ (1)T̂ (1)Ĥ (1)† + Ĥ (3)T̂ (3)Ĥ (3)†. (32)

Here, the first term describes the contribution of qm < k0 − α′π/L with
T (1)

mn = 4πN/[k0V (k2
0 − q2

m)]δmn. The matrix T̂ (1) is a diagonal square matrix
of size M1 � (4π/3)(k0 − α′π/L)3(L/2π)3 obtained by dividing the volume of
a sphere of radius k0 − α′π/L (region 1 corresponding to the inner sphere in
figure 1(b)) by the volume (2π/L)3 associated with a single mode. The second term in (32)
corresponds to qm > k0 + α′π/L (region 3 in figure 1(b)). The matrix T̂ (3) is, again, diagonal,
with elements T (3)

mn = 4πN/[k0V (q2
m − k2

0)]δmn but, in contrast to T̂ (1), has infinite size. We
will treat this matrix as a finite-size matrix of size M3 � (4π/3)[q3

max−(k0+α′π/L)3](L/2π)3,
corresponding to taking into account only qm � qmax. The limit of qmax → ∞ will be taken
at the end. The minus sign in front of the first term in (32) was introduced to work with a
positive-definite matrix T̂ (1).

Green’s function of the matrix T̂ (1) is

GT̂ (1) (z) = 1

M1
Tr

1

z − T̂ (1)

= 1

M1

∑
qm<k0−α′π/L

1

z − 4πN
k0V

1
k2

0−q2
m

� 4πN

M1(ρλ3
0)

∫ 1− α′π
k0L

0
dκ κ2 1

z − ρλ3
0

2π2
1

1−κ2

, (33)

where the wavelength λ0 = 2π/k0 and ρλ3
0 is the average number of points ri per wavelength

cube. The last line of this equation was obtained in the limit of k0L � 1 by approximately
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replacing the summation over a set of discrete wavevectors qm by integration over κ = qm/k0.
The integral in (33) can be evaluated yielding

GT̂ (1) (z) = 2N

πM1z

{(
1 − α′π

k0L

)[
2π2

3ρλ3
0

(
1 − α′π

k0L

)2

− 1

z

]

+
1

z

√
ρλ3

0

2π2z
− 1 arctan

1 − α′π
k0L√

ρλ3
0

2π2z
− 1

⎫⎬
⎭ . (34)

A similar calculation can be performed for Green’s function of T̂ (3) except that the integration
in (33) extends from 1 + α′π/k0L to κmax, M1 is replaced by M3, and 1 − κ2 in the integrand
of (33)—by κ2 − 1. We find

GT̂ (3) (z) = 2N

πM3z

{[
κmax −

(
1 +

α′π
k0L

)][
2π2

3ρλ3
0

(
κ2

max

+

(
1 +

α′π
k0L

)(
κmax + 1 +

α′π
k0L

))
+

1

z

]

+
1

z

√
− ρλ3

0

2π2z
− 1

⎡
⎣arctan

1 + α′π
k0L√

− ρλ3
0

2π2z
− 1

− arctan
κmax√

− ρλ3
0

2π2z
− 1

⎤
⎦
⎫⎬
⎭ . (35)

Because the two terms in (32) correspond to contributions of different parts of q-space, they
are asymptotically free and hence the Blue function of their sum (i.e. of the matrix Ĉ) can be
found as a sum of their respective Blue functions. The Blue functions of Ĥ (1)T̂ (1)Ĥ (1)† and
Ĥ (3)T̂ (3)Ĥ (3)† are found using (19), whereas the Blue function of −Ĥ (1)T̂ (1)Ĥ (1)† is equal to
−BĤ(1)T̂ (1)Ĥ (1)†(−z). The Blue function of the sum Ĉ = −Ĥ (1)T̂ (1)Ĥ (1)† + Ĥ (3)T̂ (3)Ĥ (3)† is a
sum of individual Blue functions, minus 1/z:

BĈ(z) = −BĤ(1)T̂ (1)Ĥ (1)†(−z) + BĤ(3)T̂ (3)Ĥ (3)†(z) − 1/z

= 1

z
+

2κmax

π
− ρλ3

0

2π2β ′ +
2

π

√
−1 − ρλ3

0

2π2
z

×
⎡
⎣arctan

1 + ρλ3
0

8πβ ′√
−1 − ρλ3

0
2π2 z

− arctan
1 − ρλ3

0
8πβ ′√

−1 − ρλ3
0

2π2 z

− arctan
κmax√

−1 − ρλ3
0

2π2 z

⎤
⎦, (36)

where β ′ = πN/α′(k0L)2.
The final step consists in taking the limit κmax → ∞. We now recall that up to now

we ignored the fact that the matrix Ĉ had zero diagonal elements Cii = 0. Instead, we
considered a matrix with infinitely large diagonal elements. Such a matrix naturally has infinite
eigenvalues and to go back to the case of Cii = 0, we have to shift the eigenvalues to the left.
To determine the exact shift, we compute the average of λ from (36) using (17) and subtract
it from (36) because we know that for the matrix Ĉ defined by (30), 〈λ〉 = (1/N)〈Tr Ĉ〉 = 0
exactly4. We then compute the second moment 〈λ2〉 and require that its value in the limit of
ρλ3

0/β
′ ∝ 1/k0L → 0 is equal to β defined by (29). This fixes β ′ = (π2/4)β corresponding

4 Subtracting a constant from the Blue function B(z) results in shifting the eigenvalue distribution p(λ).
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Figure 3. Probability density of eigenvalues of a square N ×N Euclidean matrix Ĉ with elements
Cij = (1 − δij ) cos(k0|ri − rj |)/k0|ri − rj |, where the N points ri are randomly chosen inside a
3D cube of side L. The left panel corresponds to the low-density limit and is obtained using (38)
with β = 0.1, 0.5 and 5. The distributions are symmetric and vanish for |λ| > λ∗ with λ∗ given
by (39). The right panel illustrates our equation (40) obtained in the high-density limit for two
densities ρλ3

0 = 20 and 50. For ρλ3
0 > 30.3905, the distribution develops a gap in between λ1 and

λ2 given by (41) and (42), respectively.

to α′ � 0.45. The final expression for the Blue function of Ĉ is

BĈ(z) = 1

z
− 2

π
arccoth

4π3β

ρλ3
0

+
2

π

√
−1 − ρλ3

0

2π2
z

×
⎡
⎣arctan

1 + ρλ3
0

2π3β√
−1 − ρλ3

0
2π2 z

− arctan
1 − ρλ3

0
2π3β√

−1 − ρλ3
0

2π2 z

− π

2

⎤
⎦ . (37)

Green’s function GĈ(z) can be found from this equation by solving BĈ[G(z)] = z which, for
the general case, we do numerically.

Let us consider the low-density limit of (37), ρλ3
0 � 1. For the large box size L � 1/k0,

the arguments of arctan functions in (37) are close to −i. They can be thus expanded in series
in the vicinity of this point. In the resulting expression, we take the limits of ρλ3

0 → 0 and
ρλ3

0/β ∼ 1/k0L → 0 to obtain

BĈ(z) = 1

z
− 1

π
ln

1 − π
2 βz

1 + π
2 βz

, ρλ3
0 � 1. (38)

This expression has two important limits. For β � 1, we find BĈ(z) = βz + 1/z which is
the Blue function of the Wigner semi-circle law p(λ) =

√
4β − λ2/2πβ. In the opposite

limit of β � 1, we have BĈ(z) = −i + 1/z, which corresponds to the Cauchy distribution
p(λ) = 1/[π(1 + λ2)]. Equation (38) therefore describes a transition from the Wigner semi-
circle law at β � 1 to the Cauchy distribution at β → ∞. The eigenvalue distribution
following from (38) is always symmetric with respect to λ = 0 and vanishes for |λ| > λ∗ (see
the left panel of figure 3). The latter can be found by using the relation p(λ) ∝ ImG(z = λ+iε)
and the link between G(z) and B(z). Simple reasoning shows that the boundary λ∗ of the
domain of existence of eigenvalues is the solution of equation B ′

Ĉ
(z) = 0 [33]:

λ∗ =
√

β

(
1 +

π2

4
β

)
+

2

π
arccoth

√
1 +

4

π2β
. (39)

This equation simplifies to λ∗ = 2
√

β for β � 1 and to λ∗ = π
2 β for β � 1.
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Figure 4. Probability density of eigenvalues of a square N ×N Euclidean matrix Ĉ with elements
Cij = (1 − δij ) cos(k0|ri − rj |)/k0|ri − rj |, where the N points ri are randomly chosen inside a
3D cube of side L. Numerical results (blue solid lines) obtained for N = 104 after averaging over
10 realizations are compared to our equation (37) (red dashed lines) with β = 2.8N/(k0L)2 for
several densities ρ of points (λ0 = 2π/k0).

Another important limit of (37) is that of high density ρλ3
0 � 1 of points in a large box

L � 1/k0. In this limit, the arguments of arctan functions in (37) are small and we can put
arctan x � x. Taking the limit of ρλ3

0/β ∼ 1/k0L → 0, we then obtain

BĈ(z) = 1

z
+ i

√
1 +

ρλ3
0

2π2
z, ρλ3

0 � 1. (40)

For ρλ3
0 below a critical value (ρλ3

0)c = 30.3905, the eigenvalue distribution corresponding
to (40) is asymmetric but bell-shaped, similar to the case of low density. For ρλ3

0 > (ρλ3
0)c,

however, the distribution develops a gap: p(λ) = 0 for λ1 < λ < λ2, where λ1,2 = BĈ(z1,2)

with z1,2 being solutions of B ′
Ĉ
(z) = 0 (see the right panel of figure 3). In the limit of

ρλ3
0 � (ρλ3

0)c, we have

λ1 � −ρλ3
0

2π2
− π2

2ρλ3
0

, (41)

λ2 � − 3

2π2/3
(ρλ3

0)
1/3 +

π2/3

2(ρλ3
0)

1/3
+

π2

6ρλ3
0

. (42)

In figure 4, we compare p(λ) following from (37) with the results of numerical simulations.
We find Green’s function GĈ (z) by solving the equation BĈ[GĈ(z)] = z numerically and then
evaluate the probability distribution of eigenvalues p(λ) with the help of (15). When β → 0,
the distribution p(λ) tends to the Wigner semi-circle law. In contrast, for large β > 1, it

12
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resembles a Cauchy distribution. A good agreement between numerical results and (37) is
observed not only for β < 1 (similarly to the case of the sinc matrix in section 4) but also
for β > 1. Note that in contrast to the Marchenko–Pastur law (26) parameterized by a single
parameter β, Green’s function (37) and the corresponding probability distribution depend on
the two parameters β and ρλ3

0. A good agreement between (37) and numerical simulations is
obtained at low densities ρλ3

0 < 30 (see figure 4). In contrast, at higher densities ρλ3
0 � 30

(not shown), the probability distribution following from (37) develops a gap that is not present
in numerical results. Interestingly, this gap in the probability distribution appears at the same
density ρλ3

0 ≈ 30 for all β.

6. Eigenvalue distribution of the cosc + i sinc matrix

The matrices Ĉ and Ŝ can be combined in a single complex non-Hermitian matrix: Ĉ+i(Ŝ− Î).
The theory of free random variables [27] allows one to study the statistical distribution of the
complex eigenvalues of this matrix based on the properties of the matrices Ĉ and Ŝ that we
considered in the previous sections [34]. This, however, requires asymptotic freeness of Ĉ and
Ŝ. Unfortunately, the matrices Ŝ and Ĉ defined by (21) and (30) through the same set of points
{ri} turn out to be not asymptotically free. We therefore start our study of non-Hermitian
Euclidean random matrices by the case of a matrix X̂ = Ĉ + i(Ŝ ′ − Î), where two different and
independent sets of points {ri} and {r′

i} are used to define the real and imaginary parts of X̂:

Cij = (1 − δij )
cos(k0|ri − rj |)

k0|ri − rj | ,

S ′
ij = sin(k0|r′

i − r′
j |)

k0|r′
i − r′

j |
.

(43)

The matrix X̂ defined in this way is similar to the matrix Ĝ defined in the introduction
except that it has no correlation between its real and imaginary parts. Using the definition of
asymptotic freeness [27, 28], it is easy to check that the matrices Ĉ and Ŝ ′ are asymptotically
free, in agreement with the intuitive definition of freeness as statistical independence. One can
easily show that for the same reason as the one that ensured positiveness of the eigenvalues of
the matrix Ŝ in section 4, the complex eigenvalues λ of the matrix X̂ obey Im λ > −1.

For non-Hermitian matrices, Green’s function loses its analyticity inside two-dimensional
domains (islands) on the complex plane, instead of segments of the real axis in the Hermitian
case. In [34], Jarosz and Nowak provide a simple algorithm, based on the algebra of
quaternions, to calculate the non-holomorphic Green’s function GX̂(z) and the correlator
of left |Li〉 and right |Ri〉 eigenvectors [35] CX̂(z) = −(π/N)

〈∑N
i=1〈Li |Li〉〈Ri |Ri〉δ(z − λi)

〉
inside these domains for any non-Hermitian matrix of the form X̂ = Ĥ1 + iĤ2, where Ĥ1 and
Ĥ2 are two asymptotically free Hermitian matrices with known Blue functions. In our case,
Ĥ1 = Ĉ and Ĥ2 = Ŝ ′ − Î. In the limit of β � 1, the Blue functions are B1(z) = βz + 1/z

(section 5) and B2(z) = 1/(1 − βz) − 1 + 1/z (section 4). GX̂(z) and CX̂(z) can be then found
analytically:

GX̂(z = x + iy) = x

2β
− i

2

[
y

β(1 + y)
+

1

2 + y

]
, (44)

CX̂(z = x + iy) =
(

x

2β

)2

+
1

4

[
y

β(1 + y)
− 1

2 + y

]2

− 1

β(1 + y)(2 + y)
. (45)

The correlator (45) must vanish on the borderline of the eigenvalue domains. We therefore
readily obtain an equation for the borderline of the domain of existence of eigenvalues of X̂
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Figure 5. Density plot of the logarithm of the probability density of eigenvalues λ of a square
N×N Euclidean matrix X̂ with elements Xij = (1−δij )[cos(k0|ri −rj |)/k0|ri −rj |+i sin(k0|r′

i −
r′
j |)/k0|r′

i − r′
j |] at four different densities ρ of points ri , ri

′ per wavelength λ0 = 2π/k0 cube.

2N = 2 × 104 points ri and r′
i (i = 1, . . . , N ) are randomly chosen inside a 3D cube; the

probability distributions are estimated from ten realizations of {ri} and {r′
i}. Dashed lines show

the domain of existence of eigenvalues following from the free probability theory.

on the complex plane:

x2 +

(
y

1 + y
− β

2 + y

)2

− 4β

(1 + y)(2 + y)
= 0, (46)

where x = Re λ and y = Im λ. The probability density inside this domain is

p(x, y) = 1

2π
[∂xReGX̂(x, y) − ∂yImGX̂(x, y)]

= 1

4π

[
1

β
+

1

β(1 + y)2
− 1

(2 + y)2

]
. (47)

A better model for the Blue function of the matrix Ĉ is (38). If we use this equation instead
of B1(z) = βz + 1/z above, analytic calculation becomes impossible but we can still compute
GX̂(z) and CX̂(z) numerically. The resulting borderline of the eigenvalue domain is shown in
figure 5 (dashed lines) together with the eigenvalue distribution of the matrix X̂ = Ĉ +i(Ŝ ′ − Î)

found by the numerical diagonalization of a set of 104 × 104 random matrices. At the smallest
density considered ρλ3

0 = 0.01, the borderline found using (38) is very close to (46). At higher
densities the former describes numerical results much better than (46). Equation (46) predicts
a splitting of the eigenvalue domain into two parts at β = 8. The more accurate calculation
using (38) makes a similar prediction (see the lower right panel of figure 5). However, the
eigenvalues of the matrix X̂ do not show such a splitting and form an ‘inverted T’ distribution
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on the complex plane instead. This is due to the fact that the Marchenko–Pastur law (26) fails
to describe the eigenvalue distribution of the matrix Ŝ ′ at β > 1 and hence the Blue function
1/(1 − βz) + 1/z that we assumed for Ŝ ′ is no longer a good approximation.

It is worth noting that large random non-Hermitian matrices similar to our matrix X̂ were
considered previously by Haake et al [36] (with the help of the replica trick), Lehmann et al
[37] (using the supersymmetry method) and Janik et al [29] (using the free probability theory).
These authors studied matrices of the form Ĥ + ic	̂, where Ĥ is an Hermitian matrix with
random elements obeying Gaussian statistics, 	̂ is a Wishart random matrix (i.e. a matrix of
the form (25)), and c is a real number controlling the ‘degree of non-Hermiticity’ of the matrix.
The splitting of the domain of existence of eigenvalues into two parts was observed when c
was increased. This is different from our matrix X̂ that has elements with equal variances
β/N of real and imaginary parts (hence always the same degree of non-Hermiticity) but that
still exhibits the splitting of the eigenvalue domain when β is increased.

7. Eigenvalue distribution of the complex expc matrix

By analogy with the cardinal sine and cosine functions, a ‘cardinal complex exponent’ function
can be defined as f (x) = exp(ix)/x. The Euclidean random matrix Ĝ corresponding to this
function has elements

Gij = f (ri − rj ) = (1 − δij )
exp(ik0|ri − rj |)

k0|ri − rj | . (48)

This matrix has a particular importance in the problem of wave scattering by an ensemble of
N point-like scatterers: indeed, as we already noted in the introduction, each element of the
matrix Ĝ is a Green function of the scalar Helmholtz equation (1).

Although the matrix Ĝ is similar to the matrix X̂ considered in the previous section,
the analytic study of its properties is much more involved. On the one hand, similar to the
eigenvalues of X̂, the eigenvalues of Ĝ obey Im λ > −1. On the other hand, correlations that
arise between the real and imaginary parts of Ĝ due to the presence of the same set of points
{ri} in both Re Ĝ = Ĉ and Im Ĝ = Ŝ − Î do not permit to take the full advantage of the free
probability approach described in section 6. Another way to deal with non-Hermitian matrices
is to double the size of the space and to manipulate Hermitian matrices of size 2N ×2N (in the
‘quaternion’ space [29] or in the ‘chiral’ space [38]). Due to technical difficulties, however,
this approach can be readily put in practice only in certain special cases like, e.g., in the case
of circularly invariant distributions p(λ) = p(|λ|) [39].

Despite the differences between the matrices Ĝ and X̂, a comparison of their eigenvalue
distributions appears to be quite useful. Numerical calculations show that, roughly speaking,
the eigenvalues of Ĝ are concentrated within a circle on the complex plane (see figures 6–8).
The same circular shape of the domain of existence of eigenvalues is the characteristic of the
matrix X̂ in the limit of β → 0. The radius of the circle is

√
2β and the position of its center is

x0 = 0, y0 = 1
2β as can be seen from (46) by assuming y � 1 in the denominators. To derive

this result in a more rigorous way, we substitute the equation of a circle, x = r
√

2β cos φ and
y = r

√
2β sin φ + 1

2hβ, into (46). The lhs of the resulting equation is then expanded in orders
of β, and coefficients cν in front of consecutive powers of β are analyzed. The coefficient c0

in front of β0 is zero, whatever r and h are. The coefficient in front of β1 is c1 = 2(r2 − 1).
Equation (46) is therefore obeyed up to the linear order in β for r = 1 and any h. The next term
is of the order β3/2 and it cannot be put to zero simply by adjusting h because c3/2 depends
on φ: c3/2(φ) = √

2 sin φ(h + 2 cos 2φ). We thus search for h that minimizes the integral∫ 2π

0 dφ c2
3/2(φ) = 2π(h2 − 2h + 2). This yields h = 1. The density of eigenvalues inside
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Figure 6. Left column: the density plot of the logarithm of the probability density of eigenvalues λ

of a square N ×N Euclidean matrix Ĝ with elements Gij = (1−δij ) exp(ik0|ri −rj |)/k0|ri −rj |
at low densities ρλ3

0 = 0.01 (first row) and 0.1 (second row), λ0 = 2π/k0. N = 104 points ri are
randomly chosen inside a 3D cube. Dashed circles are centered at (0, 1

2 β) and have radii
√

2β.
Eigenvalues of a 2×2 matrix would lie on dashed spirals. Central column: the marginal probability
density of the real part of λ compared to our equation (37) with β replaced by 1

2 β (dashed red
line). Right column: the marginal probability density of the imaginary part of λ compared to the
Marchenko–Pastur law (26) with λ replaced by Im λ + 1 and β replaced by 1

2 β (dashed red line).

the circle is not homogeneous: expanding (47) around y = y0 and taking the limit β → 0,

we obtain p(x, y) � (1 − y)/2πβ. In figure 6, we superimpose the circle of radius
√

2β

centered at x0 = 0, y0 = 1
2β on the eigenvalue distribution of Ĝ for small β. The circle

describes the boundary of the eigenvalue distribution remarkably well. We thus conclude that
in the limit of β � 1, the domains of existence of eigenvalues of the matrices Ĝ and X̂ are
very similar. In addition to the eigenvalues inside the circle, Ĝ has eigenvalues that follow the
spirals corresponding to the eigenvalues G12 and −G12 of a 2 × 2 matrix Ĝ. Interestingly, the
spirals are quite robust and survive at all densities (see figures 6–8).

Because the matrices Ŝ and Ĉ studied in previous sections represent the imaginary and
real parts of the matrix Ĝ, respectively, one might expect some links between the probability
distributions of eigenvalues of Ŝ and Ĉ and the marginal probability distributions of the real
and imaginary parts of the eigenvalues of Ĝ. And indeed, we see from the central and
right columns of figure 6 that the marginal probability distributions p(Re λ) and p(Im λ) are
nicely described by (37) and (26), respectively, with β replaced by 1

2β. This suggests an
interesting interpretation of the Marchenko–Pastur law (26): it can be seen as a projection
of a two-dimensional distribution p(x,y) of complex eigenvalues x + iy on the imaginary axis
y, provided that p(x,y) is different from zero only inside a circle of radius 2

√
β centered at

(0, β) and that p(x, y) ∝ 1/y inside the circle. p(x,y) being independent of x and decaying
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Figure 7. Same as figure 6 but for intermediate densities ρλ3
0 = 1 (first row) and 10 (second row).

Dashed circles are centered at (0, 1
2 β) and have radii R given by (49).

monotonically with y is consistent with the result that we obtained for the matrix X̂ using the
free random variable theory in the limit of β, ρλ3

0 → 0.
When we increase β but keep the density relatively low (ρλ3

0 < 30, see below), the
cloud of eigenvalues grows but keeps its circular shape (see figure 7)5. The distribution of
eigenvalues acquires an important asymmetry: the eigenvalues are ‘attracted’ by the axis
Im λ = −1. Interestingly, whereas the Marchenko–Pastur law ceases to describe the marginal
distribution of Im λ when 1

2β becomes larger than unity, the region of validity of (37) for
the distribution of Re λ is wider: as we show in figure 7, (37) continues to yield reasonable
results even for 1

2β > 1. As can be seen from figure 7, even at 1
2β � 1, the borderline of the

eigenvalues’ domain is still roughly a circle. More accurate inspection reveals that this circle
is still centered at (0, 1

2β) even for β � 1. It touches the line Im λ = −1 that it cannot cross.
Its radius is, therefore, roughly 1

2β and not
√

2β as in the limit of small β. To extrapolate
between the limits of small and large β, we propose the following empirical expression for
the radius R of the eigenvalue domain:

R2 ≈ 2β +

(
β

2

)2

. (49)

For β � 1, the second term of this equation is negligible and we recover R = √
2β.

For the parameters of figure 6, for example, a circle of radius R given by (49) is virtually
indistinguishable from the circle of radius

√
2β shown in the figure. At larger β, the second

5 Because we present results at a fixed N = 104, increasing β is achieved by increasing the density ρλ3
0. However,

by repeating the analysis at N = 103 and N = 5 × 103, we checked that the distributions presented in figure 7 change
only slightly when N and ρλ3

0 are varied to keep β constant.
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Figure 8. Same as figures 6 and 7 but for high densities ρλ3
0 = 50 (left column) and 100 (right

column); dashed circles as in figure 7. Note a hole that develops on the left of Re λ = 0 near the
real axis and the corresponding gap in the analytic result for the marginal distributions of Re λ

(dashed red lines). Marginal distributions of Im λ are not shown.

term in (49) starts to play a role and dominates for β � 1. As we show in figure 7, (49)
gives a good idea of the part of the complex plane where the eigenvalues of the matrix Ĝ are
concentrated.

At high densities ρλ3
0 � 30, a ‘hole’ appears in the eigenvalue distribution that otherwise

still preserves its overall circular structure (see figure 8)6. Interestingly enough, this hole is
not accompanied by any visible signatures in the marginal distributions p(Re λ) and p(Im λ).
However, the analytic result (37) develops a gap precisely at the same density ρλ3

0 ≈ 30
and at the same position at which the hole appears on the complex plane. This suggests that
even though (37) does not provide a correct description of the marginal distribution p(Re λ)

at such high densities, it still reflects some relevant properties of the distribution of complex
eigenvalues λ. Note that at high densities ρλ3

0, the eigenvalue distribution is concentrated near
the axis Im λ = −1 and the parts of the distribution corresponding to Im λ � 1 in figure 8 are
visible only, thanks to the logarithmic scale of the plot.

Finally, we study the marginal distribution of Im λ. It has been given special attention
previously because, under certain assumptions, it was shown to give the distribution of ‘decay
rates’ 	 = Im λ + 1 of quasi-modes in an open random medium [10, 11]. When 1

2β > 1,
p(Im λ) no longer follows the Marchenko–Pastur law (see figure 7). Based on the results of

6 By repeating calculations with N = 103 and N = 5 ×103, we found that the density ρλ3
0 at which the hole appears

in the eigenvalue distribution is roughly independent of β.
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numerical simulations, Pinheiro et al [11] claimed that at high densities ρλ3
0, the marginal

distribution p(Im λ) exhibits a universal 1/	 decay. Our analysis summarized in figure 9
confirms that such a decay is present, even though it seems to speed up slightly when the
density is increased. In certain applications of random matrix theory to wave propagation in
random media and, in particular, in problems related to Anderson localization (see section 8.2)
and random lasing (see section 8.3), a special role is played by the eigenvalue of Ĝ that has the
smallest or the largest imaginary part. Both min(Im λ) and max(Im λ) are random variables.
Let us first consider min(Im λ). As can be seen from figures 6 and 7, at moderate densities
ρλ3

0 � 10, min(Im λ) is due to the lower spiral emerging from the ‘bulk’ of the distribution.
Eigenfunctions of Ĝ corresponding to spirals are localized on pairs of nearby points and the
eigenvalues can be found by considering a 2×2 matrix Ĝ. For two points at a distance �r , we
find the eigenvalues λ1,2 = ± exp(ik0�r)/k0�r , with λ2 corresponding to the lower spiral.
The smallest values of Im λ are achieved for small distances �r, when we can approximately
write Im λ2 = − sin(k0�r)/k0�r � −1 + (k0�r)2/6. Hence, the statistical distribution of
min(Im λ) is directly related to the statistical distribution p(�rmin) of the minimal distance
�rmin between any two points among N points in the volume V. The distribution p(�rmin) can
be constructed as follows. Let us choose an arbitrary point i. The probability that another point
j is located in a spherical shell of radius r and thickness dr around the first is p1 = 4πr2dr/V .
For r to be the minimal distance �rmin, we have to require that all other N − 2 points are
outside the sphere of radius r (probability p2 = (1 − 4πr3/3V )N−2) and that the distances
between the remaining (N − 1)2 pairs of points not including the point i exceed r (probability
p3 = (1 − 4πr3/3V )(N−1)2

). The probability that r is the minimum distance between any two
points is then equal to the number of possibilities N(N − 1) to choose the two points i and j ,
times p1 × p2 × p3. Then, the probability density is

p(�rmin) = N(N − 1)

(
4π�r2

min

V

)(
1 − 4π�r3

min

3V

)N(N−1)−1

. (50)

This distribution is normalized to 1 if we assume that the volume V is spherical (radius R0)
and that �rmin can vary from 0 to R0. Because min(Im λ) = −1 + k2

0�r2
min/6, its probability

density is equal to p[�rmin = √
6(min(Im λ) + 1)/k0] × [d�rmin/d min(Im λ)]. In particular,

the first moment of this distribution in the limit of N → ∞ is

〈min(Im λ)〉 � −1 +
π4/3	(5/3)

61/3
× 1

(ρλ3
0 × N)2/3

. (51)

We compare this result with numerical simulations in figure 10 (left panel) and find good
agreement for densities ρλ3

0 � 10. At higher densities, 〈min(Im λ)〉 is smaller than predicted
by (51), signaling that min(Im λ) is no longer dominated by the eigenvalues corresponding to
eigenfunctions localized on pairs of points.

Similar to min(Im λ), max(Im λ) is dominated by the second spiral branch of the
eigenvalue distribution for β � 0.3 (see figure 6). At larger β, max(Im λ) belongs to the
bulk of the eigenvalue distribution (see figures 7 and 8). As follows from our analysis, the
distribution of complex eigenvalues λ of the matrix Ĝ occupies a circular domain of radius R
given by (49), centered at 1

2β. Then, it follows that

〈max(Im λ)〉 ≈ 1
2β + R. (52)

And indeed, this approximate expression describes numerical results quite reasonably (see
the solid line in the right panel of figure 10), even though a closer inspection reveals that
it overestimates 〈max(Im λ)〉 at large β. Further work is needed to find a more accurate
expression for 〈max(Im λ)〉.
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Figure 9. Marginal distribution of the imaginary part of the eigenvalues of the matrix Ĝ computed
numerically at densities ρλ3

0 = 1, 10, 20, 40, 60 and 100 (curves from top to bottom) for N = 104

is compared with the asymptotic law 1/	 shown by the dashed line.
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Figure 10. Mean minimum (left) and maximum (right) values of the imaginary part of eigenvalues
λ of the matrix Ĝ for three different matrix sizes N (symbols). 〈min(Im λ)〉 + 1 is approximately
2.3[N(ρλ3

0)]
−2/3 (solid line in the left panel and (51)) for ρλ3

0 � 10 and decays faster at higher
densities. 〈max(Im λ)〉 scales with β. Different values of β are obtained by changing the density
ρλ3

0 from 0.01 to 100. The solid line in the right panel shows 〈max(Im λ)〉 = 1
2 β + R with R given

by (49).

8. Applications

We have already mentioned in the introduction that the Euclidean random matrices Ŝ, Ĉ and
Ĝ studied in this paper are encountered in several physical problems. In this section, we
briefly discuss a number of such problems and show how our results can help to advance their
understanding.

8.1. Cooperative emission of large atomic clouds

An interesting problem of modern quantum optics is the one in which a single photon is stored
in a cloud of (cold) atoms. One studies the properties (frequency, direction of propagation,
etc.) of the photon re-emitted by the cloud at a later time [14–17]. For N two-level atoms
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(excited state a, ground state b) located at random points ri , i = 1, . . . , N , the state of the
system at a time t can be written as [17]

�(t) =
N∑

j=1

βj (t)|b1b2 · · · aj · · · bN 〉|0〉 +
∑

k

γk(t)|b1b2 · · · bN 〉|1k〉

+
∑
m<n

∑
k

αmn,k|b1b2 · · · am · · · an · · · bN 〉|1k〉. (53)

Here, the first sum corresponds to the superposition of states with one atom (atom j ) in
the excited state, all other atoms in the ground state, and zero photons. The second sum
corresponds to the states in which all atoms are in the ground state, while there is a photon in
the mode k. Finally, the last sum describes states with atoms m and n in the excited state and
one virtual photon with ‘negative’ energy.

The evolution equation for the vector β(t) = {βj (t)} reads [16, 17]

β̇(t) = −	0β(t) + i	0Ĝβ(t), (54)

where 	0 is the spontaneous decay rate of a single atom and the matrix Ĝ is defined by
(48). According to this equation, a system prepared in the eigenstate described by a vector
β(0) decays with a rate 	0(1 + Im λ) and experiences a frequency shift −	0 Re λ, where λ

is an eigenvalue of the matrix Ĝ. Both the decay rate and the frequency shift were studied
in [16, 17] in the limit of a very dense atomic cloud (ρλ3

0 → ∞), when the summation
[Ĝβ(t)]j = ∑N

m=1 Gimβm(t) can be replaced by integration in the last term on the rhs of (54).
The authors also discussed a useful approximation in which the real part of the matrix Ĝ is
neglected and Ĝ is replaced by iŜ in (54).

Although the results of [16, 17] are very interesting, atomic clouds of moderate density
ρλ3

0 � 1 are readily created in modern laboratories (see, e.g., [22, 23]). It is therefore important
to extend the analysis of [16, 17] to such dilute atomic clouds. This work provides, in fact,
such an extension: the distribution of dimensionless decay rates 	 = 1 + Im λ is given by
the Marchenko–Pastur law (26) with β replaced by 1

2β and the distribution of dimensionless
frequency shifts � = −Re λ follows from the analysis of section 5 (see also figures 6–8).
It is important to realize that replacing summation by integration in the last term on the
rhs of (54) performed in [16, 17] is equivalent to averaging this equation over all possible
configurations {ri} of atoms. It leads, therefore, to the neglect of the statistical nature of
the initial problem. In contrast, our treatment does not rely on such an averaging and fully
accounts for large fluctuations of eigenvalues, typical for situations when light is scattered in a
strongly disordered environment. As a consequence, the authors of [16, 17] find deterministic
eigenvalues λn, whereas we work with the probability distribution p(λ). Our results are
consistent with those of [16, 17] in the limit of ρλ3

0 → ∞ and provide a generalization of
some of them. For example, the authors of [16, 17] predict that for ρλ3

0 → ∞, the fastest
decay rate 	max is of the order of β. Our study suggests that the dependence of 	max on β

(and not on the density ρλ3
0) is a general property valid at any density (see the right panel of

figure 10) as well as it yields a more precise relation between 	max = 1 + max(Im λ) and β

(see (52)).

8.2. Anderson localization in an open medium

The phenomenon of Anderson localization is common for all waves in random
media [24–26]. It consists in a transition from extended (over the whole available sample
volume) to exponentially localized eigenstates of a wave (or Schrödinger) equation with a
randomly fluctuating dielectric constant (or potential), at sufficiently strong randomness. A
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paradigm system in which Anderson localization can be studied for classical waves is a
random arrangement of N identical point-like scatterers in a volume V. In such an open system
of finite size, the wave energy can leak to the outside and one expects Anderson localization
to have an impact on decay of physical observables (such as, e.g., the intensity of the wave
emerging from the random system). Given a simple model for scatterers, the relevant decay
rates are related to the imaginary part of the eigenvalues λ of the non-Hermitian matrix
Ĝ [10].

Several authors studied the distribution of dimensionless decay rates 	 = Im λ+1 in open
random media and, in particular, promoted the idea of using its probability distribution p(	)

as a criterion for Anderson localization [11, 40]. More precisely, p(	) is expected to decay
as 1/	 in the localized regime. Our numerical results also exhibit such a behavior (see figure
9), but we cannot claim any relation between it and Anderson localization. Indeed, a careful
inspection of our results shows that p(	) starts to exhibit 1/	 behavior right after the criterion
1
2β < 1 breaks down. On the one hand, for resonant point-like scatterers, the mean free path
can be estimated in the independent scattering approximation as � = 1/ρσ = k2

0/4πρ with
the resonant scattering cross-section σ = 4π/k2

0 . The criterion 1
2β = 1 then corresponds to

a condition for the optical thickness L/� � 9. On the other hand, Anderson localization is
expected to take place for k0� � 1 (the Ioffe–Regel criterion [25]) which can be rewritten as
ρλ3

0 � 20. We thus see that the condition required to observe 1/	 decay of p(	) (L/� � 9)
does not seem to agree with the one expected for the Anderson localization

(
ρλ3

0 � 20
)
.

The results that we obtained in the present paper suggest another way of using statistics
of eigenvalues of Ĝ to look at the transition from weak to strong scattering and eventually
to Anderson localization. First, instead of studying the imaginary part of λ, one can study
its real part. At low density ρλ3

0 � 1, the distribution p(Re λ) exhibits a transition from
the Wigner semi-circle law for β ∼ L/� � 1 (see figure 6) to the Cauchy distribution for
β ∼ L/� � 1 (see figure 7). This transition can be seen as a signature of the change of regime
of wave scattering from single (for L/� � 1) to multiple (for L/� � 1) scattering. Second,
an important modification of p(λ) that takes place when the density of scatterers is increased
is the appearance of a hole in the distribution that otherwise occupies a circular domain on the
complex plane. The condition ρλ3

0 � 30 for the appearance of the hole is remarkably close to
the condition ρλ3

0 � 20 expected for the Anderson localization transition in the independent
scattering approximation. A highly speculative conjecture might be that a link exists between
the hole in p(λ) on the complex plane and Anderson localization of waves in an ensemble of
point-like scatterers. Further work is required to prove or refute this conjecture.

8.3. Random lasers and optical instabilities

The eigenvalues of the matrix Ĝ that have the smallest imaginary part play a particularly
important role for the understanding of very interesting optical systems called ‘random
lasers’. A random laser is a laser that has no external cavity and in which the feedback
is provided by the multiple scattering of light [41–43]. One of the minimal models to
study random lasing is an ensemble of point-like scatterers (atoms) randomly distributed in
a volume V = L3 filled with some continuous amplifying medium that provides a constant
amplification rate 	ampl. Lasing starts when 	ampl becomes larger than the minimum loss rate
	min = 1 + min(Imλ). Therefore, the average value of min(Im λ) defines the average random
laser threshold: 〈	th

ampl〉 = 1 + 〈min(Im λ)〉. Pinheiro and Sampaio [19] studied this latter
quantity numerically and found a scaling law

1 + 〈min(Im λ)〉 ∝ 1

N2/3(ρλ3
0)

4/3
. (55)
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They provided a simple interpretation of this result in terms of the diffusion theory of light
scattering.

The eigenvalues that have the smallest imaginary part also define the threshold for
dynamic instabilities in nonlinear random media. In particular, a random arrangement
of point-like nonlinear scatterers with an intensity-dependent scattering matrix t (I ) =
(−2π i/k0)[exp(iαI) + 1] was considered by Grémaud and Wellens [21]. Here, I is the
intensity of light on the scatterer. It was shown that stationary, time-independent solutions
lose their stability and the system starts to exhibit complex, spontaneous dynamic behavior
when the nonlinear coefficient α exceeds a critical value αinst. The average value of the
instability threshold was found to scale as 〈αinst〉 ∝ [1 + 〈min(Im λ)〉]3/2, with

1 + 〈min(Im λ)〉 ∝ 1(
N × ρλ3

0

)2/3 . (56)

This result can be explained by considering the spiral branches of the statistical distribution of
λ on the complex plane (see the dashed spirals in figures 6–8); it is not related to the diffusion
of light in the bulk of the random sample but originates from sub-radiant states localized on
pairs of mutually close scatterers [21].

As follows from the aforesaid, the results (55) and (56) that are supposed to coincide,
not only differ by a factor

(
ρλ3

0

)−2/3
but they are given different physical interpretations as

well. The analysis that we performed in this work allows us to resolve this controversy and to
identify result (56) of Grémaud and Wellens [21] as the correct one. Moreover, not only are
we able to derive an analytical expression (51) that agrees with (56) and contains the precise
numerical coefficient, but also the full distribution function of min(Im λ)—and hence of the
instability threshold αinst—follows from our result (50).

A random laser different from that considered in [19] is the one in which the amplification
is provided by the point scatterers themselves and not by the medium in between them.
Amplification and scattering in such a system are no longer independent and cannot be tuned
at will. The eigenvalues λ of Ĝ governing the laser threshold will now depend on the specific
amplification scheme. Curiously, for the simplest physical pumping mechanism we can think
of (incoherent pump), the laser threshold will be determined by the eigenvalues having the
largest imaginary part [20]. This provides a direct physical application for the results that we
show in the right panel of figure 10 and will be discussed in detail elsewhere [20].

9. Conclusion

In this work, we studied eigenvalue distributions of certain Euclidean random matrices that
appear in the context of wave propagation in random media. In particular, we considered large
N × N real symmetric matrices Ŝ and Ĉ with elements Sij = sin(k0|ri − rj |)/k0|ri − rj | and
Cij = (1 − δij ) cos(k0|ri − rj |)/k0|ri − rj |, respectively, as well as the non-Hermitian matrix
Ĝ = Ĉ + i(Ŝ − Î). N points ri were chosen randomly in a 3D cube of side L with density
ρ = N/L3. For the three random matrices under study, the two important parameters of the
eigenvalue distributions p(λ) are β = 2.8N/(k0L)2 and the number of points per wavelength
cube ρλ3

0. β is equal to the variance of eigenvalues λ of both Ŝ and Ĉ in the limit of k0L → ∞.
In the low-density limit ρλ3

0 � 1 and for β < 1, the distributions of eigenvalues of
Hermitian matrices Ŝ and Ĉ are parameterized uniquely by β: the distribution of eigenvalues
of Ŝ is given by the Marchenko–Pastur law (26), whereas the distribution of eigenvalues of
Ĉ can be deduced from the Blue function (38) that we derived in this paper. For β > 1, the
Marchenko–Pastur law is no longer applicable to Ŝ, but our equation (38) still works for Ĉ

as long as ρλ3
0 is small enough. As β increases, (38) describes a transition from the Wigner
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semi-circle law (at β � 1) to the Cauchy distribution (at β � 1). At high densities ρλ3
0 > 1,

the more complete expression (37) that we derived for the Blue function of the matrix Ĉ

applies. It is in good agreement with numerical simulations until ρλ3
0 ≈ 30 where it predicts

the appearance of a gap in p(λ), which is not observed in numerical data.
The eigenvalue distribution of the non-Hermitian matrix Ĝ has a circular structure on the

complex plane. At β � 1, the eigenvalues are confined to a circle of radius
√

2β centered
at

(
0, 1

2β
)
. At larger β, the distribution becomes strongly asymmetric, with much stronger

weight of eigenvalues with imaginary parts close to −1. Our numerical results show that the
domain of existence of eigenvalues is still approximately a circle centered at

(
0, 1

2β
)
. We

proposed an empirical expression for its radius R2 ≈ 2β +
(

1
2β

)2
. At high densities ρλ3

0 > 30,
a hole appears in the distribution p(λ) on the complex plane. The density at which the hole
appears seems to be roughly independent of β. The marginal probability distribution of Re λ

is described by our equation (37) at all β, provided that ρλ3
0 < 30. The marginal distribution

of Im λ follows the Marchenko–Pastur law (26) for 1
2β < 1 and decays as 1/(Im λ + 1) at

larger β.
Finally, we studied a model matrix X̂ = Ĉ +i(Ŝ ′ − Î) in which two independent ensembles

of points {ri} and {r′
i} were used to generate matrices Ĉ and Ŝ ′. The matrices Ĉ and Ŝ ′ are

asymptotically free and the distribution of eigenvalues of X̂ at β < 1 can be found using the
approach developed by Jarosz and Nowak [34] based on the theory of free random variables.
The distribution of eigenvalues shows an interesting transition from a circular shape at β � 1
to a triangular shape at β ∼ 1, and then to an ‘inverted T’ shape for β � 1.
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