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• Origin and the main peculiarities of the proximity effect in 

superconductor-ferromagnet systems. 

 

• Josephson π-junction.  

 

• Interference phenomena in superconductor -ferromagnet 

hybrids 

 

• Perspectives and possible applications. 

 

Outline  
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Antagonism of magnetism 
(ferromagnetism) and superconductivity 

• Orbital effect (Lorentz force) 

B 

-p 
FL 

p 

FL 

•  Paramagnetic effect (singlet pair) 

Sz=+1/2 Sz=-1/2 

μBH~Δ~Tc ( ) cTsSI ≈⋅


Electromagnetic 
mechanism 

(breakdown of Cooper pairs 
by magnetic field 

induced by magnetic moment) 

Exchange interaction 
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kF -δkF 
 

The total momentum of the Cooper pair is 
 -(kF -δkF)+ (kF -δkF)=2 δkF 
  



FFLO inventors 

Fulde and Ferrell 

Larkin and Ovchinnikov 

P. Fulde, R. A. Ferrell, Phys.Rev. 135, A550 (1964) 
A. I. Larkin, Yu. N. Ovchinnikov, JETP  47, 1138 (1964) 
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Superconducting order parameter 
behavior in ferromagnet 

Standard Ginzburg-Landau 
functional: 

...
2222 +Ψ∇+Ψ∇−Ψ= ηγaF

The minimum energy corresponds  
to Ψ=const 

The coefficients of GL functional are functions of internal exchange field h ! 

Modified Ginzburg-Landau functional ! : 

422

24
1

Ψ+Ψ∇+Ψ=
b

m
aF

The non-uniform state Ψ~exp(iqr) will correspond to 
minimum energy and higher transition temperature 
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In ferromagnet ( in presence of exchange field) the 
equation for superconducting order parameter is different 

042 =Ψ∇−Ψ∇+Ψ ηγa
Its solution corresponds to the order parameter which 
decays with oscillations!          Ψ~exp[-(q1 ± iq2 )x]  

x 

Ψ 

Order parameter changes its sign! 

Wave-vectors are complex! 
They are complex conjugate and 

we can have a real  Ψ. 

Proximity effect in a ferromagnet ? 
In the usual case (S with normal metal ): 

4maq  where, is TTfor solution  and ,0
4
1

c
2 =∝Ψ>=Ψ∇−Ψ −qxe

m
a
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Remarkable effects come from the possible shift of sign of the 
wave function in the  ferromagnet, allowing the possibility of a 
« π-coupling » between the two superconductors (π-phase 
difference instead of the usual zero-phase difference) 
 

S F S 
∆ ∆

S F 
∆

∆−

« π phase  » « 0 phase » 

S F S 
∆

∆−

S/F bilayer 
sff hD ξξ <<= /

h-exchange field, 
Df - diffusion constant 
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S-F-S Josephson junction in the clean/dirty 
limit 

S S F 

Damping oscillating dependence of the 
critical current Ic as the function of the 
parameter α=hdF /vF has been predicted.  
(Buzdin, Bulaevskii and Panjukov, JETP Lett. 81)  
h- exchange field in the ferromagnet, 
dF - its thickness 

Ic 

α =hdF /vF  

E(φ)=- Ic (Φ0/2πc) cosφ  

J(φ)=Icsinφ 
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S S 

The oscillations of the critical current as a function of temperature (for 
different thickness of the ferromagnet) in S/F/S trilayers have been 
observed on experiment by Ryazanov et al. 2000, PRL 

F 
and as a function of a ferromagnetic layer 
thickness by Kontos et al. 2002, PRL 
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Critical current density vs. F-layer 
thickness (V.A.Oboznov et al., PRL, 2006) 

π-state 
I=Icsinϕ  

 I=Icsin(ϕ+ π)= - Icsin(ϕ) 

Nb-Cu0.47Ni0.53-Nb 

Ic=Ic0exp(-dF/ξF1) |cos (dF /ξF2) + sin (dF /ξF2)| 

dF>> ξF1 

“0”-state 

ξF2 >ξF1 

“0”-state 
π-state 

0 

Spin-flip scattering decreases the 
decaying length and increases the 
 oscillation period. 
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Phase-sensitive experiments 
 π-junction in one-contact interferometer 

0-junction 
minimum energy at 0  

I 

φ 

π-junction 
minimum energy at π 

I 

φ 

Spontaneous circulating current 
in a closed superconducting loop 
when βL>1 with NO applied flux 

I=Icsin(π+φ)=-Icsinφ 

E= EJ[1-cos(π+φ)]=EJ[1+cosφ] 

βL = Φ0/(4 π LIc) 

Φ = Φ0/2 

E 

φ 

E 

φ 

 Bulaevsky, Kuzii, Sobyanin, JETP Lett. 1977 

2πLIc > Φ0/2 

φ  = π = 
(2π / Φ0)∫Adl  
 = 2π Φ/Φ0 

L 

I 
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Checkerboard 
frustrated 

Fully 
frustrated 

2 x 2 arrays: spontaneous vortices 
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Bergeret, Volkov, Efetov (2001)   and   Kadigrobov, Shekhter, Jonson (2001) 

Triplet correlations 
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Triplet proximity effect 
may substantially increase  
the decaying length in the 

dirty limit. 

No oscillations 

The same, but larger amplitude 
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hDff /=ξ
Some source of triplet  
correlations ? 

Why difficult to observe ?    Magnetic scattering and  
    spin-orbit scattering are  
    harmful for long ranged  
    triplet component. Magnetic disorder, spin-waves… 
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S S angle θL θR 

(+ small term) 

Long range triplet 

Short range singlet 

M ~ Im(f*
s  • ft) 

Houzet, Buzdin (PRB 2007) 
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Blamire’s group  

GB Halasz, MG Blamire, JWA Robinson, Physical Review B (2011) 
GB Halasz, JWA Robinson, J Annett, MG Blamire. Physical Review B 79, 224505 (2009) 

TRIPLET GENERATOR 
           “Spin mixer” 

SPIN POLARISER 

The direct evidences of the long range 
proximity effect 
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S S 

Phase accumulation 

𝛾𝛾∼qd, 
averaging exp(i⋅𝛾𝛾) over d 
(from dF to ∞ ) we have 

 
 f+∼(ξF/dF)cos(dF/ξF) 

 
ξF=vF/2h 

Short ranged proximity effect 
in the clean limit ! 

 

dF 

Josephson S/F/ junction in ballistic regime 

Jc ∼(ξF/dF)cos(dF/ξF) 
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S 

S 

S 

Junctions with composite F interlayer 
Ballistic regime 

Clean limit – antiparallel orientation, Blanter, Hekking PRB (2004) 

Diffusive limit – arbitrary orientation, Crouzy et al. PRB (2007) 
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S 

S 

S 

Phase accumulation 
𝛾𝛾∼qd1-qd2 

𝛾𝛾=0 at d1=d2 
 

d2 

A. Melnikov, et al,  PRL (2012) 



Domain walls with  
collinear and non-collinear magnetic moments. 

Compensation of the phase gain along the trajectories. 

2
sin

2
cos)( 22 ααα SNSSFS III +=

 angle between exchange field directions 

Independent of the exchange field 

 For d1=d2 

 For d1≠d2 the higher harmonics (2,4…) are long ranged – Trifunovic, PRL, 2011 

SNSSFS II <<
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A. Melnikov, A. Samokhvalov,  S. Kuznetsova  and  A. Buzdin,  PRL (2012) 

a2∼(Δ/Tc)4 
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Stimulation of a long ranged singlet superconductivity in 
SFS weak links by the magnetic gate  

A. Samokhvalov,  R. Shekter  and  A. Buzdin,  Nat. Sci. Rep. (2015) 
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SFS constriction with the magnetic gate 
Requirements: 
 
 Large mean free path;  
 Weak spin-orbit interaction; 
 Strong exchange splittings; 

Cooper pair scattering 

no spin-flip transition with spin-flip transition 

Josephson transport is suppressed Long-range Josephson transport 
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Josephson current in SFS trilayers 



Long ranged singlet current  
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S S angle θL θR 

Long range triplet Short range singlet 

Houzet, Buzdin 
(PRB 2007) 

S S 

angle θL θR 

Opposite to the case of the long ranged triplet current!  
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Josephson current in SFS trilayers 

π-junction 

π-junction 

0-junction 
0-junction 

α=π/2 

α=0 
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Second harmonic contribution 

Ic1 

Ic2 

Ic2 ~ Ic1 

at 0-π transition (Ic1 -> 0)   
Ic2 > 0 

Transition from 0 to π state of the junction 
T1 ≈ 0, T2 > 0 jump from 0 to π state  

φ - junction 
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SFS constriction + magnetic probe = 
quantum electromechanical system  

x x0 

Coupling the Josephson current 
oscillations with mechanical 
modes of the tip. 

Sensitive position detection: Δx0 ~ ξf 
=(1-10) nm  
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Magnetic Moment Manipulation 
by a Josephson Current 

 Superconducting current acts as a direct driving force on the magnetic moment M; 
 ac Josephson effect generates a magnetic precession providing then a feedback to 
the current; 
 Magnetic dynamics result in several anomalies of current-phase relations (second 
harmonic, dissipative current) 

[ A. Buzdin, PRL (2008); F. Konschelle and A. Buzdin , PRL (2009) ] 

M 
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Electric biasing of the magnetic gate 

Vg 

depletion region beneath the tip 

Vg   increases 

decrease & 

Ic ~ α2 (d2 / ξf)2     increases 

For thin domains the critical current Ic increases with the gate voltage Vg, 
and the local depletion of F barrier should result in the stimulation of the 
superconductivity. 
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SFS constriction with the magnetic gate 

NW: Carbon nanotubes, graphene sheets, InSb nanowires (g~50): 

Bi nonowires.  

FI(FM): EuO (Eu2+) , Fe, Co, Ni 

Eu0 / Graphene (VF ~ 108 sm/s)  

 mean free path: ~ 1 μm  

 spin-orbit interaction: ~ 1 μeV (spin-flip length: ~ 1μm) 

 exchange splitting ~ 5-10 meV (estimate) (ξf ~ 0.1 μm) 

Requirements: 
 Large mean free path;  
 Weak spin-orbit interaction; 
 Strong induced exchange splittings; 
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July 2010 
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Superconducting phase qubit 
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July 2010 
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Conclusions 
 

• It is possible to stimulate a long ranged 
singlet superconductivity in SFS weak links 
in the ballistic regime by the spin-exchange 

scattering.  
 
 
 
 

• These phenomena opens a way to control the 
properties of SFS junctions and inversely to 

manipulate the magnetic moment via the 
Josephson current. 
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