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|. Background and
motivation



Two scenarios of X

- Spectral gap drops together with T
“fermionic” mechanism
- Spectral gap is nearly constant while T_

drops to zero: “ " mechanism
(“preformed pairs”)

*Superconductor to insulator transition



SIT: preformed pairs

 The spectral gap appears much before
(with T down) than superconductive
coherence does

* Coherence peaks in the DoS appear
together with
resistance vanishing
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Insulating state induced by
magnetic field
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Inelastic electron-phonon scattering
time in the insulating state
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Electron-phonon cooling and ultrasound
attenuation rate
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Previous search for enhanced
inelastic e-ph rate

(weak disorder) the core idea
behind was:

* Phonon couples to a slow diffusive mode of a
conserved physical quantity (charge/spin/energy)

« Competition with a “normal” attenuation due to
standard local mechanism

A.Shtyk et al, PRL 111, 166603 (2013); PRB 92, 195101 (2015)

~within bosonic scenario of SIT:

 Kill the single electron excitations completely
and directly probe collective modes!



Collective SC gap versus single-particle gap
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Motivation summary

* Preformed Cooper pairs: single electron
gap A; > Aand “normal” attenuation is
strongly suppressed

* Ultrasonic attenuation as a probe of
collective excitations in a pseudogapped
state

* Ultrasonic attenuation should be
dominated by collective modes in a
superconductor and exhibit activation
behavior o o24/T



Il. Collective modes in a
pseudogapped state



Contribution of single-electron states
IS suppressed by pseudogap A >>T
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Fedotov-Popov trick

Cooper pairwersonagss)
D>

pseudospins
2

semions
3 Stratonovich (1957), Hubbard (1959),

SC order parameter field A

* Represent spins-1/2 as semions with
Imaginary chemical potential.



Fedotov-Popov trick

* Representing spins-1/2 as semions with
Imaginary chemical potential.

¢ — (1/2)¢la

H[S;) > H | sulow| + (im/28) N

* Similar to Abrikosov pseudofermions but
unphysical states are automatically taken pecC
care of by complex chemical potential

* Standard fermionic diagrammatic rules

but with Matsubara energies =
e =2rT (1 + 1/4)
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Sticky Note
Similar to parity-projection technique


Superconducting action

. Start with pseudospins. XY-Heisenberg in a random
field
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. Introduce A via Hubbard-Stratonovich
transformation
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Superconducting action

A[A] = —Tr [A*J'A] + Trln [ia—:l +Eo” + %(AO_ + A*U+)}
* Box-shaped distribution of disorder .
Mean field. V(€)= (2W) 'OV — [¢])
* The saddle point gives the self-consistency
equation

| = g/ 1L, V& A I(k) = g[1 - R2k? + O(KY)],
¢ V&P + A I

* Two collective modes. Massive amplitude (Higgs)
and massless phase (Goldstone)

A = Ag(1+n)e*



SC propagator
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* The phase mode: a pole
LN (k) = (4W) 7! (2 +1i0) — v?k?]

* The amplitude mode: a branch cut
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lll. Electron-phonon
Interaction:

How to include phonons?



How to include phonons?

* Modification of the interaction/hopping Raonon
N
Hepn[Si] =k Y (Ji; divu) [S7 ST 4 S7SY]
i,j=1
» Within adiabatic limit w,¢ —0 (A= J(0)/W)
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* Electron-phonon vertex reduces to modification
of the (inverse) propagator. Similar to Ward identities
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V. Ultrasonic attenuation
due to collective modes



Ultrasound Attenuation: phase

« UA (after analytical continuation) \‘O‘
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Ultrasound Attenuation: amplitude

« Phonon modifies A Formally, it moves a branching point,
which determines the most singular part of the electron-
phonon vertex

 Propagator and vertex A2
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Phase vs amplitude

* Different frequency and temperature behavior
for phase and contributions:

Log Q!

T Log W
e Both contributions can be identified.

Crossovers in frequency and temperature
dependence
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V. Coulomb interaction



Coulomb Interaction

e Introduce as

H(S :_2Z@+q> )S7 — Z Jij [SPST+SYSY], (2®), =

1,7=1

. Anderson-nggs mechanism: massless Goldstone is
eaten by the gauge field
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« However there is also contribution from the branch
cut
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Coulomb Interaction

e Introduce as

N N
. N Agre?
H|[S;]| = -2 Z(fz + ;)57 — Z Jij |5 Sj + SEJS;J] , (00), = €q?

 Anderson-Higgs mechanism: massless Goldstone is
eaten by gauge field
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Coulomb Interaction

e Plasmon gap

4#62:: dre? B p,
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0 InQ, A2
$ 5[][”, Most probably, phason gap
A2 ] : Is larger than 2A

0 Special case is given by SrTiO, , where ¢ ~ 104
Very light doping makes it superconducting. Lin et al (2015)
Phase mode may remain relevant.



Conclusions

e Ultrasonic attenuation directly probes collective
excitations in a pseudogapped state

* Two contributions to ultrasonic attenuation with
contrasting temperature and frequency
behaviors

* Phase (Goldstone) Qo T?

* Amplitude (Higgs) Q7 o WAT 1 2A/T
 Coulmb interaction freezes the phase mode
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