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> Introduction. Outline

Majorana states. Bogolubov transformation etc.
Examples: p-wave superconductors, semiconducting
nanowires and topological insulators with induced
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Nonlocality vs absence of noise correlations.

Coulomb blockade as a recipe to restore nonlocality

» NISIN. DC transport
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» Teleportation paradox and topological stability of
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BCS mean field theory.
Bogolubov canonical transformation.
No changes in the operator commutation rules
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Fermi commutation rules:
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Bogolubov — de Gennes equations and their symmetry
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Self-consistency condition.
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Is it possible to get a state without a partner?
Majorana state

E E
c# =y +
C u,=v, cC =cC
Standard fermions (with ???7? Majorana fermions
usual commutation rules) (not fermions at all)

c'c+ect =1 cct+ceec=0

Obvious contradiction:
We can not change statistics using canonical Bogolubov
tranformation



Partly defined quasiparticle
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How to define this b-part???

Possible answer: Let us find another ill-defined quasiparticle!



A standard way to overcome the problem:
We construct the operator b from another zero energy state
The states which define a and b are far away from each other
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Examples:

vortices in p-wave superconductors (G.E.Volovik, 1997)
Edge states (Kitaev 1D p-wave superconductor)
Systems with induced superconductivity



P-wave superconductors. Sr,RuO, as a possible candidate?
He-3

Edge states
Free vortex g
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Systems with induced superconducting order

Signatures of Majorana Fermions In
Hybrid Superconductor-Semiconductor

Nanowire Devices

V. Mourik,** K. Zuo,** S. M. Frolov,* S. R. Plissard,” E. P. A M_Rakker< 2 1 P Kouwenhoven'+
We use InSb nanowires (/5), which are

known to have strong spin-orbit interaction and
a large ¢ factor (/6). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso = 200 nm corresponding to a Rashba param- s-wave

eter oo = 0.2 eV-A (/7). This translates to a spin- superconductor
orbit energy scale oa’m*/(2h%) = 50 peV (m* =

di/dVv (2e*/h)

-400 -200 0 200 400



nature ARTICLES

-
p SlCS PUBLISHED ONLINE: 11 NOVEMBER 2012 | DOI: 10.1038/NPHYS2479
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Parity lifetime of bound states in a proximitized
semiconductor nanowire
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Figure 1] Nanowire-based hybrid quantum dot. a, Scanning electron
micrograph of the reported device, consisting of an InAs nanowire (grey)
with a segment of epitaxial Al on two facets (blue) and Ti/Au contacts and
side gates (yellow) on a doped silicon substrate with 100 nm oxide.

b, Device schematic and measurement set-up, showing the orientation of
the magnetic field, B. ¢, Differential conductance, g, as a function of

effective gate voltage, Vg, and source-drain voltage, Vsp, at BE=0. Even (e)
and odd (o) occupied Coulomb valleys are labelled.



General recipe how to arrange zero energy states (at the Fermi level).

superconducting phase should change by pi
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Examples:

Josephson
junction
vortex
Anomalous
spectral
branch.
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Bound quasiparticle states
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Sample edge

Vacuum or P-wave
insulator superconductor
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Nonlocality as an inherent property of Majorana particles.
Teleportation. Topological protection against perturbations.

Oscillations of the wavefunction between two quantum wells

2 close levels
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Stretched quantum states emerging from a Majorana
medium
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Nonlocality vs absence of noise correlations.
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Observing Majorana bound States in p-Wave Superconductors Using Noise Measurements
in Tunneling Experiments

2
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*Physics &Astronomy Department, Rice University, Houston Texas 77005, USA
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Notice that the diagonal and off-diagonal matrix compo-
2% nents of §,g are different now. In particular, we remark
that lim,_yS,5z = 0. Taken together with the result given
above for the current, this indicates that in the € — 0 limit,
the right and left tunneling processes are completely inde-
pendent even at the level of current fluctuations. It i1s




Interplay between the Andreev reflection at the end of the wire and crossed
Andreev reflection with the transmission of a hole to the second lead
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Splitting of a Cooper Pair by a Pair of Majorana Bound States
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Instituut-Lorentz, Universiteit Leiden, PO. Box 9506, 2300 RA Leiden, The Netherlands
(Received 3 July 2008; revised manuscript received 15 August 2008; published 18 September 2008)

LA crossed Andreev reflection
electron FEy l
0 | — < T —t

Far / hole

Majorana bound states




Coulomb blockade as a recipe to restore nonlocality?
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How to avoid teleportation?

We need to excite another level with negative energy!

Time of particle transfer~ (()0 ~ e_L/ 4
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Is it possible to excite both the positive and negative energy levels
on equal footing and to get a two level problem?
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It seems to be impossible
since there is only 1 fermion corresponding to these states!
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Despite of the obvious fact that both levels correspond
to the only fermion the nonequilibrinm time-dependent

solutions gy, (r,t) of the BdG equations contain contribu-
tions corresponding to both levels.



In equilibrium:
Wavefunction:

One fermion ‘ One BdG level

(with positive
energy)

In non-equilibrium:

Wavefunction:

One fermion ‘ Superposition of
many BdG levels

(with positive and
negative energies)




Some details of charge transfer through the low
energy states in NISIN system

Left normal lead Right normal lead
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We can construct the operator b from the states in the lead.
Then we can get a 2 level system



Solution of the scattering problem
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Wave functions near the resonance Andreev level
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Analogy: tunneling between two vortices

Pis'ma v ZhETF, vol. 83, iss. 12, pp.675 680 © 2006

Intervortex quasiparticle tunneling and electronic structure
of multi-vortex configurations in type-II superconductors

A. 8. Mel’nikov"), M. A. Silaev
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Equations for coupled Majorana states
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Equations for coupled Majorana states
A +A, = A, A —A, =A
Both states are involved (with positive and negative energies)
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DC transport. Zero bias peak and its splitting.
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Possible setup for study of dynamics of Majorana states.

Semiconducting wire
covered by

Normal lead superconductor Normal lead
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AC transport. Barriers with time-dependent

transparency.
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AC transport. Pump probe techniques.
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Can the Coulomb blockade destroy the beating
phenomenon for a couple of the Majorana states?

1. Electron jumps
j\ into the ereG

2. Internal dynamics = beating. Electron number (and parity)
in the wire is fixed

-
[ e
3. Electron jumps
out of the wire




Teleportation paradox and topological stability of
Majorana states.

Semiconducting wire
covered by

I Normal lead superconductor Normal lead
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@ gate gate @

Low frequency dispersion as an inherent property of Majorana states.

Stability range is restricted to low frequencies < @,



Outlook

l i
Semiconducting wire

covered by
I Normal lead superconductor Normal lead
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Low frequency dispersion as an inherent property of Majorana states

Possible dynamic effects in oscillating magnetic field or applying an
oscillating gate voltage

S leads

Coulomb effects



Some conclusions

* There is no teleportation

- Nonlocality of Majorana states in dynamical
problems does exist only at very low frequencies < &,

- Experimental study of dynamics of 2 Majorana
states in semiconducting wires will give the
characteristic time scales for their manipulation




