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Model and phase diagram of the clean system
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At —1 < A < 1 elementary exciations are bosons with linear spectrum w(k) o< |k|
(Luttinger Liquid, LL)
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Luttinger Liquid description
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Free scalar bosonic theory with linear spectrum w(k) = uk:
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“Dirty" system (pt. 1)
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Renormalization group treatment:
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Dimensionless disorder constant:
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“Dirty" system (pt. 2)

e Momentum relaxation rate:
1/7(T) ~ (ug/a)(T/J)* 2

e Thermal conductivity:
K= 73u17-o< 732K

o “Interference” corrections are small by parameter 1/T.

IP and M.V.Feigel'man, PRB 92, 235448 (2015)



Nonlinearity of Fermionic spectrum: where it is important

At the point A = 1 our model is isotropic Heisenberg ferromagnet with quadratic
excitation spectrum w o g2. Close to this point linear approximation easily breaks
down.

Nonlinearity of the spectrum leads to finite width of the spectral function

de(k) ~ (u/a)(ka)3. Thermal excitations: k ~ T /u. Thus §e(T) ~ T(Ta/u)?, to
be compared with 1/7(T)

At K < 5/2 nonlinearity effect is irrelevant at low T < Ty ~ J(h?/J?)1/5K=2)
and relevant at T > T..

At K > 5/2 in the whole low-T region nonlinearity is relevant for the correct
description of the disorder.

K = 5/2 corresponds to A = cos T ~ 0.81



Nonlinearity of Fermionic spectrum: Bosonic description
e(k)

e Densities of the left-movers and right-movers:

p(x) ~ — =06 = R(x) + L(x)
m —— ~~

k>0 k<O
o Effective interaction:
1) =5 [ xR £ AL (R4 1) (1)
o In presence of magnetic field:
3avVKA_h
A :/dx (%(R3+L3)+%(R2L+L2R)), Z:i@ )
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Parameters of the Bosonic theory

S. Lukyanov, Nuclear Physics B 522, 533-549 (1998)



Lowest order of the perturbation theory
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Figure: Singular diagrams for Im):(,et)(w7 q)

Singularity comes from the form of the spectral weight
S(w,q) =Im(RR),, , o< §(w — uq) with linear dispersion w = ugq, and conservation of
energy w = y_;w; and momentum, g = _; g;:
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Self-consistent procedure (nonzero field)

e Decay into "dressed” quasiparticles (¢; = w; — ug;, f(€) = coth %)
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aiq

Mw,e) = 16m3u3

/dwldw26(w1 + wr — w)wiwa(f(w1) + F(w2)) (€, w1, wo).
M(w1, &)l (w2, €2)
[6% + r2(w17 61)} [E% + F2(w2, 62)]

e Classical hydrodynamics: major contribution to the decay rate comes from
w; ~ w instead of T.

1
Ji(e,wi,w2) = /d61d625(61 + e — e);

e Decay rate varies considerably with € at the scale € ~ '(w).
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Classical hydrodynamics: A.F. Andreev, Sov.Phys.JETP 51, 1038 (1980)
Luttinger Liquid: K. Samokhin, J. Phys. Condens. Matter 10, L533 (1998)



Self-consistent procedure (zero magnetic field)

30222
= 30755 9
X (14 f(w2)f(w3) + f(w1)f(w3) + f(w1)f(w2))d2(€, w1, wz,w3).

Mw,€) /dwldw2dw36(w1 + wy + w3 — w)wiworws X

b6, wi,wr,w3) = /d61d62d636(61 + e+ e3—€)x
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o [(w,e) = (w) depends weakly upon € = w — ug.

e Contributions to I' come from a broad range of w < w; < T.
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Spin correlation functions (linear Luttinger Luquid)

e Spin correlation function in terms of right and left bosons:
(5:(555(0)) = Ka*((R(xn, IR(0,0)) + (L(x0, £)L(0,0)))
e Bare bosonic correlation function, the only relevant length-scale I+ = u/T:
1 n2T2

472 w2 sinh2 7 T(x—ut)
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Spin correlation functions (magnetic field h > T)
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e New length scale appears:
In(t) = (T/u)/3(Coan[t])*/? o [t/

e Correlation function:

r(s/3) a°
(SZ(t)SZ(0)) ~ (2/2) -2 |nFut/a| <K Ip/a
T IT1p
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Spin correlation functions (zero magnetic field)
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e Similar length scale:
In(t) = (Crar—Tt|/u)*/? o |t|}/?
e Correlation function:
1 22 1
SZ(t)S5(0)) = — ,
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Higher order corrections (beyond self-consistency) for h # 0

a; a4
d2 a5
5T (w) = 80/11 T2 2 / dw; 1 ( Worws n wiws )
(27T)6u8 27 (F1 + Fg)(r4+l'5) M +M34+T7s Mo+T3+4+T2

e An estimate of the result:
ST (w) ~ La;‘ TY21wP2 ~ T(w)
u

e Correction is of the same order as the self-consistent result itself!



Applicability range of the self-consistent result and noisy KPZ equation

e M. Arzamasovs, F. Bovo, and D. M. Gangardt, Phys.Rev.Lett. 2014, in the
context of One-dimensional superfluids: hydrodynamic description of bosonic
chiral modes in the form of the Kardar-Paris-Zhang (or noisy Burgers) equation

(8 — udx)R = 5 (8xR)? + DO?R + x(t,x)

1
m

e Solution of the KPZ equation was provided in the paper by M. Prahofer and H.
Spohn, J. Stat. Phys 115, 255 (2004)

e |t was stated by Arzamasovs, F. Bovo and Gangardt, that hydrodynamic
approximation is applicable for the quantum problem at very low frequencies
w < w* only, where

w o TT

e Such an estimate does not seem to be self-consistent. Actual boundary for the
applicability of the 3/2 scaling is unknown at present.



Higher order corrections (beyond self-consistency) for symmetric case h = 0

q
q; qs
e Contribution to self-energy:
(4) 432()(3)\:1 T3 dwl- wo + w3
et (w = uq) ~ ﬁw/ S
(2m)u 21 (T1 4o+ T3)(M1 + a4 T5)

e Surprisingly, it is purely real:
z(4) yads Tw

ret (W = uq) = CIT T
us In —
[wl

e Higher-order diagrams may provide additional contributions to the decay rate, but
they are small as some inverse powers of In %



Conclusions

e Thermal conductivity of the XXZ chain with weak random-field disorder diverges
as T372K 35 T — 0 in the range of couplings corresponding to 3/2< K<5/2

e At larger K nonlinearity of the spectrum should be taken into account and
forward-scattering disorder may become relevant

e |In the clean model decay rate of Bosonic quasiparticles is calculated for
low-frequency excitations with w < T

e Dynamic spin-spin correlation function for the clean model is calculated

Future plans: interplay between disorder and spectrum nonlinearity.



