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We use the random Green’s matrix model to study the scaling properties of the localization transition for scalar
waves in a three-dimensional (3D) ensemble of resonant point scatterers. We show that the probability density
p(g) of normalized decay rates of quasimodes g is very broad at the transition and in the localized regime and that
it does not obey a single-parameter scaling law for finite system sizes that we can access. The single-parameter
scaling law holds, however, for the small-g part of p(g) which we exploit to estimate the critical exponent ν

of the localization transition. Finite-size scaling analysis of small-q percentiles gq of p(g) yields an estimate
ν � 1.55 ± 0.07. This value is consistent with previous results for the Anderson transition in the 3D orthogonal
universality class and suggests that the localization transition under study belongs to the same class.
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I. INTRODUCTION

The Anderson transition is a transition in transport proper-
ties of a disordered quantum or classical wave system [1–4]. It
is due to destructive interferences of scattered waves leading
to formation of spatially localized eigenstates and halt of
wave transport through the system. In the most common
case of time-reversal-symmetric and spin-rotation-invariant
systems, the transition exists in three dimensions (3D) whereas
all states are localized in lower dimensions for arbitrary
weak disorder [5]. Experimental evidence for the Anderson
transition in 3D was found in the low-temperature electrical
conductance of disordered solids [6,7], transmission [8]
and reflection [9] of elastic waves from disordered media,
phase-space dynamics of cold atoms in a quasiperiodic
force field [10], and real-space expansion of ultracold-atomic
clouds in optical speckle potentials [11]. The search for the
Anderson transition in optical systems has not been conclusive
despite a considerable experimental effort during the last two
decades [12–17]. The localization transition may be difficult
or even impossible to reach for light due to near-field effects in
dense disordered media required to achieve strong scattering
[18].

II. GREEN’S MATRIX MODEL

A minimal realistic model in which Anderson localization
of classical waves (such as sound, light, or elastic waves) can
be efficiently studied considers a single excitation (a “photon”
in the case of light) that propagates in an ensemble of N

point scattering centers (abstract “point scatterers,” “dipoles,”
or “atoms” for light) randomly distributed in a volume V . Each
scatterer is assumed strongly resonant (resonance frequency
ω0, resonance width �0 � ω0) and the delay due to the
time needed for a wave to propagate through the medium
without scattering is neglected: L/c � 1/�0, where L is the
system size and c is the speed of the wave in the absence of
scatterers. The quasimodes of this system can be identified
with eigenvectors of a non-Hermitian random Green’s matrix
Ĝ that for scalar waves in a 3D space is a N×N matrix with

elements [18–22]

Gjk = iδjk + (1 − δjk)
exp(ik0|rj − rk|)

k0|rj − rk| , (1)

where k0 = ω0/c and {rj } are the positions of scatterers (j =
1, . . . ,N). Localization of quasimodes in space can be studied
not only by analyzing their spatial structure directly but also
by examining the complex eigenvalues �n of Ĝ. For the sake
of illustration, we show �n of a random realization of Ĝ for
points {rj } inside a sphere in Fig. 1. The real part Re�n of an
eigenvalue �n yields the frequency ωn = ω0 − (�0/2)Re�n

of the corresponding quasimode whereas its imaginary part
Im�n corresponds to the decay rate of the quasimode �n/2 =
(�0/2)Im�n. A parameter analogous to the dimensionless (or
Thouless) conductance [5,23,24] can be defined as a ratio of
�n/2 to the average spacing 〈�ω〉 = 〈ωn − ωn−1〉 between
frequencies of quasimodes in the vicinity of ω = ωn:

gn = �n/2

〈�ω〉 = Im�n

〈Re�n − Re�n−1〉 , (2)

where the eigenvalues �n are ordered such that Re�n >

Re�n−1. Defined in this way [25], Thouless conductance
appears as nothing else than a normalized decay rate of an
eigenmode. Obviously, gn is a random quantity and only its
statistical properties are meaningful.

Statistical distributions of decay rates �/2 and normalized
decay rates g defined in a way analogous to ours have been
previously studied for the tight-binding Hamiltonian of the
open 3D Anderson model [26,27]. It was shown that these
distributions bear clear signatures of localization transition
and that p(g) takes a universal shape at the critical point,
but a quantitative analysis allowing for estimating the critical
exponents of the transition was not performed. Here we
apply a similar approach to the classical-wave system for
which Eq. (1) plays a role of an effective Hamiltonian and
perform a finite-size scaling analysis that yields an estimate
of the critical exponent ν of the localization transition in
our model. Although the same model has been studied by
several authors [18–20,28], no proper finite-size scaling has
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FIG. 1. (a) Eigenvalues of a single random realization of the
Green’s matrix (1) are shown by points on the complex plane
for N = 8000 scatterers randomly distributed in a sphere with a
density ρ/k3

0 = 0.15. (b) Same as (a) but with the vertical axis
in logarithmic scale. Arrows indicate eigenvalues corresponding to
spatially localized eigenvectors and two-scatterer proximity reso-
nances, respectively. The latter are concentrated along the dashed
line given by Eq. (3). The inset illustrates the geometry, with points
inside an imaginary sphere corresponding to scatterers at random
positions {rj }.

been realized and no estimation of ν has been proposed up to
now.

We have previously shown [18] that the matrix (1) starts
to have spatially localized eigenvectors when the number
density of scatterers ρ = N/V exceeds ρ ≈ 0.1k3

0 and that
all eigenvectors become again extended beyond ρ ≈ k3

0.
Localized eigenvectors correspond to eigenvalues � with a
very small imaginary part and the real part in a narrow
spectral range around Re� ≈ −1; see Fig. 1(b). Instead
of studying the localization transition for a given Re� as
a function of increasing density as in Ref. [18], one can
also keep the density constant (though sufficiently high) and
study the transition as a function of Re� or, equivalently,

frequency ω = ω0 − (�0/2)Re�, which may be closer to
realistic experimental scenarios. This is the approach that we
follow in the present work. We will refer to Re� as “frequency”
for short.

In addition to the localized states appearing at high
densities of scatterers, so-called subradiant or “dark” states
corresponding to proximity resonances of closely located pairs
of scatterers [19,29] exist at any density [21,22]. A line along
which eigenvalues corresponding to proximity resonances are
concentrated can be found by diagonalizing a 2×2 Green’s
matrix:

� = −cos(k0�r)

k0�r
− i

[
sin(k0�r)

k0�r
− 1

]
, (3)

where �r � 1/k0 is the distance between the two scatterers on
which the resonant state is localized. These states have large
negative frequency shifts Re� � −1 and their eigenvalues
belong to the “tail” on the left from the main eigenvalue
cloud in Fig. 1. Large frequency shifts allow for discriminating
proximity resonances from the states localized due to disorder
in the system. Therefore, these two types of localized states
can be analyzed separately by choosing a particular range
of Re�.

III. STATISTICS OF NORMALIZED DECAY RATES

Following Ref. [18], we consider N resonant point scat-
tering centers randomly distributed in a spherical volume
of radius R; see the inset of Fig. 1(b). The N×N Green’s
matrix (1) describing the propagation of scalar waves between
the scatterers is diagonalized numerically for many different
scatterer configurations {rj } (see Fig. 1 for an example
of eigenvalues obtained for a single configuration) and the
statistics of the Thouless conductance g defined by Eq. (2) is
studied. We perform calculations at a fixed scatterer density
ρ/k3

0 = 0.15 which is high enough to ensure appearance of
localized states [18]. The number of scatterers N is varied in
a range N = 2000–16000 with the number of independent
configurations {rj } adjusted to ensure a total of at least
107 eigenvalues � for each N . The results are analyzed as
a function of Re�. For a given value of Re�, averaging
denoted by 〈· · · 〉 is performed over the realizations of disorder
{rj } and over a narrow frequency interval Re� ± 1

2δRe� with
δRe� = 0.01.

Figure 2 shows the average logarithm of g as a function of
frequency Re�. The curves corresponding to different system
sizes N all cross in two points; the abscissas of these points can
be taken as rough estimates of positions of the two mobility
edges that we denote by I and II, respectively. The frequency
range between the mobility edges roughly corresponds to a
band of localized quasimodes (or, equivalently, a mobility
gap) discovered in our previous work [18]. The existence
of a mobility gap between two mobility edges instead of
a single mobility edge separating extended states at high
energies (frequencies) from localized states at low energies
(frequencies) is typical for resonant scattering [9]. It may be
tempting to use the numerical data of Fig. 2 to perform the
standard finite-size scaling analysis (for example, along the
lines of Ref. [30]) in order to estimate such parameters as
the precise locations of mobility edges and the value of the
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FIG. 2. (a) Average logarithm of the Thouless conductance as a
function of frequency Re� at a given number density ρ/k3

0 = 0.15
and for several total numbers N of scatterers from N = 2000 to N =
16 000 (the order of curves corresponding to increasing N is indicated
by an arrow). Vertical dashed lines show the estimated locations of the
two mobility edges (denoted as I and II) where curves corresponding
to different N all cross. (b) Zoom on the region around the mobility
edge I, shown by a gray rectangle in panel (a). These results are
obtained by averaging over 6385, 3140, 1798, 1250, 1120, 880, 744,
and 665 numerically generated and diagonalized [31] realizations of
random Green’s matrices for N from 2000 to 16 000, respectively.

critical exponent. One, however, should be careful because it
is known that the distribution of g and even of ln g can be very
broad at the transition point and, as a consequence, statistical
moments of g and ln g may be dominated by nonuniversal tails
of the distribution that are not expected to obey any scaling
laws [32,33]. This is illustrated by Figs. 3, 4, and 5 where
we show the variance and the third central moment of ln g

and the full probability density p(ln g). Figure 3 shows, in
particular, that var(ln g) = 〈(ln g)2〉 − 〈ln g〉2 corresponding to
different N has no crossing point around the estimated mobility
edge I. At the same time, a crossing point existing near the
mobility edge II does not coincide with the latter. The third
central moment may exhibit crossing points near (although
not exactly at) expected mobility edges but they are masked
by the statistical noise in the data. As a consequence, simple

FIG. 3. The variance (a) and the third central moment (b) of ln g.
The order of curves corresponding to increasing N is indicated by
arrows. Vertical dashed lines are the same as in Fig. 2(a).

relations between moments of ln g found for the Anderson
model with diagonal disorder [34,35] do not hold in our case.
All this indicates that extracting the critical parameters of
the localization transition in our system from the analysis of
moments of ln g is not possible because moments of different
orders would yield different results or no result at all as the
variance, for example. The analysis of probability densities
p(ln g) illustrates the reason behind this. Figures 4 and 5
show p(ln g) in three different regimes: the extended regime
(a), the vicinity of the critical point (b), and the localized
regime (c). We note the broadness of distributions at the
critical point and in the localized regime and superradiant
peaks of p(ln g) at large ln g. The superradiant states originate
from collective effects and constitute a distinctive feature
of dense ensembles of resonant point scatterers [36–38].
Although the phenomenon of superradiance is different from
Anderson localization, it can disturb the analysis of the latter
by, for example, yielding sizable contributions to the statistical
moments of ln g.

When studying the evolution of p(ln g) from Fig. 4(a) to
Fig. 4(c) with decreasing Re� and from Figs. 5(a) to 5(c) with
increasing Re�, we did not find a value of Re� for which
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FIG. 4. Evolution of the probability density of ln g from the
extended regime (a) through the critical point (b) to a regime in which
localized states appear (c), in the vicinity of the localization transition
I. The order of curves corresponding to increasing N is indicated by
arrows. Dashed line in (b) shows the percentile gq for q = 0.05.
Distributions at the critical point can be considered independent of N

on the left from the dashed line.

the probability densities corresponding to different N would
all coincide with each other as could be expected at a critical
point. This is the reason behind the fact that there is no value
of Re� at which moments of ln g would all be independent
of N , as can be seen from Figs. 2 and 3. This also means
that, strictly speaking, p(g) does not obey a single-parameter
scaling law. However, it follows from our analysis that the
small-g part of p(ln g) becomes roughly independent of N

around Re� � −0.51 [Fig. 4(b)] and Re� � −1.8 [Fig. 5(b)].
Because small g correspond to long-lived quasimodes that
become spatially localized [see Fig. 1(b)], we associate the
universal, N -independent shape of p(ln g) for small g with the

FIG. 5. Same as Fig. 4 but for the localization transition II.

critical points of localization transitions. The above values of
Re� can be taken as new, improved estimates of positions
of mobility edges I and II, respectively. In contrast, the
nonuniversal, N -dependent behavior of p(ln g) for large g

is due to extended states [including the superradiant states
indicated by arrows in Figs. 4(c) and 5(c), but not only] that
still exist in the system for any finite N . Figures 4 and 5 suggest
that the statistical weight of these states seems to decrease
with N (the height of the peak corresponding to superradiant
states decreases with N , for example), so that one can expect
them to become statistically irrelevant in the limit of N → ∞.
However, the results in hand do not allow us to claim this with
certainty.

For completeness, we close this section by considering
p(ln g) in a frequency range where subradiant states local-
ized on pairs of closely located scatterers (i.e., proximity
resonances) play an important role. The latter are the only
states present at very large negative Re�. They give narrow,
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FIG. 6. Probability density of ln g at large negative Re� where
subradiant states localized on pairs of scatterers (proximity reso-
nances) come into play. To improve statistics, averaging is performed
over a range δRe� = 1 around the values of Re� given on the plots
instead of δRe� = 0.01 in Figs. 4 and 5. This is made possible by the
slow dependence of the properties of proximity resonances on Re�.

peaked distributions of ln g shown in Fig. 6(a). As a rule,
p(ln g) shifts to the right when increasing N which might
appear counterintuitive because the states under consideration
are localized and, by analogy with Anderson localization,
one naively expects typical values of ln g to decrease with
system size and hence with N . Here, however, the mechanism
of localization is different from the Anderson one and the
above analogy does not apply. At a given Re�, the value
of the numerator Im� in the definition (2) of g follows
from Eq. (3) which is independent of N . The denominator,
however, decreases with N simply because spacings between
eigenvalues become smaller when the number of eigenvalues
N grows. As a result, typical values of g increase with N as
we see in Fig. 6(a).

When Re� is increased, extended states from the “bulk”
of the eigenvalue cloud (see Fig. 1) start to contribute to
p(ln g), first for large N only [see Fig. 6(b)] and then for all
N [Fig. 6(c)]. Note, however, that larger N always correspond
to larger typical (i.e., average) values of ln g as follows from
Figs. 6(a)–6(c) where p(ln g) has a clear tendency to shift
to the right with increasing N . We thus conclude that the
two-scatterer proximity resonances exhibit neither the scaling
with system size expected for Anderson localization nor any
signatures of critical behavior. We will not consider the part of
the eigenvalue spectrum Re� � −1 corresponding to these
resonances in the remainder of the paper.

IV. SCALING THEORY AND SINGLE-PARAMETER
SCALING OF PERCENTILES

To avoid the impact of the large-g nonuniversal part of p(g)
visible in Figs. 4 and 5 on our analysis, we consider percentiles
gq defined by the following equality:

q =
∫ gq

0
p(g)dg. (4)

The definition of a percentile is illustrated in Fig. 4(b) where
the shaded area is equal to q = 0.05 and the vertical dashed
line shows ln gq . According to Eq. (4), the region of ln gq that
counts for the calculation of gq=0.05 is on the left from the
dashed line in Fig. 4(b) [39]. Small-q percentiles depend only
on the small-g part of the distribution p(g) and are therefore
suitable for the analysis of the localization transition. Scaling
analysis of gq has been previously used to demonstrate the
single-parameter scaling of conductance distribution in the
Anderson model [40]. Here we analyze gq for q = 0.001–
0.05 and restrict ourselves to the vicinity of the localization
transition I. The transition II can, in principle, be analyzed in
the same way but it takes place in a spectral region where the
eigenvalue density of the Green’s matrix Ĝ is lower, requiring
a larger number of independent scatterer configurations {rj }
to reach an acceptable statistical accuracy. Consequences of
this can be seen, for example, in Figs. 2(a) and 3 where
the estimated moments of ln g exhibit significantly stronger
statistical fluctuations in the vicinity of transition II than in
the vicinity of transition I. In addition, it follows from the
comparison of Figs. 4(b) and 5(b) that the relative statistical
weight of superradiant states is larger at the transition II,
making this transition less suitable for an accurate scaling
analysis.

The scaling theory of localization [5] teaches us that a
“typical” or “scaling” conductance g̃ is expected to obey a
scaling law

∂ ln g̃(L)

∂ ln L
= β(ln g̃). (5)

Thus, g̃ (or, equivalently, ln g̃) is the only relevant scaling
variable. One expects β > 0 (conductance grows with system
size L) when eigenstates are extended and transport is diffu-
sive, β < 0 (conductance decreases with L) when eigenstates
are localized, and β = 0 (conductance independent of L) at the
mobility edge. It has been noticed that the average conductance
〈g〉 generally cannot be taken as g̃ because it can be dominated
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FIG. 7. Examples of second-order polynomial fits (solid lines) to the numerical data (symbols) for the β function β(ln gq ). Fits for four
different values of q are shown. Only data points corresponding to β > −5 were used for fitting and are shown in the figures. Different symbols
correspond to estimations of the β function for N = 2 and 4×103 (full circles), N = 4 and 6×103 (squares), N = 6 and 8×103 (triangles),
N = 8 and 10×103 (upside-down triangles), N = 10 and 12×103 (diamonds), N = 12 and 14×103 (open circles), N = 14 and 16×103 (stars).
Values of the critical exponent ν following from the fits are shown on the figures.

by irrelevant tails of p(g). Some “representative” conductance,
such as the median conductance gq=0.5, should be considered
instead [32,33]. Here we will assume that g̃ = gq and will test
the scaling theory in the limit of small q.

Figure 7 shows β(ln gq) estimated from our numerical
data with L = k0R for four different q. We approximate the
derivative in Eq. (5) by a finite difference

β(ln gq) = ∂ ln gq(L)

∂ ln L
� ln gq(L2) − ln gq(L1)

ln L2 − ln L1
(6)

and fit the result by a second-order polynomial

β(x) = A(x − xc) + B(x − xc)2, (7)

where x = ln gq , xc is the critical value of x at which β = 0,
and A and B are constants. The fits are shown by solid lines in
Fig. 7. The numerical results exhibit large fluctuations around
the fits due to the limited number of independent disorder real-
izations in our data and the finite-difference approximation (6)
that amplifies statistical fluctuations present in the numerical
data for ln gq . However, no significant systematic deviations
with system size can be identified suggesting that the behavior
of small-q percentiles is compatible with the single-parameter
scaling hypothesis of Eq. (5).

It can be shown [5] that the angle at which β(x) crosses the
horizontal axis β = 0 is related to the critical exponent ν of the

localization transition. More precisely, ν = 1/A. Values of the
critical exponent estimated in this way are given in Fig. 7. We
see that ν decreases with q in a systematic way. Although the
range of ν = 1.52–1.72 is compatible with ν � 1.6 expected
for the Anderson transition in the 3D orthogonal universality
class [41,42], the trustworthiness of such an estimate is not
satisfactory and more robust methods have to be used.

V. FINITE-SIZE SCALING OF PERCENTILES

The analysis presented in the previous section can be seen as
a variant of the finite-size scaling approach. The latter is a stan-
dard tool of statistical physics that allows estimating critical
parameters of a phase transition—a phenomenon that, strictly
speaking, is characteristic only for unbounded systems—from
an analysis of the evolution of the system’s behavior with
its size L, for finite L. Equation (5) is an appealing way to
perform such an analysis because the sign of the β function
directly indicates whether the conductance grows or decreases
with L. Unfortunately, calculating a derivative of fluctuating
numerical data as suggested by this equation produces very
noisy results as can be seen from Fig. 7. A way to perform
finite-size scaling that, on the one hand, is less sensitive to
statistical fluctuations of numerical data and, on the other
hand, more general, was adapted to the Anderson transition
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by Pichard and Sarma [43], MacKinnon and Kramer [44], and
later perfected by Slevin and Ohtsuki [45] (see Ref. [41] for
a concise summary). Very generally, one hypothesizes that a
quantity � (that has to be chosen in a “proper” way) obeys a
single-parameter scaling. This hypothesis cannot be justified
a priori and literally means that for a large enough sample
and in the vicinity of the localization transition, � can be
parametrized by a single parameter φ1. To allow for (weak)
deviations from this scaling law due to the finite sample size
L, one introduces an additional, “irrelevant” scaling variable
φ2 and assumes that � depends on the disorder strength W

through a scaling law of the form [46]

� = F (φ1,φ2), (8)

where the scaling variables are

φi = ui(w)Lαi , i = 1,2. (9)

Here w = (W − Wc)/Wc is the reduced disorder strength and
Wc is the critical disorder. The critical exponent of the disorder-
driven (Anderson) transition is given by ν = 1/α1. The role of
the second scaling variable φ2 should decrease with L (that is
why it is called irrelevant) and hence α2 = y < 0. There may
be several irrelevant scaling variables, but it is essential for our
analysis that only a single relevant scaling variable φ1 exists.
The validity of single-parameter scaling hypothesis is not at
all guaranteed and examples of its violation exist [33]. The
applicability of single-parameter scaling may also depend on

the particular choice of the quantity � for which analysis is
performed.

To proceed further, the functions ui(w) and F (φ1,φ2) are
expanded in Taylor series and one assumes that the latter can
be truncated at fairly low orders:

ui(w) =
mi∑

j=0

bijw
j , (10)

F (φ1,φ2) =
n1∑

j1=0

n2∑
j2=0

aj1j2φ
j1
1 φ

j2
2 . (11)

Typically, m1, n1, m2, n2 � 3 is sufficient [41]. Because �

should be independent of L at the critical point W = Wc,
we must have u1(0) = 0 and b10 = 0. And because Eq. (11)
contains products of bij and aj1j2 , we can put a01 = a10 = 1
without loss of generality.

We now put W = Re�, � = ln gq and fit the numerical
data corresponding to different system sizes L = k0R and
different w. The best fit is determined [47] by minimizing
the χ2 statistic,

χ2 = 1

Ndata

Ndata∑
i=1

(Fi − �i)2

σ 2
i

, (12)

where σi is the error in the estimation of �i calculated
following the approach of Ref. [40] and Ndata is the total
number of data points. We fit only the data in an interval

FIG. 8. Examples of fits (solid lines) to the numerical data (symbols with error bars) for four different values of q and m1 = 2, n1 = 1,
m2 = n2 = 0. Different curves correspond to different N = 4, 6, 8, 10, 12, and 16×103. The order of curves corresponding to increasing N is
indicated by an arrow in the panel (a). The best-fit parameters Re�c and ν are given on the plots.
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ln gq = (ln g̃q)c ± δln g , where {Re�̃c, (ln g̃q)c} is the approxi-
mate crossing point of curves ln gq(Re�,k0R) corresponding
to different k0R (or, equivalently, to different N ). Re�̃c is
determined as the value of Re� for which the sum of squared
differences between ln gq corresponding to all available N =
2000–16000 is minimal; (ln g̃q)c is the arithmetic average of
ln gq at this point. Fits are performed for each combination of
m1, n1 � 3 and m2 � m1, n2 � n1 starting with random initial
values of fit parameters in ranges ν ∈ [0,10], y ∈ [−10,0],
Re�c = Re�̃c ± 10%, a00 = (ln g̃q)c ± 10% and all other fit
parameters in a wide range [−10,10]. The fitting procedure
is repeated for 103 different random choices of starting values
and then the fit with the smallest χ2 is chosen among the fits for
which the best-fit y is negative and the maximal contribution
of the irrelevant scaling variable does not exceed 10%. Fits are
attempted for δln g = 0.5, 1, and 1.5.

Analysis of the ensemble of fits shows that similar results
are obtained for different δln g , but δln g = 0.5 implies using a
very small part of available data resulting in large uncertainties
of best-fit parameters. We thus choose δln g = 1 which, on the
one hand, is small enough to ensure that only the vicinity
of the critical point is analyzed and, on the other hand, is
sufficiently large for the part of our data falling in the range
ln gq = (ln g̃q)c ± δln g to be statistically meaningful. When
plotted as a function of Re�, ln gq for N = 2000 significantly
deviates from the curves corresponding to larger N [a similar
tendency for 〈ln g〉 is seen in Fig. 2(b)] which is likely to be
due to the fact that this N is too small. We thus choose to
discard the data corresponding to N = 2000 and to analyze
only the data for N � 4000. To choose the orders mi , ni of
Taylor expansions in Eqs. (10) and (11), we notice that in the
majority of cases, χ2 decreases abruptly by roughly a factor of
2 or even more (and, typically, down to χ2 ∼ 1) when m1 or
n1 exceeds 2. Further increase of m1, n1 or introduction of m2,
n2 > 0 does not improve fit quality significantly. Moreover,
the best-fit values of the irrelevant scaling exponent y obtained
for m2, n2 > 0 vary in a very wide range for different q and
often become unrealistically large in absolute value, shedding
doubts on the relevance of the whole analysis. We thus use
m1 = 2, n1 = 1 and m2 = n2 = 0 (i.e., no irrelevant variable)
in the remainder of this paper. The fact that we do not need the
irrelevant variable to fit our data does not necessarily imply
that our simulated samples are sufficiently large but, most
likely, simply reflects the fact that there are still considerable
statistical fluctuations in our data that exceed the eventual
corrections to scaling due to the irrelevant variable.

Examples of fits of Eqs. (10) and (11) to our numerical data
are shown in Fig. 8. The best-fit values of the mobility edge
Re�c and of the critical exponent ν are shown on the plots.
We notice, in particular, that the estimation of the position of
the mobility edge following from our analysis is significantly
more precise than the estimation of the critical exponent,
which is a known particularity of the finite-size scaling
approach. A summary of results for different q is presented
in Fig. 9. An estimate of the mobility edge following from
averaging over q = 0.001–0.05 is 〈Re�c〉 = −0.503 ± 0.007.
The average value of the critical exponent 〈ν〉 = 1.55 ± 0.07
is consistent with ν � 1.57 found for the Anderson model in
the 3D orthogonal universality class using the transfer matrix
method [41] as well as with ν � 1.59 found for the quantum

kicked rotor model that can be proved to fall in the same
universality class [42]. This indicates that the localization
transition in the model of resonant point scatterers considered
in the present work is likely to belong to the 3D orthogonal
universality class as well.

Analysis of Fig. 9 suggests that there is a region of q,
namely, q = 0.006–0.01, in which the values of fit parameters
Re�c and ν are more consistent with each other than in the full
range q = 0.001–0.05 (points shown by open circles in Fig. 9).
This region of q is likely to be the one in which our analysis
is the most adequate because it corresponds to q which are
sufficiently small but still large enough to ensure sufficient
statistical accuracy of our results. Averaging Re�c and ν

over this region yields better estimates of critical parameters:
〈Re�c〉 = −0.503 ± 0.001 and 〈ν〉 = 1.58 ± 0.03. The latter
value is in even better agreement with ν expected for
the Anderson transition in the 3D orthogonal universality
class [41,42].

We are now in a position to check the single-parameter
scaling of percentiles that was one of the main assumptions
of the finite-size scaling analysis presented above. For this
purpose, we introduce the localization length

ξ = const.±
|u1(w)|ν (13)

FIG. 9. Best-fit values of the mobility edge Re�c (a) and of the
critical exponent ν (b) obtained from the fits to the data for q = 0.001–
0.05 using m1 = 2, n1 = 1, and m2 = n2 = 0 (symbols with error
bars). The horizontal dashed lines show mean values of Re�c and ν,
respectively. The shaded regions correspond to the uncertainties of
the means.
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FIG. 10. Demonstration of single-parameter scaling of percentiles gq for four different values of q. Points with error bars are numerical
data of Fig. 8. Lines show the scaling function (8) as determined from the fits of Fig. 8.

that diverges at the mobility edge where w = 0 and u1(w) = 0.
Although we know the divergence of the localization length,
we cannot determine its value (set by the constants const.±
that may be different on the two sides of the transition) from
the scaling analysis performed here. We put const.± = 1 in
the following. According to Eqs. (8) and (9), the values of
� = ln gq corresponding to different sample sizes L = k0R

and disorder strengths W = Re� are all expected to fall on a
single master curve when plotted against R/ξ . This is verified
in Fig. 10 where we show ln gq as a function of R/ξ for q =
0.001, 0.005, 0.01, and 0.05. Because numerical data nicely
follow a single master curve for each q, we conclude that
the small-q percentiles ln gq are indeed functions of a single
parameter R/ξ and hence our initial assumption of single-
parameter scaling is verified a posteriori.

VI. CONCLUSION

We studied the disorder-induced localization transition
for scalar waves in a 3D random ensemble of resonant point
scatterers using the Green’s matrix approach. We defined the
normalized decay rates g of quasimodes of our system by
dividing the imaginary part of eigenvalues � of the Green’s
matrix Ĝ by the average spacing between �’s projected
on the real axis. g is argued to play a role analogous to
Thouless conductance in electronic transport. Its statistics
is analyzed with frequency resolution, i.e., by calculating
statistical properties of g averaged over narrow bands of Re�.
A transition between extended and localized eigenstates is

observed when Re� crosses a critical value (mobility edge)
Re�c, at a given and sufficiently high density of scatterers ρ.
The probability density p(g) does not obey a single-parameter
scaling law and p(g) obtained for different system sizes do
not coincide at the critical point. We believe that this is due
to other physical phenomena, such as superradiance, that take
place in our system in parallel with Anderson localization.
The statistical relevance of these phenomena has a tendency
to decrease with system size L, but we cannot claim with
certainty whether they become completely irrelevant in the
limit of L → ∞ or not. Luckily enough, the small-g parts of
p(g) do exhibit an L-independent shape for a certain value
of Re�, which suggests that small-q percentiles gq of p(g)
may obey single-parameter scaling and hence may be used to
determine the critical parameters of the localization transition.
Finite-size scaling analysis of gq for q = 0.001–0.05 allowed
us to estimate the mobility edge Re�c = −0.503 ± 0.007
and the critical exponent ν = 1.55 ± 0.07 of the localization
transition in our model. The latter is consistent with the value
expected for the Anderson transition in the 3D orthogonal
universality class. We thus conclude that the reported
transition is likely to belong to this universality class as well.

The finite-size scaling analysis presented in this work can
be readily extended to other wave systems described by a
non-Hermitian Green’s matrix model. Localization transitions
in resonant scattering of elastic waves [8,9] or of light under
an external magnetic field [48] can be studied in the same way.
The precise localization of one of the two mobility edges in
the model (1) achieved here opens a possibility to study the
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structure of critical quasimodes by performing calculations
exactly at the critical point. In particular, the multifractality
of quasimodes in open media can be investigated to improve
understanding of recent experiments [49].
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Szriftgiser, and J. C. Garreau, Phys. Rev. Lett. 101, 255702
(2008).

[11] F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse,
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