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Time-dependent reflection at the localization transition
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A short quasimonochromatic wave packet incident on a semi-infinite disordered medium gives rise to a reflected
wave. The intensity of the latter decays as a power law, 1/tα , in the long-time limit. Using the one-dimensional
Aubry-André model, we show that in the vicinity of the critical point of Anderson localization transition, the decay
slows down, and the power-law exponent α becomes smaller than both α = 2 found in the Anderson localization
regime and α = 3/2 expected for a one-dimensional random walk of classical particles.
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I. INTRODUCTION

Analyzing waves (light, sound, etc.) reflected by a disor-
dered medium is an efficient and practical way of acquiring
information about the medium. Imaging and nondestructive
testing in reflection mode are widely used in medical [1,2] and
industrial [3,4] applications. In comparison with transmission
geometry, measuring in reflection ensures a comfortable signal
power (because most of the incident power is reflected for
thick media) and does not require access to two opposite
sides of the sample under study, which is a non-negligible
practical advantage. Recent studies of fundamental wave
phenomena taking place in strongly disordered media, such
as Anderson localization [5,6], also exploit the reflection
geometry more and more often [7–11]. Meanwhile, most of
the well-established results in this research field have been
obtained for quantities measured in transmission, which can
be explained by the history of the subject: many results were
first established for electron scattering in disordered solids and
extended to “classical” waves (light, sound, etc.) only later.
The transmission of electrons through a disordered sample
determines the electrical conductance of the latter, which is
the principal physical quantity that can be measured in an
experiment. Reflection measurements, if possible at all, are
difficult to realize in the realm of electronics, and hence,
they were given little attention. Nevertheless, the reflection
coefficient of a disordered sample is related to the probability
for a wave to return to its initial position, the so-called return
probability, which is one of the fundamental quantities in the
Anderson localization theory [12–14]. Therefore, reflection
measurements have the potential to yield direct information
about Anderson localization.

A recent study [10] reported measurements of the average
time-dependent reflection coefficient 〈R(t)〉 of a short pulse
of ultrasound that was tightly focused on a surface of a
strongly disordered three-dimensional (3D) solid sample (an-
gle brackets 〈· · · 〉 denote ensemble averaging from here on).
The intensity of the reflected wave was measured at the same
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point where the incident pulse was focused. Depending on the
central frequency of the pulse, different regimes of propagation
were identified: diffuse scattering leading to 〈R(t)〉 ∝ 1/t5/2

at long times or Anderson localization yielding 〈R(t)〉 ∝
1/t2. Although both these results can be understood in the
frameworks of available theories [8,9,15–18], the behavior
〈R(t)〉 ∝ 1/tα with α ≈ 1 discovered at a critical frequency
separating the frequency ranges of diffuse and localized modes
(the mobility edge) turned out to be a surprise. On the one hand,
a link between the temporal decay of the return probability and
multifractality of critical states was proposed in the infinite
disordered media [19–22], but it is not clear how to extend this
result to a sample’s boundary. On the other hand, the fact that
the power exponent α does not change monotonously from
the diffuse value α = 5/2 to the localized one α = 2 when
crossing the mobility edge may hide some interesting physics.
It is also curious that a power exponent α slightly exceeding
1 corresponds to the slowest possible decay because the time
integral of 〈R(t)〉 should converge.

In the present paper, we make the first step towards un-
derstanding the time-dependent reflection coefficient of disor-
dered media at the critical point of localization transition by
considering one of the simplest models exhibiting such a tran-
sition: the one-dimensional (1D) Aubry-André model [23,24].
In this model, the random potential is quasiperiodic and is given
by a deterministic formula with the randomness contained
in a single parameter: the initial phase of the quasiperiodic
variation. The Aubry-André model and its variants have been
used to study localization transitions [25–27] and properties
of disordered systems at the critical point [28–34], as well
as to observe localization transitions in experiments [35,36].
We will compare results obtained for this model with those
for the standard Anderson model [5] in which the values of
the potential are random and uncorrelated for different sites
of a lattice. Our main result is that in the center of the energy
band of the Aubry-André model, the time-dependent reflection
coefficient 〈R(t)〉 is roughly independent of the shape of the
incident wave packet and exhibits a critical slowing down near
the critical point of the Anderson localization transition. The
exponent α of its power-law decay 〈R(t)〉 ∝ 1/tα is below
both α = 3/2 and α = 2, expected for classical diffusion in

2469-9950/2018/97(10)/104202(8) 104202-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.104202&domain=pdf&date_stamp=2018-03-09
https://doi.org/10.1103/PhysRevB.97.104202


SERGEY E. SKIPETROV AND ARITRA SINHA PHYSICAL REVIEW B 97, 104202 (2018)

FIG. 1. Grayscale plot of the average IPR of eigenstates of the (a) Anderson and (b) Aubry-André models. Averaging was performed over
100 realizations of random potential for a system of L = 103 sites with periodic boundary conditions. The dashed vertical line in (b) shows the
critical disorder strength Wc = 4 of the Aubry-André model. White space corresponds to regions of parameters where no states exist.

1D and Anderson localization, respectively. For energies far
from the band center, especially for energies inside the energy
gap of the Aubry-André model, the long-time decay of 〈R(t)〉
depends on the shape of the wave packet and can be as slow as
〈R(t)〉 ∝ 1/t1+ε, with ε � 1.

II. ANDERSON AND AUBRY-ANDRÉ MODELS

We want to study a wave described by the Schrödinger
equation in one dimension:

ih̄
∂

∂t
ψ(x,t) =

[
− h̄2

2m

∂2

∂x2
+ v(x)

]
ψ(x,t), (1)

where m is the mass of the particle for which this equation
provides the quantum description andv(x) is the random poten-
tial. Assuming ψ(x,t) = ψ(x) exp(−iεt/h̄), we discretize the
resulting equation for ψ(x) on a lattice xn = n�x applying a
finite-difference approximation (d2/dx2)ψ(xn) = [ψ(xn+1) −
2ψ(xn) + ψ(xn−1)]/�x2 for the second-order derivative. Set-
ting h̄ = 1, �x = 1, 2m = 1 (which fixes the units of energy
and time) and redefining the energy E = 2 − ε and the poten-
tial Vn = −v(xn), we arrive at the standard tight-binding model
with diagonal disorder:

ψn−1 + Vnψn + ψn+1 = Eψn, (2)

where ψn = ψ(xn). Assuming Vn = 0 and ψn = A exp(ikn),
one obtains the free-space dispersion relation of the lattice
model (2): E = 2 cos k.

In the following, we will compare results for two different
models that are particular cases of Eq. (2). In the Anderson
model with uncorrelated disorder [5] (for brevity referred to as
simply the Anderson model from here on), the on-site poten-
tials Vn are assumed to be random, uncorrelated, and uniformly
distributed between −W/2 and W/2, where W measures the
strength of disorder. This model is extensively studied in the
literature (see, e.g., Ref. [37] for a pedagogical introduction,
further references, and an analysis relevant to our work). In
the Aubry-André model [23,24], Vn = (W/2) cos(2πγn + φ),
where γ is an irrational Diophantine number and φ is a random
phase uniformly distributed between 0 and 2π . Without loss

of generality and following some of the previous studies
[25,27,34], we set γ = (

√
5 − 1)/2. Whereas the on-site po-

tential Vn varies between −W/2 and W/2 in both models,
the variation is completely random for the Anderson model
and quasiperiodic for the Aubry-André model. This differ-
ence turns out to be of fundamental importance because the
eigenstates of the Anderson model are exponentially localized
in space for arbitrary, even infinitesimal, disorder, whereas
the eigenstates of the Aubry-André model are extended for
W < Wc and localized for W > Wc. A localization transition
takes place at W = Wc = 4 [24]. We illustrate this difference
in Fig. 1, where we show the average inverse participation ratio

〈IPR〉 =
〈

L∑
n=1

|ψn|4
〉

(3)

for a system of L = 103 sites. IPR measures the spatial local-
ization of a state and varies from 1/L � 1 for a state extended
over the entire system to 1 for a state localized on a single site.
The eigenenergies E and eigenstates ψ = (ψ1,ψ2, . . . ,ψL)T

are obtained by numerically solving the eigenvalue problem
Ĥψ = Eψ for a random Hamiltonian matrix

Ĥ =

⎡
⎢⎣

V1 1 0 . . . 0 1
1 V2 1 0 . . . 0

. . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

1 0 . . . 0 1 VL

⎤
⎥⎦ (4)

corresponding to Eq. (2) with periodic boundary conditions.
In agreement with previous results [23–34], we see that

the average IPR becomes significant only for W > Wc = 4,
clearly identifying Wc = 4 as a critical value of disorder for
all energies. In contrast, the growth is monotonic for the
average IPR computed for the Anderson model exhibiting no
criticality. Another difference between the two models is that
spectral gaps develop with increasing W in the spectrum of
the Aubry-André model around E � ±1, in contrast to the
Anderson model, for which no gaps appear.
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III. TIME-DEPENDENT REFLECTION

We start by defining an amplitude reflection coefficient for
a monochromatic wave of energy E. To this end, we surround
a disordered region of L − 4 sites, n = 3,4, . . . ,L − 2, by the
free space V1 = V2 = VL−1 = VL = 0, so that the total number
of sites is L. An excitation on the left from the disordered region
can be represented as a sum of incident and reflected waves:

ψn = Aeikn + Be−ikn, n = 1,2, (5)

whereas only the transmitted wave exists on the right from the
disordered region:

ψn = Ceikn, n = L − 1,L. (6)

Here A, B, and C are the amplitudes of the incident, reflected,
and transmitted waves, respectively, and k = k(E) is the wave
number determined according to the free-space dispersion
relation. For a given energy E, we set C equal to an arbitrary
complex number (say, C = exp[−ik(L − 1)]), which deter-
mines ψL−1 = 1 and ψL = exp(ik) via Eq. (6), and then use
Eq. (2) rewritten as ψn−1 = −ψn+1 + (E − Vn)ψn to compute
ψL−2,ψL−3, . . . ,ψ1 successively by recursion on a computer
[38]. Substitution of ψ1 and ψ2 into Eq. (5) then yields a system
of two linear equations for A and B, which can be readily
solved. The amplitude reflection coefficient is given by

r̃(E) = B

A
= e3ik ψ2e

−ik − ψ1

ψ1e−ik − ψ2
. (7)

To compute the time-dependent reflection coefficient and
study its sensitivity to the shape of the incident pulse, we
consider wave packets with Gaussian (G) and parabolic (P)
spectra:

f̃G(E) = (2π )1/4

√
σ

exp

[
− (E − E0)2

4σ 2

]
, (8)

f̃P (E) =
√

15π

16σ

[
1 − (E − E0)2

4σ 2

]
, |E − E0| < 2σ. (9)

The time profiles of these pulses are given by, respectively,

fG(t) = 1

2π

∫ ∞

−∞
dEf̃G(E)eiEt

= 1

(2π )1/4
√

τ
exp(iE0t − t2/4τ 2), (10)

fP (t) =
√

30

2
√

π
√

τ

(
τ

t

)2[ sin(t/τ )

t/τ
− cos(t/τ )

]
eiE0t , (11)

where τ = 1/2σ is the pulse duration and∫ ∞

−∞
dt |fP,G(t)|2 = 1

2π

∫ ∞

−∞
dE|f̃P,G(E)|2 = 1. (12)

The reflected field is then

r(t) = 1

2π

∫ 2

−2
dE r̃(E)f̃P,G(E) exp(iEt), (13)

and the averaged reflected intensity

〈R(t)〉 = 〈|r(t)|2〉

= 1

(2π )2

∫ 2

−2
dE1

∫ 2

−2
dE2〈r̃(E1)r̃∗(E2)〉

× f̃P,G(E1)f̃ ∗
P,G(E2) exp[i(E1 − E2)t]. (14)

Note that the integrations in Eqs. (13) and (14) are restricted
to the energy band −2 � E � 2 of the homogeneous system
without disorder despite the fact that states appear outside
this band for W > 0 (see Fig. 1). The reflection coefficient
r̃(E), however, can be defined only inside the band of the
homogeneous system because it characterizes the amplitude
ratio of incident and reflected waves, which both exist only
outside the disordered region. The finiteness of the energy band
of our model can have an important impact on the long-time
behavior of the reflection coefficient 〈R(t)〉, as we will see in
the following.

In our calculations we use Eq. (7) to compute r̃(E) for a large
number (104) of random realizations of disorder {Vn}, deter-
mine the correlation function 〈r̃(E1)r̃∗(E2)〉 by averaging over
{Vn}, and use Eq. (14) to obtain the average time-dependent
reflection coefficient corresponding to an incident pulse of a
given central energy E0, shape (parabolic or Gaussian), and
bandwidth σ . In the following we set L = 103, which is long
enough to consider that our disordered samples are effectively
semi-infinite (see the Appendix), and discretize the energy E

with a step �E = 10−3, which is sufficient to obtain reliable
results for 〈R(t)〉 up to times t ∼ 2π/�E ∼ 5 × 103.

IV. RESULTS

To start with, we compute the time-dependent reflection
coefficient for the Anderson model. Figure 2 shows 〈R(t)〉 for
W = 4, two values of the central energyE0 of the incident wave
packet, and two values of its spectral width σ . We obtain very
similar results for any W ∈ [2,8] and E0 ∈ [−2 + 2σ,2 − 2σ ]
as long as σ � 1. Anderson localization of all eigenstates
at arbitrary disorder W leads to a universal long-time decay
〈R(t)〉 ∝ 1/t2 independent of the spectral shape of the incident
wave packet, its central energy E0, and its spectral width
σ . This is in agreement with expectations following analytic
theories for systems of any dimensionality [15–18].

In contrast to the Anderson model, the Aubry-André model
yields a reflection coefficient that strongly depends on E0, σ ,
and the shape of the incident wave packet. Figure 3(a) illus-
trates this for the critical value of disorder W = Wc = 4 and
E0 = −1.2, at which differences between 〈R(t)〉 correspond-
ing to different wave packet shapes and widths σ are maximal.
The long-time decay of 〈R(t)〉 is approximately a power law in
all cases, but it is clearly due to the abrupt cut of the Gaussian
spectrum of the incident wave packet at the edges E = ±2 of
the energy band of the model (for the Gaussian wave packet)
or to the exact vanishing of the parabolic spectrum beyond
E = E0 ± 2σ . This is particularly obvious for the Gaussian
wave packet for which dividing σ = 0.1 by 2 suppresses the
effect of spectral cut by an exponentially large amount, shifting
the power-law decay of 〈R(t)〉 to longer times and to much
lower intensities [G: σ = 0.05 in Fig. 3(a); the power-law part
of 〈R(t)〉 is beyond the range of the vertical axis]. However, the
resulting reflection coefficient cannot be interpreted simply as
a specularly reflected incident wave packet, which would give
〈R(t)〉 ∝ 1/t2 and 1/t4 for the Gaussian and parabolic spectra,
respectively. Instead, the reflection coefficient shows a slower
decay, which can be as slow as 〈R(t)〉 ∝ 1/t1+ε, with ε � 1,
for the Gaussian wave packet.
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FIG. 2. Average time-dependent reflection coefficient for the Anderson model computed for a system of length L = 103, disorder strength
W = 4, and the central energy of the wave packet (a) E0 = −1.2 or (b) 0. Solid and dashed lines correspond to the Gaussian [Eq. (8)] and
parabolic [Eq. (9)] spectra, respectively, and to two different spectral widths, σ = 0.1 (black and green lines) and 0.05 (red and blue lines). The
results are averaged over 104 independent realizations of random potential. Dashed straight lines illustrate the power-law decay at long times.

While for most central energies E0 of the incident wave
packet the time-dependent reflection coefficient strongly de-
pends on the shape and width of the latter, a certain degree of
universality is achieved for E0 around the center of the band
E = 0, which lies far enough from the band edges E = ±2. As
we show in Fig. 3(b), the long-time decay of 〈R(t)〉 becomes
roughly independent of the incident-wave-packet details in this
case and can be approximately described by a 1/t3/2 law. This
relative universality of results obtained for E0 = 0 is preserved
at other values of disorder strength W , as we show in Figs. 4(b)
and 4(d) for W = 3 and 5. In contrast, |E0| ∼ 1 yields nonuni-
versal results whatever W [see Figs. 4(a) and 4(c)].

In an attempt to systemize the results obtained in the center
of the band (E0 = 0), we fit the long-time behavior of the
average reflection coefficient by a power law: ln〈R(t)〉 = β −
α ln t . The fits are performed at a fixed W for the two spectral
shapes of the incident pulse (8) and (9) and for the two spectral

widths σ = 0.05 and 0.1 in both cases. The best-fit power expo-
nents α obtained from the four fits are averaged to obtain a sin-
gle exponent 〈α〉. The result is shown in Fig. 5 as a function of
disorder strength W and in comparison with a result of the same
calculation performed for the Anderson model. In contrast to
the Anderson model, yielding 〈α〉 � 2 with an accuracy below
5% for any W , the Aubry-André model gives 〈α〉 that strongly
depends on the strength of disorder. It reaches a minimum
〈α〉 � 1.34 in the vicinity of the localization transition [W ≈
3.75 in Fig. 5; the corresponding 〈R(t)〉 are shown in the inset],
although not exactly at the transition W = Wc = 4. This value
is only slightly smaller than the value α = 1.5 expected for
diffusion of classical particles [39]. Whereas for W = 4.5–6
the behavior of the Aubry-André model is similar to that of the
Anderson model, the quasiperiodic nature of the potential in the
Aubry-André model starts to play a role at larger W , inducing
differences with the Anderson model in which the potential

FIG. 3. Same as Fig. 2, but for the Aubry-André model. The letters G and P mark lines corresponding to the Gaussian and parabolic spectra
of the incident wave packet, respectively.
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FIG. 4. Same as Fig. 3, but for (a) and (b) W = 3 and (c) and (d) 5.

is random. This is manifested in slow oscillations of 〈R(t)〉
with time, superimposed on an otherwise power-law decay,
and precludes precise determination of α [see Fig. 4(d), where
such oscillations start to become visible]. In the opposite limit
of weak potential (W < 3.75) the power-law decay of 〈R(t)〉
speeds up and eventually breaks down because the length
L = 103 of the simulated system becomes insufficient to model
an infinite system, and the reflection of the coherent part of the
wave packet from the other end of the system starts to become
visible in the reflected signal, as we explain in the Appendix
[see the sharp jump of 〈R(t)〉 at t � 2.5 × 103 in Fig. 4(b)].

V. DISCUSSION

The dynamics of a wave packet in an infinite quantum or
wave system at the critical point of a localization transition can
be related to the multifractal properties of critical eigenstates
[19–22]. Such a relation was worked out for the critical 1D
Aubry-André (or Harper) model long time ago [29–32]. In
particular, the probability for a particle to return to a given
lattice site after a long time t (the so-called return probability)
is predicted to decay very slowly as a power law P (t) ∝ 1/tα

with α � 0.14 [30,31]. The analysis presented above shows
that this behavior is significantly modified at a boundary of an

open disordered system. Indeed, for a sufficiently narrow wave
packet, the average reflection coefficient 〈R(t)〉 is expected to
exhibit the same time dependence as the return probability to
the first site of the disordered region (n = 3 in our notation).
However, for energy-conservation reasons, 〈R(t)〉 cannot de-
cay slower than 1/t1+ε, with arbitrarily small but positive ε.
This is due to the requirement of convergence for the integral of
〈R(t)〉 over time t . In principle, a slower decay of 〈R(t)〉 might
be possible in the limited time range t < tcutoff , after which a
faster (power-law or exponential) decay would take over, but
we do not see any sign of such a behavior in our calculations.

It may be tempting to attribute the difference in the time
decay of P (t) expected in an infinite medium and the calculated
decay of 〈R(t)〉 to the fact that, by construction, the latter
is determined at a boundary of a disordered system. Taking
into account the impact of the boundary on the multifractality
might then cure the problem. Such an approach may, indeed,
be justified for a weakly open system of finite size in which
the eigenstates of a closed system acquire decay rates �

which are much smaller than the typical spacing � between
adjacent energy levels of a closed system. However, in our
calculations � = 4/L = 4 × 10−3, and the reflected signal
decays by several orders of magnitude already for times t <

2π/� � 1500. This witnesses that � 
 � for the majority
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FIG. 5. The power-law exponent 〈α〉 of the average time-
dependent reflection coefficient for the Anderson and Aubry-André
models obtained from the fits to the results presented in Figs. 2(b),
3(b), 4(b), and 4(d) and similar results for other values of W . Long
times, 100 < t < 3000, were used for the fits for all W in the
case of the Anderson model and for W > 3.5 in the case of the
Aubry-André model. For the Aubry-André model with W � 3.5,
only 100 < t < 500 were used. The long-time behavior of 〈R(t)〉 for
the Aubry-André model starts to deviate from a pure power law for
W < 3.5 and W > 6 (shown by dashed lines). The error bars show
the uncertainties due to both statistical fluctuations in the numerical
data and the differences between α obtained for the different shapes
and widths of the incident-wave-packet spectrum. The vertical dashed
line shows the critical point Wc = 4 of the Aubry-André model; the
two horizontal dashed lines show α = 1.5 and 2, expected for diffuse
and localized waves, respectively. Inset: The slowest decay of 〈R(t)〉
observed for W = 3.75.

of quasistates contributing to the reflected signal (the prefix
“quasi” reflects the fact that the states have acquired finite
lifetimes 1/�). In such a situation, the physical processes
dominating the decay of 〈R(t)〉 are fundamentally different
from those responsible for the slow decay of the return
probability P (t) in an infinite (or finite but closed) system.
Indeed, the wave dynamics in the infinite system is determined
by free oscillations of its eigenstates. The eigenstates are
excited at t = 0 and then do not decay in time. The average
result of their superposition is governed by the correlation of
intensities of different eigenstates [19–22]. This correlation, in
turn, is sensitive to the multifractal structure of the states, which
explains the physical mechanism behind the link between the
decay of P (t) and the multifractality.

The situation is drastically different in an open disordered
system, where quasistates have finite lifetimes 1/� � 1/�

because of strong energy leakage to the outside environment.
The reflection coefficient measures precisely this leakage.
The intensities of quasistates decay exponentially in time as
exp(−�t), with random decay rates� [40]. Weights of different
quasistates contributing to 〈R(t)〉 are correlated with their
decay rates because the states that leak the most are also the
most efficiently excited by the incident wave packet. 〈R(t)〉 is

obtained as an integral of exp(−�t) multiplied by a weight
P (�) of states with a decay rate � [17]. In the localized
regime, for example, P (�) ∝ � and 〈R(t)〉 ∝ 1/t2, as we see
from Fig. 2. P (�) ∝ �α−1 would yield 〈R(t)〉 ∝ 1/tα . Even
though the precise link between the multifractality and P (�)
at the critical point of the localization transition is not clear
at the moment, it can be studied with the help of numerical
approaches similar to those used in this paper. Such a study is,
however, outside the scope of the present work.

Another feature of the Aubry-André model that might, in
principle, affect the time-dependent reflection coefficient is
the presence of localized boundary states originating from
the nontrivial topological properties of the model. In a system
with closed boundaries, these states appear in the spectral gaps
opening around E ∼ ±1 [41] for both W < Wc and W � Wc.
A weak opening of the boundaries should confer on these states
a finite lifetime that we expect to be shorter than the lifetime
of modes exploring the bulk of the system. Indeed, because
of their localization at the boundary, the boundary states are
likely to couple to the outside world more efficiently than
states that have only part of their weight near a boundary. As a
result the boundary states may affect the short-time behavior
of 〈R(t)〉 but are unlikely to play any role at long times. In
addition, their impact should be visible at any W and not only
at W = Wc, in which we are mainly interested here. For a
system that is fully open, the above arguments become even
stronger, and it is even unclear if any signature of localized
boundary states may remain in 〈R(t)〉. We thus conclude that
the localized boundary states inherent in the Aubry-André
model with closed boundaries should not affect the long-time
behavior of the reflection coefficient 〈R(t)〉 in a model with
open boundaries that we consider in this work.

VI. CONCLUSION

The 1D Aubry-André model yields the average time-
dependent reflection coefficient 〈R(t)〉, which strongly de-
pends on the shape, the central energy E0, and the spectral
width σ of the incident wave packet, except in the center of the
band E0 = 0, where roughly universal results can be obtained.
In the center of the band, the long-time decay of 〈R(t)〉
is a power law: 〈R(t)〉 ∝ 1/tα . The exponent α � 2 in the
localized regime 4.5 < W < 6. Weak but visible oscillations
are superimposed on the power-law decay of 〈R(t)〉 at stronger
disorder W � 6, making it difficult to determine α precisely.
〈R(t)〉 exhibits a critical slowing down in the vicinity of the
critical point W = Wc = 4, where α � 1.5. The minimum
value α � 1.34 is reached slightly below the critical point at
W � 3.75.

When the central energy of the incident wave packet E0

is far from the center of the band and, in particular, when E0

is inside one of the spectral gaps that open around E � ±1,
the long-time decay of 〈R(t)〉 depends on the shape and
the spectral width of the incident pulse and, for a Gaussian
wave packet at the critical point W = Wc, can be as slow as
1/tα with α = 1 + ε and ε � 1. This suggests that nontrivial
behaviors may result from an interplay of criticality with the
band structure of a disordered system. Indeed, the interplay
between Anderson localization and band gap formation has
recently been shown to give rise to interesting physics in

104202-6



TIME-DEPENDENT REFLECTION AT THE LOCALIZATION … PHYSICAL REVIEW B 97, 104202 (2018)

FIG. 6. Illustration of finite-size effects in the average reflection coefficient 〈R(t)〉 of the Aubry-André model in (a) the extended and
(b) critical regimes. Different lines correspond to different system lengths L = 100, 200, 103 in (a) and L = 10, 20, 40, 100, 103 in (b). The
incident wave packet is assumed to have a parabolic shape (11).

two-dimensional (2D) disordered structures as well [42]. Such
an interplay may also be at the origin of the slow decay of
time-dependent reflection 〈R(t)〉 ∝ 1/tα with α � 1 observed
in the experiments at a critical point of localization transition
that happened to fall near an edge of a spectral gap of a 3D
disordered sample [10]. Further studies are needed to explore
this conjecture in more detail as well as to understand the role
of dimensionality (1D versus 2D and 3D) in this context.
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APPENDIX: FINITE-SIZE EFFECTS

The calculations presented in the main text were performed
for a 1D system of L = 103 sites that was assumed to model a

semi-infinite system. In this appendix we justify this assump-
tion and show how finite-size effects manifest themselves in
systems of shorter lengths.

When the strength W of the quasiperiodic potential is weak
(W � 3), the finite size of the system produces a peak in
〈R(t)〉 shortly after t = 2L, as we show in Fig. 6(a). This is
due to the reflection of the coherent attenuated wave from the
opposite end of the system and its propagation back to the
beginning of the system. Remnants of this phenomenon survive
even for L = 103 and are seen in Fig. 4(b). To ensure that it
does not influence our results, we use only the numerical data
corresponding to 100 � t � 500 for our fits when W < 3.75,
whereas times 100 � t � 3 × 103 are used when W � 3.75.

At W � 3.25, the peak in 〈R(t)〉 due to the coherent signal
reflected from the opposite end of the system is not visible any
more (at least, for times t � 3 × 103), and the finite size of
the system manifests itself by a faster decay of 〈R(t)〉 after a
certain time depending on L but significantly exceeding 2L

[see Fig. 6(b)]. We attribute this decay to the leakage of wave
energy out of the system at the transmission side. As follows
from Fig. 6(b), for t � 3 × 103 this phenomenon can be safely
ignored if L > 100 because 〈R(t)〉 obtained for L = 100 and
103 virtually coincide. Hence, L = 103 used in the main text
is sufficient to model the behavior of a semi-infinite system for
t � 3 × 103.
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