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Anderson transition for elastic waves in three dimensions
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We use two different fully vectorial microscopic models featuring nonresonant and resonant scattering,
respectively, to demonstrate the Anderson localization transition for elastic waves in three-dimensional (3D)
disordered solids. Critical parameters of the transition determined by finite-time and finite-size scaling analyses
suggest that the transition belongs to the 3D orthogonal universality class. Similarities and differences between
the elastic-wave and light scattering in strongly disordered media are discussed.
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I. INTRODUCTION

The appearance of localized eigenstates and suppression of
quantum or wave transport in a strongly disordered medium is a
widespread physical phenomenon discovered by Anderson 60
years ago [1,2]. Of special interest is the localization by three-
dimensional (3D) disorder that takes place only when the latter
is strong enough [3]. A critical energy (or frequency) known as
a “mobility edge” separates the range of energies (or frequen-
cies) for which the eigenstates are localized from the rest of the
spectrum. The localization transition taking place upon cross-
ing a mobility edge is the subject of intense theoretical studies
[4]. It has been observed in experiments with electrons in doped
semiconductors [5,6], vibrations in elastic networks [7,8], and
cold atoms in random potentials [9,10]. Despite important
experimental efforts, however, Anderson localization of light
in three dimensions has not been unambiguously demonstrated
up to now [11–13]. In addition, recent calculations show that
the vector nature of light may hamper Anderson localization
in a model of point scatterers [14,15], raising a number of
important questions. First, the extent to which the conclusion
obtained for point scatterers may apply to disordered media
composed of scatterers of finite size is unclear [16]. Second,
the relevance of results obtained for light to other types of
vector waves remains unexplored. In particular, elastic waves
(i.e., vibrations) in solids are directly concerned, and one may
wonder whether the theoretical results of Refs. [14,15] may
put in question the experimental observations of Refs. [7,8].
Once the localization of elastic waves in three dimensions is
firmly established, it is important to determine the universality
class of the corresponding Anderson transition and to calculate
its critical exponent, which experiments are now attempting to
measure [8].

Various models of elastic-wave systems have been shown
to exhibit Anderson localization in three dimensions, but most
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of them [17–23] have relied on the scalar approximation and
are therefore not suitable to discuss the role of the vector
character of vibrations. Calculations including the latter are
scarce [24,25] and predict critical properties that are different
from those of scalar waves [25], contradicting general, but
rather formal, theoretical arguments that seem to indicate that
the vector character of vibrations is unlikely to modify the
universality class of the localization transition [26,27]. Another
model that takes into account the vector character of vibrations
is the model of a simple fluid with short-range interactions
described by a truncated Lennard-Jones potential [28]. It yields
the same critical exponent of the localization transition for
instantaneous normal modes as scalar vibrational models for
both real (stable) and imaginary (unstable) frequencies. On the
other hand, the vector and scalar percolation problems (also
known as rigidity and connectivity percolation, respectively)
belong to different universality classes and exhibit different
critical exponents [29].

To clarify the role of the vector character of elastic waves
in the context of Anderson localization, in this paper we
report results obtained for two different models describing
strong scattering of elastic waves in three dimensions while
fully accounting for their vector nature. In the first model, the
scattering is nonresonant, and the localization transition takes
place upon increasing the frequency of vibrations. This model
is a direct extension of the scalar model of Ref. [23] and is
similar to those employed to study heat transport by phonons
in disordered materials [17,18]. The second model describes
resonant scattering inducing Anderson localization in a narrow
frequency band separated from the rest of the spectrum by two
mobility edges, similar to the scalar model of Ref. [30]. This
is typical for disordered samples used in recent experiments
on wave localization in elastic networks [7,8]. The critical
properties of the first model are deduced from a finite-time
scaling analysis, whereas the second model is analyzed using
a finite-size scaling technique. We show that in both cases
and within numerical errors, the critical exponents of local-
ization transitions coincide with those found for scalar waves.
This suggests that the Anderson transition of elastic waves
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in three dimensions belongs to the orthogonal universality
class.

II. A MODEL WITH NONRESONANT SCATTERING

A. Derivation of the model

A model describing nonresonant scattering of elastic waves
can be constructed by considering a cubic lattice of N = L3

identical unit point masses (or atoms) interacting harmonically.
The Cartesian components uα

m (α = x, y, z) of the vector
displacement um(t ) of an atom m from its equilibrium position
obey [31]

üα
m(t ) = −

∑
nβ

Mαβ
mnu

β
n (t ), (1)

where M
αβ
mn are elements of a 3N × 3N dynamical matrix M̂ .

The latter is composed of N 3 × 3 blocks M̂mn, describing the
coupling between Cartesian components of the displacement
of atom m with those of the displacement of atom n. The
dynamical matrix of a mechanically stable system should
be positive semidefinite (i.e., its eigenvalues ω2 should be
nonnegative), and hence, it can be represented as M̂ = ÂÂT ,
that is,

Mαβ
mn =

∑
kγ

A
αγ

mkA
βγ

nk . (2)

Disorder is introduced in the model by assuming that the
elements A

αβ
mn of off-diagonal matrix blocks (m �= n) de-

scribing interactions between nearest-neighbor atoms are real
independent, zero-mean Gaussian variables with variances �2.
A

αβ
mn = 0 for atoms m and n that are not nearest neighbors.

The diagonal blocks A
αβ
mm are obtained with the sum rule

A
αβ
mm = −∑

n�=m A
αβ
nm, which ensures that the total potential

energy is invariant upon translation of the system as a whole.
We will measure the frequency ω in units of � and the time t

in units of 1/� from here on.
Figure 1 shows the density of states (DOS) of the model

defined by Eqs. (1) and (2). It is simply a probability density
of a random variable ω, with ω2 being the eigenvalues of the
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FIG. 1. Density of states of the model with nonresonant scat-
tering. The red arrow indicates the position of the mobility edge
determined in Sec. II B.

random matrix M̂ . As we will show in Sec. II B, Anderson
localization takes place for frequencies ω exceeding a critical
frequency (mobility edge) ωc � 12 shown by a vertical arrow
in Fig. 1. The DOS vanishes exponentially beyond some
ωmax � 15 determined by the statistics of the random matrix Â.
In this respect, the model is quite particular because it assumes
that the properties of the system are dominated by the disorder
and neglects the “regular” part of M̂ that would describe the
system in the absence of disorder. As a consequence, the
low-frequency behavior of the DOS in Fig. 1 does not show
the shape expected in a homogeneous medium DOS(ω) ∝ ω2

(Debye’s law) for ω → 0. This is due to vanishing of the Young
modulus and, consequently, vanishing of both the rigidity of
the lattice and the zero-frequency sound velocity v in our
model [31]. Then, the Ioffe-Regel criterion k(ω)�(ω) � 1,
where k(ω) is the wave number and �(ω) is the scattering
mean free path, is obeyed already for ω = 0. The model
(2) can be made more realistic by defining M̂ as a sum
of ÂÂT and an additional matrix M̂0 corresponding to the
lattice without disorder. This introduces a nonzero rigidity
of the lattice [31] and produces a Debye-like behavior of
the low-frequency spectrum in Fig. 1: DOS(ω) ∝ ω2, which
extends from ω = 0 to some finite ω � ωIR. Here ωIR is the
Ioffe-Regel frequency obeying k(ωIR )�(ωIR ) � 1. ωIR can be
made arbitrarily small by decreasing the magnitude of M̂0 and
has nothing to do with the mobility edge ωc, which is hardly
affected by the introduction of M̂0. Therefore, the Ioffe-Regel
criterion k(ω)�(ω) � 1 is not a good condition of Anderson
localization in the model defined by Eqs. (1) and (2). A
discrepancy between ωIR and ωc for vibrational modes has
also been noticed for other models of disordered solids [32].

To study the localization transition, we compute the spread-
ing of an initial excitation of the left half of the system [u̇α

m(0)
are taken to be Gaussian random numbers for xm < 0 and
zero elsewhere; all uα

m(0) = 0] by extending the numerical
approach of Ref. [23] to the vector case. The spreading is
quantified by a frequency-resolved penetration depth X(ω, t ):

X2(ω, t ) = 1

φ0(ω)

∫ ∞

0
xφ(ω, x, t )dx, (3)

where φ(ω, x, t ) = ∑
m Em(ω, t )δ(x − xm) is the one-

dimensional energy density,

Em(ω, t ) = 1

2

∑
α

u̇α
m(ω, t )2 + 1

2

∑
nαβ

Mαβ
mnu

α
m(ω, t )uβ

n (ω, t )

(4)

is the energy of a quasimonochromatic excitation localized on
the atom m, and φ0(ω) = 2E(ω)/L is the average initial energy
density in the left half of the system. The windowed Fourier
transform of uα

m(t ) is defined as

uα
m(ω, t ) = 2

∫ τ

−τ

uα
m(t − t ′)W (t ′) cos(ωt ′)dt ′, (5)

with a window function W (t ) = (2πτ )−1/2 cos(πt/2τ ). We
use L = 200 and average X2(ω, t ) over ten realizations of
disorder. This relatively small number of realizations turns
out to be sufficient to suppress the statistical fluctuations of
X2(ω, t ) thanks to the additional implicit averaging over the
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transverse profile of the spreading excitation in the (y, z) plane
and over the many atoms that are initially excited in the left
half of the system. Indeed, for a 3D system of L × L × L point
masses, even a single realization of disorder yields X2(ω, t )
that is effectively averaged over L2 different linear chains of
effective length

√
Dt in the diffuse regime or ξ in the regime

of Anderson localization. Here D and ξ are the diffusion
coefficient and the localization length, respectively. The results
would be self-averaging in the limit L → ∞, t → ∞, but
additional configurational averaging is necessary for finite L

and t .

B. Finite-time scaling of the penetration depth

Like in the scalar case [23], 〈X2(ω, t )〉 grows linearly with
time for ω < ωc � 12 but acquires a tendency to saturate
at higher frequencies. This identifies ωc as a mobility edge,
which turns out to be shifted to a higher frequency than in
the scalar model. The critical behavior in the vicinity of ωc

can be studied by analyzing a scaling function F (ω, t ) =
ρ(ω)2/3〈X2(ω, t )〉/t2/3, where ρ(ω) is the density of vibra-
tional states [23]. Under the hypothesis of one-parameter scal-
ing, F is assumed to depend on a single relevant variable ψ1 =
[t/ρ(ω)]1/3νf1(w) and possibly on an additional irrelevant
variable ψ2 = [t/ρ(ω)]y/3f2(w), where w = (ω − ωc )/ωc, ν

is the critical exponent of the localization transition, and y < 0.
Here ln F is expanded in power series as a function of ψj up to
orders nj , whereas the auxiliary functions fj are expanded in
powers of w up to orders mj . These expansions are used to fit
the numerical data obtained in the vicinity of ωc for different
frequencies ω and different times t . The range of data used
for the fits is restricted to ln F within a range ln F̃c ± �, with
ln F̃c being the approximate crossing point of dependences
ln F (ω) obtained for different t . The quality of our numerical
data allows us to use � as small as � = 0.5, for which fits
of acceptable quality are obtained with m1 = 2, n1 = 1, and
m2 = n2 = 0 [see Fig. 2(a)] [33].

To test the stability of the fit presented in Fig. 2(a) and
obtain a better estimate of the accuracy of the value of the
critical exponent following from it, we repeat the fit for only
data corresponding to long times t � tmin, where tmin is a free
parameter that we vary from the shortest time t = 100 used in
our calculations to t = 1600, which is still considerably shorter
than the longest time t = 12 800 in Fig. 2(a). The best fit ωc and
ν should not depend on tmin, whereas their statistical errors are
likely to grow when tmin increases because a longer tmin implies
using a smaller fraction of available numerical data (i.e., only
the data corresponding to t � tmin). The independence of ν

from tmin is confirmed by Fig. 2(b), where we show the best-
fit critical exponent ν as a function of tmin. Averaging over
tmin yields 〈ν〉 = 1.564 ± 0.009, which coincides, within error
bars, with 〈ν〉 = 1.57 ± 0.02 found in the scalar version of the
same model [23].

III. A MODEL WITH RESONANT SCATTERING

The disordered elastic media in which Anderson localiza-
tion of vibrations has been observed in experiments [7,8] were
composed of individual scattering units with strong scattering
resonances (identical aluminum beads brazed together). The

(a)

(b)

FIG. 2. Results for the model with nonresonant scattering. (a) An
example of a fit with m1 = 2, n1 = 1, and m2 = n2 = 0. Symbols with
error bars show numerical data for different times t = 100 (black),
200 (red), 400 (green), 800 (blue), 1600 (orange), 3200 (purple), 6400
(cyan), 12800 (magenta). Solid lines are polynomial fits; the dashed
vertical line shows the mobility edge ωc � 12.09. (b) The critical
exponent ν extracted from fits similar to the one in (a) using only
the data corresponding to t � tmin as a function of tmin. Error bars are
equal to one standard deviation of ν. The dashed horizontal line shows
the average value of ν, the gray area shows the error of the average.

applicability of the nonresonant scattering model considered
above to such a medium is questionable, and one may wonder
whether localization transitions in these two systems belong to
the same universality class. To answer this question, we con-
sider a model in which scattering is due to N identical pointlike
resonant scatterers (resonance frequency ω0, resonance width
�0) embedded in the infinite space filled with a homogeneous
and isotropic elastic medium.

A. Derivation of the model

Assume that the scatterers are randomly distributed in a
spherical region of space of radius R and volume V with an
average number density ρ = N/V . Propagation of an elastic
wave in the homogeneous space between the scatterers is
described by the elastic-wave equation [34]

ρ0ω
2uα (r, ω) +

∑
β,γ,ζ

∂

∂rβ

[
cαβγ ζ

∂

∂rγ
uζ (r, ω)

]

= −f α (r, ω), (6)

where u(r, ω) is the Fourier transform of the displace-
ment field u(r, t ), ρ0 is the mass density of the medium,
cαβγ ζ = λ0δαβδγ ζ + μ0(δαγ δβζ + δαζ δβγ ) is its elasticity
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tensor, λ0 and μ0 are Lamé parameters, f (r, ω) is the Fourier
transform of the force field f (r, t ), and Greek superscripts run
over the Cartesian components of the corresponding vectors:
α, β, γ , ζ = x, y, z.

Solutions of Eq. (6) can be classified as compressive
(longitudinal) and shear (transverse) waves that travel with
velocities cp = [(λ0 + 2μ0)/ρ0]1/2 and cs = (μ0/ρ0)1/2, re-
spectively [34]. A 3 × 3 elastic Green’s tensor Ĝ describes
the response of the medium to a point-like excitation. Its
component Gαη(r, r′, ω) gives the (Fourier component of)
displacement at location r in direction α due to a unit force f
acting in direction η at a point r′. It obeys an equation following
directly from Eq. (6):

ρ0ω
2Gαη(r, r′, ω) +

∑
β,γ,ζ

∂

∂rβ

[
cαβγ ζ

∂

∂rγ
Gζη(r, r′, ω)

]

= −δαηδ(r − r′). (7)

The solution of this equation can be written as [35,36]

Ĝ(r, r′, ω) = ω

12πρ0c3
p

{
eikp�r

kp�r
[1 − F̂ (kp�r)]

+ 2

(
cp

cs

)3
eiks�r

ks�r

[
1 + 1

2
F̂ (ks�r)

]}
, (8)

where kp,s = ω/cp,s , �r = r − r′, and we defined an auxiliary
tensor function F̂ (v) = [1 − 3(v ⊗ v)/v2](1 + 3i/v − 3/v2).

To describe the multiple scattering of elastic waves by an
ensemble of N identical resonant point scatterers at positions
{rm} (m = 1, . . . , N ), we generalize the method developed
by Foldy [37] and Lax [38] for scalar waves. The Cartesian
components uα

m (α = x, y, z) of displacements um of the
scatterers obey

uα
m(ω) = vα

m(ω) + α0(ω)
∑

n�=m,β

Gαβ (rm, rn, ω)uβ
n (ω), (9)

where vα
m(ω) is the wave field at rm due to the force field

f (r, ω) in the absence of scatterers (or the “incident wave”
in the language of scattering theory) and the second term
on the right-hand side is a sum of wave fields scattered by
all other scatterers. The function α0(ω) (a “polarizability”
in the optical language) describes the response of individual
scatterers. For an isotropic scatterer with resonance frequency
ω0 and resonance width �0 � ω0, it can be written as

α0(ω) = B
(−�0/2)

ω − ω0 + i�0/2
, (10)

with a prefactor B = 12πρ0c
3
p/ω[1 + 2(cp/cs )3] following

the optical theorem. Equation (9) holds only for infinitesimal
displacements um that do not modify the positions rm of
scatterers.

By grouping all uα
m in a single vector |u〉 =

(ux
1, u

y

1, u
z
1, . . . , u

x
N , u

y

N , uz
N )T (with similar notation for

vα
m), we rewrite Eq. (9) in vector form:

|u(ω)〉 = |v(ω)〉 + α0(ω)

B
[Ĝ(ω) − i1]|u(ω)〉, (11)

where we use the Dirac bra-ket notation. The 3N × 3N

“Green’s matrix” Ĝ is composed of N × N blocks Ĝmn

of size 3 × 3 each, describing coupling between Cartesian
components of displacements of scatterers m and n:

Ĝmn(ω) = iδmn1 + (1 − δmn)BG(rm, rn, ω)

= iδmn1 + 1 − δmn

1 + 2(cp/cs )3

×
{

eikprmn

kprmn

[1 − F̂ (kprmn)]

+ 2

(
cp

cs

)3
eiks rmn

ksrmn

[
1 + 1

2
F̂ (ksrmn)

]}
, (12)

where rmn = rm − rn. The Green’s matrix Ĝ is the central
object describing all the peculiarities of wave scattering by
an ensemble of resonant point scatterers. Equation (12) gives
its form for elastic waves; similar expressions for scalar and
electromagnetic waves were derived and analyzed previously
[14,30,39]. We notice that Eq. (12) depends on very few
parameters: the frequency ω and the speeds of compressive
and shear waves cp and cs , respectively.

In general, Eq. (11) is difficult to analyze, but we can
simplify it by making use of the strongly resonant nature
of scattering. Indeed, the narrow resonance condition �0 �
ω0 implies that all the interesting phenomena due to strong
scattering can take place only for ω � ω0, for which the
scattering by individual scatterers is strong. This allows us to
replace Ĝ(ω) in Eq. (11) by Ĝ(ω0). Such an approximation is
equivalent to neglecting the times R/cp,s that compressive and
shear waves need to propagate across the disordered system
and will allow us to describe slow processes taking place on
large timescales τ  R/cp,s , which is the case for the slow
decay of localized quasimodes that we intend to study.

The matrix Ĝ(ω0) is a non-Hermitian matrix with complex
eigenvalues �n and right and left eigenvectors |Rn〉 and 〈Ln|
obeying

Ĝ(ω0)|Rn〉 = �n|Rn〉, (13)

〈Ln|Ĝ(ω0) = 〈Ln|�n, (14)

〈Lm|Rn〉 = δmn. (15)

|Rn〉 and 〈Ln| form a biorthogonal basis in which any solution
|u〉of Eq. (11) with Ĝ(ω) replaced by Ĝ(ω0) can be represented
as

|u(ω)〉 =
∑

n

An(ω)|Rn〉, (16)

where the coefficients An are found by substituting expansion
(16) in Eq. (11), applying Eq. (13), multiplying both sides
of the resulting equation by 〈Lm| from the left, and applying
Eq. (15):

An(ω) = (−�0/2)B

α0(ω)

〈Ln|v(ω)〉
ω − ωn + i�n/2

, (17)

with ωn = ω0 − (�0/2)Re�n and �n = �0Im�n.
The physical meaning of the eigenvectors and eigenvalues

of the matrix Ĝ(ω0) now becomes clear. For a short-pulse
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excitation |v(t )〉 ∝ δ(t ), the Fourier transform of |u(ω)〉 is

|u(t )〉 =
∑

n

An(t )|Rn〉, (18)

with An(t ) ∝ exp(−iωnt − �nt/2). Thus, the eigenvectors
|Rn〉 correspond to “quasimodes” of our wave system, where
the prefix “quasi-” refers to the fact that, in contrast to the
modes of a closed system described by a Hermitian Hamil-
tonian, the quasimodes decay in time with decay rates �n.
The latter are due to the openness of our wave system: the
waves can freely escape from the region of space V occupied
by the scatterers, causing the leakage of wave energy and
decay of any excitation that was initially created inside V . The
concept of quasimodes is particularly useful and physically
meaningful when �n � ωn, which will be the case in the
following. Because the eigenvectors and the eigenvalues of the
matrix Ĝ(ω0) correspond to the quasimodes and their complex
frequencies, Ĝ(ω0) plays the role of an effective non-Hermitian
Hamiltonian for elastic waves in the considered system of
resonant point scatterers.

B. Finite-size scaling of the distribution of Thouless conductance

Similar to what has been done for scalar waves [30] and light
[40], the localization transition for elastic waves in an ensemble
of resonant point scatterers can be studied by analyzing the
eigenvalues �n of the Green’s matrix Ĝ(ω0). This may appear
counterintuitive because the spatial localization is a property
of eigenvectors |Rn〉 and not of eigenvalues, so that it would be
logical to analyze the former instead of the latter. There is no
doubt that the analysis of the spatial structure of eigenvectors
|Rn〉 is a more direct way to study Anderson localization.
However, one should take into account that such an analysis
is much more involved both analytically, because very little is
known about the properties of eigenvectors of non-Hermitian
matrices, and numerically, because finding the eigenvectors
of a large matrix requires considerably more computational
resources than finding only the eigenvalues. The last limitation
is crucial for us because an accurate characterization of a local-
ization transition, including finding the critical frequency and,
especially, the critical exponent, requires averaging over many
random configurations of scatterers {rm} for large numbers
of scatterers N  1 and turns out to be a quite demanding
computational task even when only the eigenvalues of Ĝ(ω0)
are computed. Therefore, in the present work we restrict our
analysis to the eigenvalues of Ĝ(ω0) and leave the statistics of
eigenvectors for a future study. Nonetheless, we will discuss
some properties of eigenvectors in Sec. III C, although without
attempting a statistical analysis.

In the following, we set cp/cs = 2, which is typical for met-
als (e.g., aluminum or tin) and also for some other materials,
such as polystyrene. As discussed in Ref. [30], the localization
transition manifests itself in the statistical properties of the
Thouless conductance g = Im�/δ(Re�), where δ(Re�) is
the average spacing between real parts of eigenvalues. We
compute the probability density p(ln g) by averaging over
many independent random configurations {rm}. The number
of different configurations that we use is adjusted to obtain at
least 2 × 107 eigenvalues for N � 104 and 107 eigenvalues for
N > 104 [41]. The small-g part of p(ln g) tends to become

FIG. 3. Analysis of the model with resonant scattering. (a) Second
percentile of the distribution p(ln g) at a fixed density ρ of scatterers
in a sphere for eight different total numbers of scatterer N = 2000
(black), 4000 (red), 6000 (green), 8000 (blue), 10000 (orange), 12 000
(purple), 14 000 (cyan), 16 000 (magenta). Vertical dashed lines show
approximate positions of mobility edges where lines corresponding
to different N all cross. (b) A polynomial fit to the data in (a) in the
vicinity of one of the mobility edges (m1 = n1 = 3, m2 = n2 = 1).
The best-fit position of the mobility edge Re�c � −0.99 is shown by
the dashed vertical line; the critical exponent ν following from the fit
is indicated on the graph.

independent of the size of the system at a mobility edge
and can be used to determine the critical properties of the
localization transition. To this end, we follow Ref. [30] and
consider small-q percentiles ln gq of p(ln g). The percentiles
ln gq are defined by

q =
∫ ln gq

−∞
p(ln g)d(ln g). (19)

When the density of scatterers is high enough, ln gq be-
come independent of the system size at critical points where
localization transitions take place, as we illustrate in Fig. 3(a)
for q = 0.02. We find two such points (Re�c � −1 and −2.4
for ρ/k3

s = 0.15), with a band of localized states in between.
Collective effects shift the latter with respect to the scattering
resonance of individual scatterers corresponding to Re� = 0.
Although the exact position of this band cannot be predicted
based on simple arguments, it is clear that disorder-induced
localized states cannot exist far from the resonance frequency
ω0, i.e., for |Re�|  1, because scattering by individual scat-
terers becomes negligible for |ω − ω0|  �0 and no collective
effects can make a collection of such weak scatterers strongly
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scattering. By construction, our scattering medium becomes
weakly scattering and then transparent as the frequency ω is
detuned from ω0 by several �0. It follows then that the number
of mobility edges should be even in our model of identical
resonant scatterers with a single narrow resonance. Having
two mobility edges near a resonance of individual scatterers is
typical for disordered samples used in recent experiments [8],
which confirms that our model is relevant for the interpretation
of the latter. One should keep in mind, however, that spherical
scatterers used in the experiments of Ref. [8] have multiple
resonances and that in this case the link between resonant
properties of individual scatterers and those of a large ensemble
of them is not simple. For periodic arrangements of spherical
scatterers, this problem has been discussed in Ref. [42], and
some arguments of that paper apply to disordered systems as
well.

The quality of our numerical data is considerably better
around the first critical point Re�c � −1, which we analyze
in detail using the finite-size scaling approach. We follow the
procedure described in Ref. [30] (see Ref. [43] for a review of
the finite-size scaling approach to Anderson localization). Here
ln gq is expanded in a power series as a function of relevant and
irrelevant scaling variables ψ1 = f1(w)L1/ν (up to an order
n1) and ψ2 = f2(w)Ly (up to an order n2), where fj (w), in
turn, are expanded in series in w = (Re� − Re�c )/Re�c (up
to orders mj ). The numerical data falling within ±� of the
estimated critical point (ln gq )c are fitted using m1 = n1 � 4,
m2 = n2 � 2 with the requirement that the contribution of
the irrelevant variable to the fit should not exceed 10% of �.
For � = 2, reasonable fits are obtained with m1 = n1 = 3 and
m2 = n2 = 1 [see Fig. 3(b)].

Among all the fit parameters, the mobility edge Re�c and
the critical exponent ν are of main interest for us. Results
obtained for very small q suffer from large statistical errors be-
cause the limited number of random realizations does not allow
us to estimate ln gq reliably. On the other hand, large-q results
are not trustworthy because the distributionsp(ln g) that follow
from our calculations start to violate the single-parameter
scaling hypothesis when ln g is increased. Reliable results
correspond to q = 0.001–0.05, shown in Fig. 4. Averaging
over q yields, in particular, an estimate of the critical exponent
〈ν〉 = 1.554 ± 0.085, which is in good agreement with the
value 1.55 ± 0.07 from the same analysis for scalar waves [30].
In contrast, the mobility edge Re�c turns out to be shifted to a
higher frequency with respect to its value in the scalar model
[30], similar to the model with nonresonant scattering.

C. Inverse participation ratio of quasimodes

As we explained already in Sec. III B, a quantitative sta-
tistical analysis that would allow for estimating the mobility
edges and the critical exponent of the localization transition
with sufficient accuracy based on the localization properties
of quasimodes would be computationally too demanding.
However, one can get a good qualitative understanding of
Anderson localization in the model described by the random
matrix (12) by considering its eigenvectors |Rn〉 obtained for
a single random configuration {rm} of scatterers. The spatial
localization of an eigenvector can be quantified by its inverse

FIG. 4. Results for the model with resonant scattering. (a) The
mobility edge and (b) the critical exponent determined from the fits
to the qth percentiles as a function of q. The horizontal dashed line
shows the values of Re�c and ν averaged over all q = 0.001–0.05.
The gray areas correspond to the uncertainties of the averages.

participation ratio (IPR):

IPRn =
∑N

m=1

(∑
α=x,y,z

∣∣Rm,α
n

∣∣2)2

( ∑N
m=1

∑
α=x,y,z

∣∣Rm,α
n

∣∣2)2 , (20)

where Rm,α
n denotes the component of the vector |Rn〉 on the

scatterer m with a polarization parallel to α = x, y, or z. IPR
varies from 1/N for a fully extended eigenvector to 1 for an
eigenvector localized on a single scatterer. Typically, IPR �
1/K for a state localized on K scatterers. Figure 5 shows the
eigenvalues of a random realization of the matrix (12), with
the gray scale of a dot showing an eigenvalue determined by
the IPR of the corresponding eigenvector. Several comments
are in order.

In Fig. 5, we clearly see the band of localized states between
the mobility edges determined from the finite-size scaling of
percentiles in Sec. III B [vertical dashed lines in Fig. 3(a)].
The spatial localization of quasimodes corresponding to eigen-
values inside this band becomes stronger as the number of
scatterers [and hence the system size R ∝ (N/ρ)1/3] increases,
as one concludes by comparing Figs. 5(a) and 5(b), where
results are presented for N = 2000 and N = 10 000, respec-
tively. At the same time, the decay rates of quasimodes inside
the band decrease exponentially with the system size. Such a
scaling with system size is typical for Anderson localization
and should be contrasted with the situation taking place for
quasimodes localized on pairs of closely located scatterers
and corresponding to the eigenvalues belonging to the long
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FIG. 5. Eigenvalues of the Green’s matrix (12) are shown by
dots for a single random configuration of N scatterers in a sphere
at a fixed number density ρ/k3

0 = 0.15. The gray scale of each dot
corresponds to the IPR (20) of the corresponding eigenvector. Fully
extended eigenvectors have IPR ∼ 1/N � 1 and are shown in light
gray. N = 2000 in (a) and 10 000 in (b). Dashed vertical lines show
the mobility edges.

“tail” with large negative Re� in Fig. 5. Such quasimodes
have IPR � 0.5 and are hardly sensitive to the system size,
which is clear from the comparison of Figs. 5(a) and 5(b).
Their origin is the same as that for scalar waves [30] and light
[14]: waves emitted by a pair of closely located scatterers
(k0rmn � 1) oscillating out of phase interfere destructively
and thus cancel each other. The corresponding quasimode
effectively decouples from the “outside world” independent of
the presence of other scatterers in the latter and their number N .
Such “subradiant” localized quasimodes exist at any scatterer
density and number but do not show the scaling behavior
associated with Anderson localization.

Figure 5 shows that the two mobility edges that we
clearly see in Fig. 3(a) are significantly different in nature.
Indeed, whereas the low-frequency mobility edge Re� � −1
corresponds to a sharp transition from extended quasimodes
with IPR ∼ 1/N � 1 to localized quasimodes with 1/N �
IPR < 0.5, localized modes are present on both sides of the
high-frequency mobility edge Re� � −2.4. However, as we
discussed above, only the modes on the right of it are genuine
Anderson-localized modes. Even though the scaling analysis
of Fig. 3(a) makes a difference between the two different
localization mechanisms and correctly detects a change in
scaling behavior at the high-frequency mobility edge, the
results presented in Fig. 3(a) turn out to be much noisier near
the high-frequency mobility edge than near the low-frequency

one. As a result, a scaling analysis of the high-frequency
localization transition does not yield conclusive results, and
we do not present it here.

D. Comparison between elastic and electromagnetic waves

The Green’s matrix (12) looks noticeably similar to its
optical counterpart describing light scattering [14]. In partic-
ular, it features near-field terms diverging as 1/r3

mn at small
rmn. These terms associated with quasistatic dipole-dipole
interactions were found to prevent Anderson localization of
light [14] but apparently do not play any important role in
the elastic case. The mathematical reason for this is that
these terms cancel out in Eq. (12) for kp,srmn � 1, leaving us
with Ĝmn ∝ 1/rmn. Indeed, the elastic Green’s tensor (8) can
be separated into contributions of compressive (longitudinal)
and shear (transverse) waves that propagate independently of
each other only in the far field kp,s�r  1. In the near field
kp,s�r � 1, the corresponding parts of the Green’s tensor
combine to give

Ĝ(r, r′, ω) = 1

8πρ0c2
s �r

{[
1 +

(
cs

cp

)2
]
1

+
[

1 −
(

cs

cp

)2
]

�r ⊗ �r
�r2

}
, (21)

which diverges only as 1/�r and hence is integrable in three
dimensions. This is very different from the optical case where
Ĝ ∝ 1/�r3 and Ĝmn ∝ 1/r3

mn at small distances. The physical
reason for elastic waves to behave differently from light stems
from the existence of propagating longitudinal waves that
get scattered and eventually localized in the same way as
scalar waves do. In contrast, propagating waves are transverse
in optics, whereas longitudinal fields give rise to dipole-
dipole interactions between scatterers. Efficient only at small
distances, these interactions open an additional, nonradiative
channel of energy transport in sufficiently dense ensembles of
scatterers [44].

IV. CONCLUSIONS

We studied the Anderson localization transition in two
different models of elastic-wave scattering in three dimensions:
a model with nonresonant scattering, where the localization
transition takes place upon increasing the frequency of a wave,
and a model with resonant scattering, where a narrow band
of localized states is separated from the rest of the spectrum
by two mobility edges. We find that for both models, the
vector character of waves shifts the localization transitions
to higher frequencies with respect to the scalar case. At the
same time, the critical exponent ν coincides with its value in
the scalar case within the accuracy of our analysis, suggesting
that the universality class of the transition does not change.
Our best estimates of ν are 1.564 ± 0.009 and 1.554 ± 0.085
for the two models, respectively. They agree with the value
ν � 1.571 in the 3D orthogonal universality class [43]. Hence,
our results suggest that despite their vector character, elastic
waves exhibit a disorder-induced localization transition of the
same orthogonal universality class as the spinless electrons in
a 3D disordered potential.
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Note added in proof. Reference [45] applies the scalar
version of the model derived in Sec. III to analyze the validity
of the Ioffe-Regel criterion of Anderson localization.
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