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Analysis, by the Monte Carlo method,

of the validity of the diffusion approximation
in a study of dynamic multiple scattering

of light in randomly inhomogeneous media

S E Skipetrov, S S Chesnokov

Abstract. A numerical simulation is reported of dynamic
multiple (isotropic and anisotropic) scattering of light in a
randomly inhomogeneous medium representing a suspen-
sion of light-scattering Brownian particles. The results of

a simulation of the temporal autocorrelation function of

backscattered light are compared with calculations carried
out within the framework of the diffusion approximation
for the radiation transport equation. It is shown that,
although the diffusion approximation describes incorrectly
low-order scattering, it is quite acceptable for dealing with
high-order scattering.

1. Introduction

Multiple scattering of waves in randomly inhomogeneous
media has been investigated extensively in the last few
decades [1]. Recently these investigations have expanded
greatly both because of a considerable progress in analytic
description of multiple scattering [2] and because of success-
ful application of the Monte Carlo methods in the
simulation of such scattering [3, 4]. This type of problem is
of major practical importance, partly as a result of modern
applications of optical diagnostic methods in medicine
{5, 61.

In the last decade, investigators have been attracted by
the feasibility of obtaining information on the dynamics of
particles in a randomly inhomogeneous medium from an
analysis of light scattered multiply in this medium. This is
possible not only under conditions of spatially homogeneous
(in the statistical sense) motion of particles in a medium [7],
but also in the presence of dynamically inhomogeneous
regions [8, 9] or of particle flow [9—11] in a medium. The
results obtained suggest potential applications of optical
waves in the diagnostics of the dynamics of scatterers in
randomly inhomogeneous media under conditions of multiple
scattering of light. However, in theoretical analyses of the
problem most authors rely on the diffusion approximation
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to the transport equation for on the temporal correlation func-
tion of the electric field of optical waves in a medium [8, 12],
which imposes certain restrictions on the validity of the the-
oretical results obtained.

We shall analyse in detail the dynamic multiple scattering
of optical waves in a randomly inhomogeneous medium by
the Monte Carlo method. We shall use the scalar approxima-
tion to consider the scattering by particles with an isotropic
scattering diagram, as well as strongly anisotropic scattering.
We shall assume that the weak-scattering condition (4 </,
where A is the optical wavelength and / is the mean free
path of a photon) is satisfied by the medium. We shall com-
pare the results obtained by the Monte Carlo method with
those deduced from an analysis of the problem on the basis
of the diffusion approximation.

It has been shown that the diffusion approximation
describes satisfactorily that fraction of the scattered radiation
which is the result of high-order scattering. The diffusion
approximation is unacceptable for a complete description
of the characteristics of the scattered radiation in the case
of diffuse reflection because then the contribution of low-
order (single, double, etc,) scattering is important. Since
the solution of the transport equation describing correctly
the scattering of all orders is not yet available, stochastic
simulation is essentially the only method capable of predict-
ing experimental results in those cases when an important
role is played by low-order scattering as well as by multiple
scattering.

2. Spatial diffusion of radiation by the scattering
of light in a randomly inhomogeneous medium

Let us consider a layer of a randomly inhomogeneous
medium bounded by the planes z = 0, z = L and consisting
of a large number of tiny spherical particles, with the diam-
eter a, which are distributed at random and which are
moving in space. We shall describe the properties of this
medium by the absorption coefficient u,, the scattering
coefficient u,, and the reduced scattering coefficient
s = (1 — g)u,. Here, g is the scattering anisotropy para-
meter which has to be calculated taking account of the
specific form of the phase function p(cos ) characterising
the diagram representing the scattering of an optical wave by
a single particle:

n
g= 2nj cos Op(cos ) sin0d0 . )
0
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We shall use the Heney — Greenstein model of the phase
function [1]

1 1-g°

pleost) dm (] + g? — 2gcos6)¥?’ @
employed widely in multiple-scattering problems. The phase
function p(cos #) has a simple physical meaning: the prob-
ability of the scattering through an angle in the interval
[0, & + dA] is equal to 2np(cos A) sin 6 db. Isotropic scattering
corresponds to g = 0 (scattering by point particles), whereas
g~ 1 characterises strongly anisotropic scattering [13]
(scattering by large particles with the scattering diagram
elongated in the forward direction).

The quantities y,, i, 4, have the dimensions of reciprocal
length. It is sometimes more convenient to use the reciprocals
of these quantities, namely I, = u; ", I = u;", b = (u))~".
The absorption length /, is the average distance which a
photon travels in a medium before it is absorbed. The
mean free path of a photon / is the average distance travelled
by a photon between successive scattering events. Finally,
the transport mean free path /; is the distance required for
isotropisation of the radiation, which initially has a definite
direction, as a result of the scattering. For point scatterers
(a € A), we have g =0, [, = [, i.e. the direction of propaga-
tion of a photon becomes random after the very first
scattering event. If a ~ 4, then 0 < g <1 and /; > /. This
means that isotropisation requires n > 1 scattering events,
which on the average is given by n =1/l = (1 — g) L

If I, » I, then over distances much greater than /, the
spatial propagation of radiation is diffusive. Such propa-
gation in a medium can then be described within the
framework of the diffusion approximation for the transport
equation regarding the propagation as diffusive. This
approach gives very accurate results far from a radiation
source and far from the boundaries of a randomly inhomo-
geneous medium, ie. in the situations when the role of
low-order scattering is negligible. In the opposite case the
diffusion approximation is insufficient and more accurate
results may be obtained by stochastical stimulation of the
scattering of light in a medium by the Monte Carlo method.

3. Elementary theory of the dynamic multiple
scattering

Since light becomes strongly depolarised as a result of multi-
ple scattering, we shall simplify the calculations by adopting
the scalar approximation. We shall be interested in the
temporal autocorrelation function of the electric field
Gi(r, k, ) = (E(r, k, DE*(r, k, t + 7)) of a multiply scat-
tered wave, emerging from the investigated medium in the
direction of the wave vector k. The angular brackets are used
here and later to denote averaging over an ensemble of real-
isations, which is equivalent to time averaging of an ergodic
system. It is shown in Ref. {1] that under the conditions of
spatial diffusion of light the properties of light become prac-
tically independent of the direction. We shall therefore
assume that G, is independent of the direction of k£ and
that the wave number k& remains constant in the course of
scattering (coherent scattering). We shall discuss the case
when the velocities of particles in the investigated medium
are much lower than the velocity of light c.

We shall consider, in our medium, a single path of a pho-
ton along which it is scattered n times at pointsr,, ... , r,. The
photon generates, at the point of its exit from the medium ata

time ¢z, an electric field of intensity E,(7). The changes of the
photon wave vector in consecutive scattering events will be
denoted by ¢, ..., g, Then, as can easily be demonstrated,
the product of the electric field of the scattered wave at a time
t and of the same field at a moment ¢ + 7 is [7, 14]

Ey()E; (t + 1) = | Eq(1) [ exp[—iAd,(7)] . 3)
Here,
Ad,(x) = D g;-Ar(z) ; @
i=1

Ar; = r;(t + 1) — r;(¢) is the displacement of the ith particle
in the time 7.

We shall assume that the particles in the medium do not
interact with one another and that their motion is Brownian.
Then, the displacement Ar;(t) of each of the light-scattering
particles is a random quantity distributed in accordance with
the Gaussian law with zero average and the variance
([Ar;(¥)]*) = 6Dyt where Dy is the diffusion coefficient of
the particles. Since we are considering here the case when
4 <1, it follows that the fields created by photons travelling
along different paths are summed incoherently. Averaging
expression (3) over all the paths with the same number »
of the scattering events and over all possible microscopic
configurations of the light-scattering particles, and then sum-
ming the contributions of the scattering processes of different
orders, we obtain

Gi(r, 1) = K S P(r (expl-iG,(D]) . )

n=1

where P(r, n) is the fraction of the average intensity Iy(r) of
the scattered field at a point r resulting from nth-order scat-
tering. The above expression can be simplified analytically
within the framework of the diffusion approximation if addi-
tional assumptions are made (in particular, that u, < u.).
For example, if a plane wave is incident on a layer of a
nonabsorbing randomly inhomogeneous medium, the auto-
correlation function of the diffusely scattered light is
described, apart from an unimportant numerical factor, by
[14, 15]

sinh[oa(L + 2, — zp)]
sinh[o(L + 2z,)]

where o = [31/(21015)]1/ 2, 2o ~ I, is the distance in which the
collimated light incident on the medium is converted into
diffuse light; z; ~ (2/3)/, is the distance from the boundary
of the medium to a plane (extrapolated boundary) in which
the zero boundary condition is imposed on G,. The charac-
teristic time 7, is related to the diffusion coefficient of the
particles in the medium by the expression 1y = (4k2Dg).

Gy(r) (6)

4. Monte Carlo method in the problem of multiple
scattering

As shown in Ref: [16], the analytic result represented by
expression (6) is largely approximate and it describes incor-
rectly the contribution of low-order scattering. However, it
is possible to calculate the sum in expression (5) accurately
by numerical simulation. We shall therefore simulate the
propagation of photons in a medium exactly as was done
in the simulation of scattering by an ensemble of immobile
scatterers [17, 18]. At the entry to the medium the direction of
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the photon wave vector k is governed by the light source and
it can be random (a point source or a bounded laser beam) or
specified precisely (a plane wave).

The change in the direction of k in each scattering event is
random and the probability density of the scattering of a pho-
ton through an angle § is given by the phase function (2).
Between consecutive scattering events the photon travels a
distance z; and the probability that this distance lies within
the interval [z, z+dz] is p(z) =1 'exp(—z//)dz. These
assumptions make it possible to simulate the propagation
of a photon along any of the possible paths in the medium
and to calculate the contribution of each of the paths to
the correlation function G(r, 7) of light emerging from
the medium at a point r.

The absorption of light can easily be taken into account
in our model. If the scattering and absorption coefficients
are u, and p,, respectively, the single-scattering albedo is
Wy = p/(u, + p). It is then obvious that the probability
of absorption of a photon in a ‘collision’ with a particle
in the medium is equal to 1 — W,;. We can take into account
the possibility of absorption of a photon by the particle itself
or by a liquid or a gas in which the investigated particles are
suspended.

5. Scattering of a plane wave on a layer
of a randomly inhomogeneous medium

We shall apply the Monte Carlo method described above to
analyse the scattering of a plane wave on a layer of a ran-
domly inhomogeneous medium of thickness L. First of all,
we shall consider how the transmission (7") and reflection
(R) coefficients, equal to the ratios of the intensities of the
transmitted and reflected light to the intensity of the incident
light, depend on L. We shall do this by simulating the prop-
agation in this medium of a certain number of N photons.
We shall find the number of photons N, -transmitted by the
medium, as well as the number of photons N; reflected by
the medium. The required transmission and reflection
coefficients are obviously T = N;/N and R = N,/N. These
quantities can be calculated by substituting 7 = 0 in all the
formulas of the preceding section. The Monte Carlo method
then reduces to the familiar algorithm for numerical solution
of the transport equation [18]. Here and later we shall limit
ourselves to N =5 x 10*, A calculation of an ensemble of
realisations for L = 10/, and of the scattering with an arbi-
trary phase function takes about one hour on a personal
computer with a Pentium MMX 166 MHz processor.

When the scatterers are point-like and they do not absorb
light (g =0, /, =1, y, =0), the results obtained by the
Monte Carlo method agree well with the theoretical formulas
{199 T ~!/L and R~ 1—//L (Fig. 1), derived in the diffu-
sion approximation.

However, for all values of L the Monte Carlo method
gives results which differ somewhat from the analytic results.
Therefore, we can say that in the statistical case the diffusion
approximation provides a qualitatively valid description of
multiple scattering, but the results are quantitatively quite
wrong. This is supported also by the results obtained for ani-
sotropic scatterers (we investigated the range 0 < g < 0.95),
which we shall not give here. The curves obtained for aniso-
tropic scatterers coincide with the curves shown in Fig. 1. We
must recall that /. > / when g > 0 and, therefore, for large
anisotropy parameters the simulation was carried out for
layers of larger physical thickness.

1
L/,

Figure 1. Transmission (7T) and reflection (R) coefficients of light
plotted as a function of the thickness L of a layer of a randomly
inhomogeneous medium consisting of point scatterers (the dots and the
squares are the numerical simulation results and the continuous curves
are analytic).

We shall now consider the behaviour of the temporal
correlation function of light backscattered by a layer of a ran-
domly inhomogeneous medium. If a plane wave is incident
on this medium, then G, is independent of the position of
the point r on the surface of the medium at which the meas-
urements are carried out, i.e. G|(r, t) = G|(7) is determined.
The analytic result corresponding to this case is given by for-
mula (6). We shall assume specifically that L = 10/, and
begin with point scatterers that do not absorb light (g =0,
I, =1, u, = 0). The Monte Carlo method enables us to study
the role of the various scattering orders in this particular case.

Fig. 2 .gives the normalised temporal autocorrelation
function of diffusely scattered light g,(t) = G,(1)/G1(0). We
can see that an increase in the highest of the included scatter-
ing orders increases the rate of fall of the correlation function
with increase in z. Moreover, the correlation function for
n =1, which corresponds to single scattering, falls almost
exponentially with increase in t/7, (the curve for n =1 is
nearly a parabola) and the function g, obtained by including
all the scattering orders falls almost exponentially as a func-
tion of (t/ 1:0)1/ 2 (the curve for n = oo is almost a straight line).
This behaviour of the temporal autocorrelation functions is
in good agreement with the published theoretical and exper-
imental results [7, 14].

In reality, the measured quantity corresponds to the curve
for n = oo since it is experimentally impossible to separate

Ing,
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Figure 2. Normalised temporal autocorrelation functions of diffusely
reflected light, obtained for L = 10/, by numerical simulation [single
scattering (m), scattering with n < 10 (o), with n < 100 (a), including all
scattering orders (@), and ignoring single scattering (%)] and by analytic
calculation (continuous curve).
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the contributions of various scattering orders. It is evident
from Fig. 2 that analytic results (continuous curve) and the
curve for n = oo diverge quite considerably, i.e. the diffusion
approximation is unacceptable for the description of the tem-
poral correlation function of backscattered light. On the
other hand, if we exclude the contribution of single-scattering
processes (curve for n = —1), the Monte Carlo results are in
excellent agreement with the analytic expressions. In other
words, the diffusion approximation describes well the tem-
poral correlation of diffusely scattered light in the situations
in which the role of the low-order scattering is negligible.
We shall now consider anisotropic scattering (0 < g < 1).
The transport mean free path of a photon /,;, which is a char-
acteristic scale of the problem, is no longer equal to the mean
free path /. It follows from formula (6) that there is a definite
similarity: the results for the case when g # 0 can be derived
from the results corresponding to g = 0 by replacing / with /,;.
This conclusion is supported by the results of our numerical
simulation, which are presented in Fig. 3. If the ratio of the
thickness L of a layer of a randomly inhomogeneous medium
to /, remains constant (for the curves in Fig. 3, we have
L/, = 10), a simulation carried out for different scattering
anisotropy parameters (g = 0, 0.5, and 0.9) gives almost iden-
tical results. It should be stressed that for g = 0, 0.5, and 0.9,
the simulation was carried out for different physical thick-
nesses L of the layer (L = 10/, 20/, and 100/, respectively).

Ing,

-0.5

Figure 3. Normalised temporal autocorrelation functions of diffusely
reflected light obtained for L = 10/, on the assumption that g = 0 (e),
0.5 (m), and 0.9 (a); the continuous curve is the analytic result.
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Figure 4. Normalised temporal autocorrelation functions of diffusely
reflected light calculated for L = 10/, ignoring low-order scattering and
assuming that g = 0 (e), 0.5 (m), and 0.9 (a); the continuous curve is the
analytic result.

It is clear from Fig. 3 that the analytic formula (6), obtained
on the basis of the diffusion approximation, gives different
results from those obtained by numerical simulation employ-
ing the Monte Carlo method. As before, this occurs because
in the diffusion approximation the contribution of low-order
scattering is described incorrectly. However, if we artificially
remove the photons which are scattered only a few times —
n<ny=1U/l (np=1 for g=0, ny=2 for g=0.5 and
ng = 10 for g = 0.9)—the analytic results agree quite well
with the numerical data (Fig. 4). This makes it possible to
generalise the conclusions on the degree of validity of the
diffusion approximation, stated above for the isotropic scat-
tering case, to anisotropic scattering situations when the
dimensions of the light-scattering particles are comparable
with the wavelength of light.

6. Conclusions

The Monte Carlo method of statistical simulation can be
used successfully to tackle a number of problems relating
to dynamic multiple scattering of laser radiation in randomly
inhomogeneous media. The Monte Carlo method makes it
possible to include the influence of various orders of the
scattering for point particles as well as for particles whose
size is comparable with the wavelength, which cannot be
done analytically. On the other hand, if the influence of
the low-order scattering (n < /,;/!) is eliminated, the numer-
ical simulation results are in good agreement with those
derived within the framework of the diffusion approximation
for the transport equation.

It follows that, in the situations when the role of the
low-scattering is small, the diffusion approximation gives
quite acceptable results. Under these conditions this approx-
imation may even be preferable, since calculations carried
out with the aid of analytic formulas are much less time-
consuming than statistical simulation. In some situations
we may, however, find that it is important to include the
low-order scattering, which is described incorrectly within
the diffusion approximation framework. In such cases the
Monte Carlo method has indisputable advantages. In the
majority of situations of practical importance it would be rea-
sonable to use simultaneously both analytic and numerical
methcds. In fact, it is possible to calculate the contribution
of multiple scattering within the framework of the diffusion
approximation, and to find the contribution of low-order
scattering by the Monte Carlo method. The results obtained
in the course of the present investigation support the correct-
ness of this approach.

We shall conclude by noting that in the applications it
may prove very important to include such factors as the inter-
action between particles in a medium, deviation from the
Brownian nature of their motion, structure of a sample,
etc. However, these effects lead to considerable and so far
unresolved difficulties in the analytic approach, which can
easily be taken into account by numerical simulation using
the Monte Carlo method. The algorithm described above
is a convenient, and in many respects universal, method
for investigating dynamic multiple scattering of light in ran-
domly inhomogeneous media.
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