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We introduce basic concepts of classical and quantum statistical mechanics. Starting from the
classical equation of motion using the example of vibrations of atoms in a crystal, we shortly discuss
the numerical approach using Molecular Dynamics for liquids and solids. We then introduce the basic
concepts of statistical mechanics: partition function, free energy, density operators. As examples we
work out the partition function of phonons in a solid in the Debye approximation and the classical
limit of the quantum partition function of a gas/ liquid of particles.

We want to describe basic properties of systems containing a large numberN of particles, from mesoscopic (N ∼ 103)
up to macroscopic (N ∼ 1024) systems in d spatial dimensions. (In general we have d = 3.) Liquids and solids are
typical many-body systems. In many cases, the atoms/ molecules of the system are very well described by classical
dynamics. Only at very low temperatures, the quantum nature of the particles becomes important. Liquid helium has
been for long time “the example” of a quantum liquid. In the last years, experiments on alcaline gases have archieved
the neccessary densities/ temperatures to reach quantum degeneracy. Whereas obervation of quantum effects for “real
particles” neccessitates quite some experimental efforts, a different kind of quantum liquid is dominating every day’s
life, at least for condensed matter and solid state physicists: the electron gas.

Many body properties are best described in the framework of statistical mechanics, and we will give a short (and
incomplete) introduction in classical and quantum statistics.

A. Classical dynamics

Newton’s equation of motion. In classical mechanics, the complete description of the system is given in terms of
its generalized coordinates - the spatial position ri and the momentum pi of each particle i (1 ≤ i ≤ N). Knowing the
position and momenta of all particles we can determine their future coordinates by the classical equation of motion
given by Newton’s law

dri
dt

=
pi
m

dpi
dt

= Fi (1)

The force Fi acting on particle i is due to the interaction with other particles, v(r), and/or an external potential, u(r)

Fi = −∇i

u(ri) +
∑
j 6=i

v(rij)

 (2)

where rij = |ri − rj |.
Solid state: lattice vibrations. In a solid state, the potential energy dominates and the particles are localized

around lattice vectors li in the absence of any external potential (u ≡ 0). We distribute the particles at the lattice
sites, ri = li with i = 1, . . . N (R ≡ L), which minimize the total potential energy

V (R) =
1
2

∑
i 6=j

v(rij) (3)

∇jV (R)
∣∣∣
R=L

= 0, j = 1, . . . N (4)

so that no force is acting on the particles. At zero temperature we expect that classical particles form a perfect
crystal. At non-zero temperatures, particles will move around their equilibrium position. Introducing δiα = riα− liα,



2

α = 1, . . . , d, we may expand the potential energy and introduce the matrix of the harmonics

Aiα,jβ =
∂2V (R)
∂riα∂rjβ

∣∣∣
R=L

(5)

and the equations of motion write

m
d2δiα
dt2

+
∑
jβ

Aiα,jβδjβ = 0 (6)

These equations are still coupled. We can decouple them by diagonalizing the matrix A (using that it is real,
symmetric, and positiv semi-definitite)

Aiα,jβ =
∑
kγ

U∗iα,kγ
ω2
kγ

m
Ujβ,kγ (7)

∑
kγ

U∗iα,kγUjβ,kγ = δi,jδα,β (8)

Using normal coordinates

qkγ =
∑
iα

Uiα,kγδiα (9)

we obtain a set of uncoupled harmonic oscillators

d2qiα(t)
dt2

+ ω2
iαqiα(t) = 0 (10)

From the initial conditions, riα(t = 0) and piα(t = 0) we obtain qiα(0) and q̇iα(0) and we can integrate analytically
the equations of motion in the harmonic approximation.

Fluids. If we consider a system with higher total energy (higher temperature), where the particles fluctuate wildly
around their lattice positions, the harmonic approximation will fail. At some point, the particles will leave their
lattice position and the crystal melts. The liquid/gas state is characterized that the kinetic energy dominates and the
particles might move a certain distance before colliding (interacting) with other particles.

In generally we will not be able to solve the equations of motion analytically. However, we know exactely the
equations of motion, so we can try to integrate Newton’s equation of motion numerically on a computer for a finite
number of particles N ∼ 102 − 107. This approach is called Molecular Dynamics.

B. Molecular Dynamics Simulations

In order to integrate numerically Newton’s equations we have to discretize them in time. Therefore, we start with
a Taylor expansion of a particle at time t±∆t

r(t±∆t) = r(t)± ṙ(t)∆t+
1
2
r̈(t)∆t2 ± 1

3!
r···(t)∆t3 +O(∆t4) (11)

Summing both equations and inserting Newton’s law, we obtain

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) +
Fi(t)
m

∆t2 +O(∆t4) (12)

which is called Verlet algorithm and allows us to estimate the new position at time t + ∆t from the knowledge of
the old positions at t and t − ∆t, and the forces at t. The velocity v = p/m is not needed explicitly, but may be
calculated from

vi(t) =
ri(t+ ∆t)− ri(t−∆t)

2∆t
+O(∆t2) (13)

It seems to be straightforward to write a small program which does the job, but at the same time we have to pose
some important pratical and fundamental questions.
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• Even knowing all positions/ velocities of all particles at all times, how do we visualize them? What are the
observables we are interested in?

• What initial values should we use, how do they influence the results?

• Does the way we discretized the equation of motion in time modify the trajectories?

• How many particles do we actually need to describe macroscopic systems?

Answers to these questions and many more can be found in the literature on molecular dynamics [1, 2] and we
might come back to them later in the cours. For the moment we will pick out some particular issues which help us to
go over to a description in terms of statistical mechanics.

Conservation laws. In general, one considers Molecular Dynamics simulations at the same number of particles N ,
volume V , and energy E. What do these observables have in common and classify them agains others? They are all
conserved quantities in an isolated system! Nature seems not to violate these symmetries, so if our simulation should
reproduce nature as good as possible, we should check that these quantities are indeed conserved. This is quite trivial
for N and V , but energy is not conserved due to the time discretization of Newton’s equation: some algorithms are
better than others, if they conserve energy for longer times.

Ergodicity. What do we want to measure? Important observables are the one-body and two-body densities

ρ̂(1)(r) =
N∑
i=1

δ(r− ri) (14)

ρ̂(2)(r, r′) =
N∑
i=1

∑
j 6=i

δ(r− ri)δ(r′ − rj) (15)

and in Molecular Dynamics simulations we might measure time averaged quantities, e.g.

ρ̂(1)(r) = lim
t→∞

1
t

∫ t

0

dt′ρ̂(1)(r(t′)) (16)

In writing down this equation, we implicitly assule that the limit on the rhs exists. In particular, this means that
the time-averaged quantities are independant of the initial positions of the particles at time t = 0. This assumption
is not true in general. In the ergodic hypothesis one merely assumes that in the dynamical evolution the systems
will reach any point in phase space (R,P) which is compatible with the energy E in a long enough time intervall,
and that it spends equal time in all possible regions of phase space. In order to enforce the ergodic behavior on the
observables, we might run many Molecular dynamics simulations seperately with different initial conditions, but same
total energies.

Thermodynamic limit. Which system sizes do we need? In order to compare with real experiments one should
simulate N ∼ 1024 particles, obviously an impossible task, since we cannot even store all initial positions in any
existing computer. Nevertheless, we can try to simulate different system sizes between N ∼ 102 to N ∼ 106 and
extrapolate numerically some observable to the limit N → ∞. This, of course, makes only sense if we compare
obserables in a way that this limit exists, e.g. the energy per partcle etc.

Ensemble average. At this point it is quite natural to formulate the fundamental principle of statistical mechanics:
In an (energetically) isolated system any state with total energy E is equally likely to be observed. Therefore, instead
of doing a very long Molecular dynamics calculation starting from one single set of initial conditions, we do an ensemble
average over short runs starting with different initial conditions having the same energies.

Statistical mechanics is easily formulated using the language of quantum mechanics right from the beginning, so
we will give a brief reminder of quantum mechanics before continuing statistical physics.

C. Quantum Mechanics

Single partice quantum mechanics. The state of the system is characterized by by a vector |Ψ〉, and the mean
value of an observable with operator Ô in this state is given by

〈Ψ|Ô|Ψ〉 (17)
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The state can be representated using any complete basis set, e.g. r̂|r〉 = r|r〉 is the position representation

〈Ψ|Ô|Ψ〉 =
∫
dr
∫
dr′Ψ∗(r)〈r|Ô|r′〉Ψ(r) (18)

Ψ(r) = 〈r|Ψ〉, Ψ∗(r) = 〈Ψ|r〉 (19)

In the Schrödinger eqution the time evolution of the system’s state is determined by Schrödinger’s equation

ih̄
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (20)

where Ĥ is the Hamiltonian of the system, and operators are time-independant. Eigenstates of Ĥ with energies Ei
are stationary, and form a basis |Ei〉 with Ĥ|Ei〉 = Ei|Ei〉.

Many particle quantum mechanics: Bosons and Fermions. We can form a basis for many quantum particles
by labelling each of them as we do for classical particles. If we have single particle states, e.g. energy eigenstates of a
single particle hamiltonian |Ei〉 we can form a many-body state

|ΨN 〉 = |E1〉1 × |E2〉2 × . . . |EN 〉N (21)

putting the first particle in an energy state E1, the second into E2, etc.. However, there is no possibility of distinguish-
ing quantum particles, e.g. all Hamiltonians known up to now are symmetric with respect to particle permutations.
Therefore, all wavefunctions needed to describe the world so far are seperated in two main classes which do not mix:
Total symmetric and total antisymmetric wavefunctions

|ΨN 〉S/A =
1√
N !

∑
P

(±)|P ||EP (1)〉1 × |EP (2)〉2 × . . . |EP (N)〉N (22)

where the summation is over all possible N ! permutations P of particle labels. Particles which are described by
symmetrical wavefunctions are called Bosons, antisymmetric wavefunctions describe Fermions. The framework for
formal calculations with symmetric/antisymmetric many-body wavefunctions is called second quantization.

D. Statistical mechanics

Micro-canonical ensemble. Since any energy eigenstate is equally probably in the micro-canonical ensemble,
(N , V , E are constant), the expectation value of an obersable, e.g. the one-body density, is given by

〈ρ(1)〉 =
Tr
[
δĤ,Eρ

(1)(r)
]

Tr
[
δĤ,E

] (23)

=
∑
i δE,Ei〈Ei|ρ(1)(r)|Ei〉∑

i δE,Ei
(24)

where Ĥ is the Hamiltonian of the system and Ei are its eigenvalues.
The denominator counts just the degeneracy of the energy level under consideration, and it is common to define

the entropy S of the system which is proportional to that degeneracy

S(E,N, V ) = kB log TrδĤ,E (25)

= kB log
∑
i

δE,Ei (26)

Canonical ensemble. Let us consider now that the system is connected to a bigger bath and can exchange energy
with the bath. Bath and system together form an isolated system which can be described by the micro-canonical
ensemble. The probability, pi, to find the system at energy Ei is equal to the probability that the bath has energy
E − Ei

pi =
eSB(E−Ei)/kB∑
i e
SB(E−Ei)/kB

(27)
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where SB(E) is the entropy of the bath for a given bath-energy E. If the bath is much bigger than the system, we
can expand SB(E − Ei) around Ei = 0. We get

SB(E − Ei) = SB(E)− dSB(E)
dE

Ei + . . . (28)

or

pi =
e−βEi∑
i e
−βEi

(29)

where we have defined the inverse temperature from the thermodynamic relation 1/T = ∂S
∂E

∣∣∣
V,N

, and β = 1/kBT ,.

Since the total entropy SB(E − ES) + S(ES) must be maximal for the most likely energy of the system Es, the
temperature of the bath must equal the temperature of the system in equilibrium.

The canonical ensemble describes a system in contact with an energy bath. It is therefore characterized by the
temperature T (instead of the energy), and the probability pα to find the system in a state |α〉,

pα = 〈α|ρ̂(β)|α〉 (30)

The probability is expressed introducing the density operator

ρ̂(β) =
e−βĤ

Z(β)
=
∑
i |Ei〉〈Ei|e−βEi

Z(β)
(31)

The normalisation factor Z(β) is called partition function of the canonical ensemble

Z(β) =
∑
i

e−βEi . (32)

The mean value, 〈Ô〉, of some obersable Ô can now be calculated

〈Ô〉 = Tr
[
Ôρ̂(β)

]
=
∑
α

〈α|Ôρ̂(β)|α〉 (33)

One important observable is the energy E itself and the mean energy of the system at temperature T writes

〈E〉 =
∑
αEαe

−βEα∑
α e
−βEα

= −∂ logZ(β)
∂β

(34)

can be calculated directly from the partition function. The partition function, indeed, plays a central role in statistical
mechanics and the connections to thermodynamics is made by introducing the free energy, F (β), via

Z(β) = exp [−βF (β)] . (35)

From the thermodynamic definition of the free energy,

F = 〈E〉 − TS (36)

we can define the entropy S from thermodynamics. Again, we see that eS is connected to the typical number of states
with energy E in the system.

Example: Phonons in a crystal. We have seen before, that classical particles will condense in a crystal at low
enough temperatures, and the vibration of the atoms around their lattice sites is described using normal modes by
dN independant harmonic oscillators of strength ωkα. The total energy of the classical systems writes

Ecl =
∑
kα

[
1
2
q̇2
kα +

1
2
ω2
kαq

2
kα

]
(37)

The quantized energy levels of an harmonic oscillator of strength ω are given by En = (n+ 1/2)h̄ω, and we can write
down the total energy of the quantized lattice vibrations (Phonons):

Eph({nkα}) =
∑
kα

[
nkα +

1
2

]
h̄ωkα (38)
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as a function of the occupation numbers nkα of each oscillator. The partition function is the trace over all possible
occupation numbers

Zph(β) =
∑
{nkα}

e−βEph({nkα}) (39)

=
∞∑

n11=0

e−β(n11+1/2)h̄ω11

∞∑
n12=0

e−β(n12+1/2)h̄ω12 · · ·
∞∑

nNd=0

e−β(nNd+1/2)h̄ωNd (40)

=
∏
kα

e−βh̄ωkα/2

1− e−βh̄ωkα
(41)

or the free energy

Fph = T
∑
kα

log
(
1− e−βh̄ωkα

)
+ E0 (42)

where E0 =
∑
kα h̄ωkα/2 is the zero-point energy.

From the free energy we can obtain the internal energy U = 〈E〉 and the heat capacity Cv = ∂U/∂T . At high
temperatures, expanding the free energy around β = 0, we obtain Cv = dN , independant of the oscillator strength.
For low temperature, we need more information about the mode structure. From translational invariance, we expect
that the normal modes are characterized by wavevectors k. Translations of the whole lattice correspond to the limit
k→ 0 and we expect that the modes are given by the speed of sound c. In the Debye approximation we assume

ωkα = θ(Km − |k|)c|k| (43)

where α = 1, . . . d counts the number of polarizations, and the cut-off vector Km is choosen to obtain the right degrees
of freedom

N =
1
V

∑
k≤KM

=
∫ Km

0

ddk

(2π)d
(44)

The internal energy is then given by

U

V
=
E0

V
+

1
V

∑
kα

h̄ωkα
eβh̄ωkα − 1

' E0

V
+ d

∫ Km

0

ddk

(2π)d
h̄ck

eβh̄ck − 1
(45)

Making the integrand dimensionless and introducing the Debye temperature Θ = h̄cKm/kB we can write

U

V
=
E0

V
+AT d+1

∫ Θ/T

0

xddx

ex − 1
(46)

and one can convince oneself that we obtain Cv ∼ T d at low temperatures, T � Θ, since A is temperature independant.
Classical Statistical Mechanics. The classical limit of the partition function for a system with Hamiltonian

Ĥ =
∑
i

p̂2

2m
+
∑
i

u(r̂i) +
∑
i<j

v(r̂ij) (47)

can be obtained by assuming that the momentum and position operators commute. In this limit we have

e−βĤ ' e−β
∑

i

p̂2
i

2m e
−β
[∑

i
u(ri)+

∑
i<j

v(rij)
]

(48)

Using momentum eigenfunctions |pi〉 as basis of indistinguishable particles to evaluate the trace, we get for the
partition function

Z(β) =
1
N !2

∑
P

∑
P ′

(−1)|P+P ′|
∑
p1

〈pP (1)|1 ×
∑
p2

〈pP (2)|2 · · ·
∑
pN

〈pP (N)|Ne−β
∑

i

p2
i

2m

∫
dr1|r1〉1〈r1|1 ×

∫
dr2|r2〉2〈r2|2 × . . .

∫
drN |rN 〉N 〈rN |N (49)

e
−β
[∑

i
u(ri)+

∑
i<j

v(rij)
]
|pP ′(1)〉1 × |pP ′(2)〉2 × · · · |pP ′(N)〉N (50)
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where we have inserted a complete set of position eigenfunctions (of distinguishable particles). (Note that one of N !
is coming that we overcount states the states, since any permutation of the integration labels correspond to exactly
the same many-body state.) Using

〈p|r〉〈r|p′〉 =
1
V
ei(p

′−p)·r/h̄ (51)

and assuming that the relevant momenta are high enough so that we can set

〈p|r〉〈r|p′〉 ≈ 1
h̄dV

δp,p′ (52)

This condition implies that the potential must vary slowly on the scale of the mean thermal wavelength λT ∼ h̄p−1 ∼
(h̄2/mT )1/2. Collecting terms together we obtain the classical partition function

Z(β) =
1

N !h̄dN

∫
dP

(2π)dN

∫
dRe−βE(R,P) (53)

where the energy writes

E(R,P) =
N∑
i=1

p2
i

2m
+

N∑
i=1

u(ri) +
N∑
i<j

v(rij) (54)

The coordinates R ≡ (r1, r2, . . . , rN ) and momenta P ≡ (p1,p2, . . . ,pN ) define the phase space of the classical
system, and the probability of finding the particles at the point (R,P) is given by

ρ(R,P)dRdP =
e−βE(R,P)dRdP

Z(β)
(55)

where dR ≡
∏
i dri. The momentum integration in the partition function

Z(β) =
1

N !hdN

∫
dR
∫
dPe−βE(R,P) (56)

can be done explicitly in d spatial dimensions,

Z(β) =
(

m

2πh̄2β

)dN/2 1
N !

∫
dRe−β[U(R)+V (R)] (57)

and only the configuration integral over the potential energy in position space remains, U(R) ≡
∑
i u(ri) and V (R) ≡∑

i<j v(rij)
It is an important feature of a classical system, that kinetic and potential energy separates in the partition function.

Independantly of strength and form of the interactions, the distribution of momenta is always gaussian

ρ(P)dP ∼
∫
ρ(R,P)dRdP ∼ e−β

∑
i
p2i /2m (58)

and the kinetic energy is a direct measure of the temperature

d

2
kBT = 〈 1

N

∑
i

p2
i

2m
〉 (59)

This result is the equipartition theorem for classical particles. This relation allows us to determine the temperature
in a Molecular Dynamics simulation of in experiments.

Appendix: gaussian integrals

Gaussian integrals play a central role in statistical mechanics, in d dimensions we have

Id(γ) =
∫
ddxe−γx

2
(60)
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where x2 = x2
1 + x2

2 + . . .+ x2
d. We can easily relate the integrals beween different dimensions using

Id(γ) = [I1(γ)]d (61)

In d = 2 dimensions, the integral can be canlculated easily changing to radial variables, r =
√
x2

1 + x2
2 and cos θ = x1/r,

I2 =
∫ 1

−1

d cos θ
∫
drre−γr

2
= π

∫
d(r2)e−γr

2
=
π

γ
(62)

So we get the general result

Id(γ) =
(
π

γ

)d/2
(63)
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