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One of the most fundamental models in condensed matter theory is the homogeneous electron gas, a system of
electrons interacting with a 1/r-potential with each other to which a uniform positive background is added for charge
neutrality. The Hamiltonian writes

H = H0 + V (1)

H0 =
∑
k

(
k2

2m
− µ

)
a†kak (2)

V =
1

2Ω

∑
q6=0

vq

∑
k,k′

a†k+qa†k′−qak′ak (3)

=
1

2Ω

∑
q6=0

vq [ρqρ−q − ρ0] (4)

where a†k (ak) are creation (annihilation) operators with the following anticommutation relations

[ak, ak′ ]+ ≡ akak′ + ak′ak = 0,
[
a†k, a†k′

]
+

= 0,
[
ak, a†k′

]
+

= δk,k′ (5)

and the density operator is introduced via

ρq =
∑
k

a†k+qak (6)

(Note that ρ0 = N where N is the total number operator.) The Fourier transform of the 1/r potential in d = 2 or
d = 3 dimensions writes

vq =
2(d− 1)πe2

qd−1
(7)

where e is the electronic charge and Ω the volume of the system. Note that in the interaction part of the Hamiltonian,
Eq. (3), excludes the term with q = 0 in the summation which accountes for the uniform positive charged background.
Further, assuming periodic boundary conditions, the Coulomb potential can only be written down in Fourier space
due to its long-range behavior. (In real space one must assume a screened Coulomb-potential e−αr/r and take the
limit α → 0 at the very end of the calculation to exclude non-neglegible surface-effects.)

At zero temperature the electron gas is characterized by one dimensionless parameter rs

rs = a/aB (8)

where a is roughly the mean interparticle distance, or

Ω = N
2(d− 1)πad

d
(9)

and aB = ~2/(me2) is the Bohr radius

~2

ma2
B

=
e2

aB
(10)



2

Energies are convieniently given in Rydbergs, 1Ry = ~2/(2ma2
B) = me4/2~2. Let us estimate the kinetic and potential

energy. The kinetic energy, T , is given by the Fermi energy

T

N
∼ k2

F

2m
∼ 1

2ma2
=

1
r2
s

Ry (11)

where kF ∼ a−1 is the Fermi wavevector. The potential energy is roughly

V

N
∼ e2

a
=

2
rs

Ry (12)

We see, that in the high density limit n → ∞, or rs → 0, the kinetic energy dominates the potential energy. In this
limit one might expect that the electron-electron interaction V can be treated as a perturbation of the non-interacting
ground state.

A. Equation of motions approach

Let us consider that the system is in the ground state of the non-interacting Hamiltonian,

|F 〉 =
∏

k≤kF

a†k|0〉 (13)

where the Fermi-wavevector kF is related to the density

n =
1
Ω

∑
k

〈F |a†kak|F 〉 =
1
Ω

∑
|k|≤kF

1 (14)

and we consider a spin-polarized system for simplicity.

1. Single particle excitation

Let us create an additional particle, and add it to the system. In the Heisenberg picture, the time evolution of the
creation operator a†k with |k| > kF is given by

−i
d

dt
a†k =

[
H, a†k

]
−

= ωka†k +
1
Ω

∑
q6=0

∑
p

vqa
†
k+qa†p−qap (15)

where we have defined ω
(0)
k = k2/2m − µ and used the anti-commutation rules. Now we separate on the rhs. the

terms which involves a†k, namely p− q = k. We get

−i
d

dt
a†k =

[
H, a†k

]
−

=

ω
(0)
k − 1

Ω

∑
q6=0

vqa
†
k+qak+q

 a†k +
1
Ω

∑
q6=0

∑
p 6=k+q

vqa
†
k+qa†p−qap (16)

Let us assume the simple time evolution

a†k(t) = a†k(0)eiω
(1)
k t (17)

we obtain

ω
(1)
k a†k =

ω
(0)
k − 1

Ω

∑
q6=0

vqa
†
k+qak+q

 a†k +
1
Ω

∑
q6=0

∑
p 6=k+q

vqa
†
k+qa†p−qapei(ω

(1)
k+q+ω

(1)
p−q−ω(1)

p −ω
(1)
k )t (18)

Since the last term on the rhs is always oscillating, we expect that it does not controbute for times much longer
compared to typical energies ω

(1)
k and vanishes on average. Approximations in this spririt are frequently called



3

Random Phase Approximation (RPA). However, in the context of the electron gas, this is not called RPA! Replacing
a†kak by its expectation value nk we recover the Hartree-Fock single particle excitation spectrum

ω
(1)
k = ω

(0)
k − 1

Ω

∑
q6=0

vqnk+q (19)

since the Hartree term vanishes due to the positive charged background.
Note that the Random-Phase-approximation for the single particle excitations averaged away the last term on the

rhs of Eq. (18) which contains the diverging potential in the limit q → 0. This is a-priori not justified.

2. Collective excitations

The a-priori candidats for collective excitations are density fluctuations, described by the density operator ρk =∑
p a†p+kap. For the equation of motion we need the following commutators[

H0, a
†
p+kap

]
−

= (εp+k − εp) a†p+kap (20)

[ρq, ρk]− = 0 (21)[
ρq, a†p+kap

]
−

= a†p+k+qap − a†p+kap−q (22)

We get

(−i)2
d2

dt2
ρk =

∑
p

(εp+k − εp)
[
H, a†p+kap

]
−

(23)

=
∑
p

2p · k + k2

2m

[
H, a†p+kap

]
−

(24)

=
∑
p

(
2p · k + k2

2m

)2

a†p+kap +
1

2Ω

∑
p,q6=0

2p · k + k2

2m
vq

[
ρ−qρq, a†p+kap

]
−

(25)

=
∑
p

(
2p · k + k2

2m

)2

a†p+kap

+
1

2Ω

∑
p,q6=0

2p · k + k2

2m
vq

{
ρ−q

(
a†p+k+qap − a†p+kap−q

)
+

(
a†p+k−qap − a†p+kap+q

)
ρq

}
(26)

=
∑
p

(
2p · k + k2

2m

)2

a†p+kap +
1
Ω

∑
p,q6=0

2p · k + k2

2m
vqρ−q

(
a†p+k+qap − a†p+kap−q

)
(27)

where we have used [AB,C]− = A[B,C]− + [A,C]−B. Relabelling p → p− q in the last term on the rhs we get

(−i)2
d2

dt2
ρk =

∑
p

(
2p · k + k2

2m

)2

a†p+kap −
1
Ω

∑
q6=0

2q · k
2m

vqρ−qρk+q (28)

In order to prepare the RPA-approximation, we separate the terms linear in ρk on the rhs, that means the term
q = −k in the summation. Noting that the density n = ρ0/Ω, we have

(−i)2
d2

dt2
ρk =

nk2vk

m
ρk +

∑
p

(
2p · k + k2

2m

)2

a†p+kap −
1
Ω

∑
q6={0,−k}

q · k
m

vqρ−qρk+q (29)

Now in the limit k → 0 (long wavelength fluctuations), the first term on the rhs can be written in terms of the plasma
frequency, ωp,

ω2
p = lim

k→0

nk2vk

m
(30)
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In three dimensions, since vk → k−2, the plasma-frequcency is independant of the wavevector to first approximation,
ωp = (4πne2/m)1/2 Noting that p ≈ kF in second term on the rhs of Eq. (29), and averaging over the angles it can
be approximated as ≈ k2

F k2ρk/3m2. Writing the time evolution of the density operator as

ρk(t) = ρk(0)eiωp(k)t (31)

we obtain a self-consistent solution for k → 0 with

ω2
p(k) = ω2

p + k2
F k2/3m2 (32)

since the last term on the rhs of Eq. (29) is oscillating in time and can be neglected in the long-time evolution in the
spirit of the RPA. We expect that the plasma-oscillations are good eigenstates for

k ≤ kc ≈ mωp/kF (33)

In three dimensions we have kca ∼ r
1/2
s .

B. Ground state wavefunction

Our results concerning the single particle and collective excitations propose the following ground state many-body
wavefunction of the interacting electron gas in the high density limit

ΨRPA(R) = N−1/2 exp

[
−(2Ω)−1

∑
q

αqρqρ−q

]
det
k,i

eik·ri (34)

where N accounts for the correct normalization. Since we have seen that a†k creates a single particle excitation
(k > kF ), or ak creates a hole for k ≤ kF , we expect that the determinant is build out of plane waves with
wavevectors k ≤ kF . Since the collective excitations where described by a single harmonic oscillator behavior,
ρq plays the role similar to that of the coordinate (or momentum) operator of the usual harmonic oscillator, and we
expect a harmonic oscillator ground state wavefunction for ρq for each oscillator q. We just need to determine αq.
Note, since ρq =

∑
i e−q·ri in first quantization, the wavefunction is of the Slater-Jastrow type, since it can be written

as

ΨRPA(R) = N−1/2 exp

−∑
i,j

α(|ri − rj |)

det
k,i

eik·ri (35)

where α(r) is just the Fourier transform of αq

In order to determine αq we apply the Hamiltonian in first quantization on our variational wavefunction, Eq. (34),

EL(R) ≡ HΨRPA(R)
ΨRPA(R)

(36)

=
∑

k≤kF

k2

2m
+

1
2Ω

∑
q6=0

vq(ρqρ−q −N) +
2q2αq

2m
(ρqρ−q −N) +

2
Ω

∑
q′

q · q′αqαq′

2m
ρq+q′ρ−qρ−q′

 (37)

We have neglected a cross-term between the Jastrow and the Slater-determinant. Now within the RPA, only the
terms in the last summation of the rhs with q = 0, q′ = 0 or q + q′ = 0 must be kept, an we get

EL(R) =
∑

k≤kF

k2

2m
+

1
2Ω

∑
q6=0

[
vq(ρqρ−q −N) +

q2αq

m
(ρqρ−q −N)−

∑
q

n(qαq)2

m
ρqρ−q

]
(38)

In the limit q → 0 we have to cancel the Coulomb singularity and we get

α2
q =

mvq

nq2
=

m2nq2vq

mn2q4
(39)

This determines the exact value of αq for q → 0. It is the basic structure of many-body wavefunctions of Coulomb
systems in the Quantum-Monte Carlo approach.

Bohm and Pines have used the separation of plasmon and single particle excitation introducing additional collective
excitations to descrie the plasmons. We have already choosen the parameters αq of the wavefunction to remove the
Coulomb singularity. The resulting effective potential is then screened by charge fluctuations and the effective potential
can be treated perturbatively.
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FIG. 1: A deformation of the contour integration C to C′ and C′′. Crosses are the Matsubara frequencies, the poles of the
Fermi-function, whereas circles indicate possible poles (or a branch cut) of the original function. Note that C′ is just above
and C′′ just below the real axis.

C. Green’s function approach - RPA diagrams

In the equation of motion approach, we have already noticed that the divergence of the Coulomb potential can be
dangereous. Within the Green’s function approach, we can analyse the potentially diverging diagrams. We can see
that the bubble-diagrams, B(q), can be dangereous, as thay occur in the form [−vqB0(q)]n, with an arbitrary high
power n. In the case, where the simple bubble B0(q) is finite at q → 0, we are forced to include a whole series in
order to avoid divergence. The resummation of this series is the RPA approximation in the diagrammatic approach.

We need a basic method to evaluate summation over Matsubara-frequencies ωn = π(2n + 1)T for n = 0,±1, . . .∑
n

g(ωn) = − β

2πi
lim
τ→0

∫
C

eωτfF (ω)g(ω)dω (40)

fF (ω) =
1

eβω + 1
(41)

where the integral is in the complex planes with a contour C going around each pole of the Fermi-function fF (ω) at
ω = ωn in the positive sense. If we know the analytic properties, we can deform the contour to evaluate the Matsubara
summation. (The eiω0+-factor is often there, but not explicitly written down.)

Simple branch cut on the real axis. Suppose that g(ω) is analytic in the upper/ lower complex plane, but
with simple poles on the real axis. Further, g(ω) vanishes for |ω| → ∞. We can deform now the integration contour
into two half-circles, one in the upper complex plane, one in the lower complex plane. The Fermi function assures
that the integration at infinity with positive real part of ω is neglegible, whereas the eω0+

is needed to neglect the
contributions at infinity for negative real part of ω. Only both integral close to the real axis contribute

T
∑

n

g(iωn) = − 1
2πi

∫ ∞

−∞
dωdωeω0+

fF (ω) [g(ω + iη)− g(ω − iη)] =
∫ ∞

−∞

dω

2π
dωeω0+

fF (ω)A(ω) (42)

where we introduced the spectral function

A(ω) = −Im g(ω + iη) (43)

The spectral function is a fundamental quantity, since it occurs in many expressions. In the case of free fermions, we
have G0(k, ωn)−1 = iωn + µ − k2/2m. The analytic continuation for ω away from the real axis is simple given by
replacing iωn by ω. The spectral function is then

A0(k, ω) = 2πδ(ω − k2/2m + µ) (44)
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FIG. 2: The basic bubble diagram.
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FIG. 3: A different deformation of the contour integration which we use to calculate the bubble diagram.

using the formal identity 1/(x+ iη) = P/x− iπδ(x). Putting the spectral function of the ideal Fermi gas bacl into the
expression (42), we recover the density of the ideal Fermi gas. Note, that we could have also used different contours
to evaluate the Matsubara summation leading to the same final result.

Bubble diagram. Let us calculate the basic bubble diagram

B0(k, iωn) = T

∫
dp

(2π)3
∑
m

G0(p + k, iωm+n)G0(p, iωm) (45)

=
∫

dp
(2π)3

∫
C

dω

2πi
fF (ω)

1
ω + 2πinT + µ− εk+p

1
ω + µ− εp

(46)

We can deform the contour and close it to the right and to the left, separately. The contributions from the half-circles
with |ω| → ∞ vanishes, and we have only to take into account the two poles at ω = εk+q−µ−2πnT and at ω = εp−µ.
We get

B0(k, iωn = 2πinT ) =
∫

dp
(2π)3

fF (εp − µ)− fF (εk+p − µ)
iωn + εp − εp+k

(47)
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veff(q)=v(q)+v(q)B0(q) veff(q)

FIG. 4: The RPA approximation for the effective interaction.

where we have used that f(ω + 2πnT ) = f(ω). Note that the bubbles is now bosonic, concerning at least the
Matsubara-index! Just note that we have treated the spin-polarized case, for unpolarized electrons the bubble result
has to be multiplied by a factor of 2.

Screened Coulomb interaction - RPA summation. We can now analyse the bubble diagram in the limit k → 0
in order to estimate the order of the divergence higher order perturbation terms invoving the structure [−vqB0(q)]n.
For zero Matsubara frequency,

B0(k → 0, 0) = lim
k→0

∫
dp

(2π)3
fF (εp − µ)− fF (εk+p − µ)

εp − εp+k
= −β

∫
dp

(2π)3
dfF (εk − µ)

d(βµ)
= −dn

dµ
(48)

and we get a finite negative number, proportional to the compressibility of the free Fermi gas. At zero temperature
it reduces to the density of states at the Fermi level, kF . For any finite Mastubara frequency, B0(k, iωn 6= 0) ∼ k2.
Therefore we get singularities of order [−v(q)B0(q)]n ∼ 1/q2n from a chain of n bubbles. However, it is bossible to
include the bubbles sum up to all order, introducing the effective potential

veff (q) = vq − vqB0(q, 0) + [vqB0(q, 0)]2 − · · · = vq

1− vqB0(q, 0)
(49)

For q → 0, we obtain a screened Coulomb potential in three dimensions,

veff (q) → 4πe2

q2 + k2
s

, k2
s = 4πe2(dn/dµ) (50)

Two-Particle Green’s function, Dielectric function. The bubble-diagram contains a particle-hole propagator
which represents a vertex contribution to the two-particle Green’s function. Schematically we have

G(2)(1, 2; 1′, 2′) = G(1, 1′)G(2, 2′)−G(1, 2′)G(2, 1′) + G(1, A)G(2, B)Γ(A,B;A′, B′)G(A′, 1′)G(B′, 2′) (51)

The RPA summation can be seen as the following approximation for the vertex Γ,

Γ = v + vB0Γ (52)

which leads to the screened interaction Γ = v/(1− vB0) = 1/(v−1−B0). It is straightforward to see, that an external
potential will be also screened. A particular form of the two-particle Green’s function is the density-density correlation
function, from which the dielectric function can be determined.

Fermi Liquid Theory. Let us look at the exact one-particle Green’s function which can be written as

G−1(k, z) = z − ζk − Σ(k, z) (53)
ζk = εk − µ (54)

We have seen before, that the poles of the analytic continuation, in particular the spectral function, enters into the
Fermi-function in a similar way as the exact single particle energies for the ideal Fermi gas. Let us continue approach
the real axis from above for the self-energy

Σ(k, ω) ≡ Σ(k, z = ω + iη) (55)
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and separate real and imaginary parts

G−1(k, ω) = ω − [ζk + Re Σ(k, ω)]− i Im Σ(k, ω) (56)

The poles of the Green’s function, and thus the single particle excitation energies, are determined by G−1(k, εk) = 0.
We might expect that εk ≈ ζk ≈ 0. Neglecting the imaginary part of the self-energy for a moment, we expect that we
can expand the real part of the self-energy around ζkF

, and k around kF . We get

G(k, ω) ≈ Z

ω − ζ̃k

(57)

Z−1 = 1− ∂Re Σ(kF , ω)
∂ω

∣∣∣∣
ω=0

(58)

ζ̃k =
(k − kF )kF

m∗ (59)

1
m∗ =

Z

kF

∂[ζk + Re Σ(kF , 0)]
∂k

∣∣∣
k=kF

(60)

In contrast to the ideal gas where ζk ' (k − kF )kF /m close to kF , the system behaves similar to an ideal gas, but
with an effective mass m∗. Further, the weight of the excitation is reduced from one to Z ≤ 1, but we still have a
delta-peak in the spectral function writes

A(k, ω) = 2πZδ(ω − ζ̃k) (61)

However the general sum rule ∫
dω

2π
A(k, ω) = 1 (62)

is not anymore satisfied, due to a incoherent part in the spectral function which is connected to the imaginary part
of the self energy.

In general, these expansions are only valid if the imaginary part of the self energy is neglegible. One might expect
that this is the case for the electron gas for excitations close to the Fermi-surface, since the Pauli-factors reduce
dramatically the avaiable phase space for incoherent scattering. Whenever, the imaginary part is sufficiently small,
we can speak of a Fermi liquid, where many properties behave similar to the ideal Fermi gas.

Wigner Crystal. All the previous calculations relied upon the adiabatique deformation of the non-interacting
Fermi liquid ground state due to the Coulomb interaction, reasonable for the high density gas, rs → 0. However,
at low density, this assumtion breaks down. The interaction dominates and the electrons start to avoid each other
forming a regular crystal (bcc in three dimensions). Roughly, the kinetic energy cost for localizing one electron inside
a volume of order of the elementary cell of the lattice is neglegible compared to the potential energy gain. This is the
classical limit.
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