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In general, the straighforward application of perturbation theory is rather limited. Resummations of subseries
have to be performed in order to derive results for interacting matter. Very often, these resummations are physically
motivated, and it is difficult to judge its reliability. Landau’s approach for strongly interacting Fermi liquid provides
a complementary approach where the fundamental degrees of freedom are expressed in terms of few phenomenological
parameters. Here we present a few results of the heuristic theory, the microscopic justification is given later.

A. Ideal Fermi gas

Let us start by considering some essential elements characterizing the non-interacting Fermi gas. The ground state
of spin 1/2 Fermions is given by occupying plane wave states up to the Fermi momentum kF which is determined by
the density

ρ = 2
∫ kF

0

d3k
(2π)3

=
k3
F

3π2
(1)

The ground state can be characterized by the occupation number, n0(k) of state k,

n0(k) = 2θ(kF − |k|) (2)

and the total ground state energy is given by

E =
∑
k

~2k2

2m
n0(k) (3)

The excited states of the ideal gas are entirely characterized by the change of the occupation number δn(k) =
n(k)− n0(k), e.g. the energy of the excitation is

δE =
∑
k

~2k2

2m
δn(k) (4)

Changes of the paramters of the system, e.g. temperature, external fields, can be expressed in terms of δn(k). In
particular, low-energy properties, are entirely determined by the structure around the Fermi wavevector, kF .

B. Fermi Liquid Theory

Suppose, we turn on the interacting between the particles, adiabatically. Landau’s Fermi liquid theory aims on the
description of the excited states with low energies. We consider the situation where, inside a certain region of energy,
a one-to-one correspondence between eigenstates of the free Fermi gas and those of the interacting system exists (not
neccessarily very close to the ground state). In that case, these states can be characterized by the change of the
occupation number, as in the ideal gas, and lead to the occupation of quasi-particules and -holes, or, equivalently, the
total energy of an excited state is a functional of the quasiparticle distribution function, E{nkσ}. The quasi-particle
energy, εkσ{npσ′} can then be defined as the variation of E with nkσ

δE =
∑
kσ

εkσδnkσ (5)
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Note that the quasiparticle energy is itself a functional of the distribution function.
In a macroscopic state of thermal equilibrium, any variation of the thermodynamic equilibrium at finite temperture

is given by

δE = TδS + µδN (6)

where δS is the variation of the entropy, δN the variation of the particle number, and T the temperature, µ the chemical
potential. Postulating a one-to-one correspondence of the eiegenstates with those of an ideal gas, the entropy must
have the same form as for the free Fermi gas

S = −kB
∑
pσ

[npσ lnnpσ + (1− npσ) ln(1− npσ)] (7)

where kB is the Boltzmann’s constant. Further the total number of quasiparticles is the same as the number of
particles of the ideal gas

N =
∑
pσ

npσ (8)

Now, let us consider the variation, δnpσ of the quasi-particle occupation number. The change in the entropy is then

δS = −kB
∑
pσ

δnpσ ln
npσ

1− npσ
(9)

and the variation of the total number of particles

δN =
∑
pσ

δnpσ (10)

and the resulting change of the energy is given by

δE = TδS + µδN =
∑
pσ

[
−kBT ln

npσ

1− npσ
+ µ

]
δnpσ (11)

and equating with the definition of the quasiparticle energy, Eq. (5), we get

εpσ − µ = kBT ln(n−1
pσ − 1) (12)

which gives the usual Fermi-Dirac distribution for the occupation number

npσ =
1

eβ(εpσ−µ) − 1
(13)

Since the quasiparticle energy, εpσ is itself a functional of the distribution function, this is only a complicated implicit
equation for npσ.

Effective mass, density of states. At T = 0, we get

n0
pσ = θ(µ− ε0pσ) (14)

and µ equals ε0kF at the Fermi surface. For slight perturbations close to zero temperature, the occupation number
can only vary in the neighborhood of kF . Expanding to first order we get

ε0pσ = µ+ vF (p− pF ) (15)

where

vF =
∂ε0pσ
∂p

∣∣∣∣∣
p=pF

=
pF
m∗

(16)

defines the effective mass, m∗. The difference of the effective mass to the bare mass will modify the density of
quasiparticle states compared to the ideal gas

N(0) =
1
V

∑
pσ

δ(ε0pσ − µ) = 2
∫

d3p
(2π)3

δ(ε0pσ − µ) =
1
π2

∫
p2δ(ε0pσ − µ)dp (17)
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Since dε0pσ/dp = pF /m
∗ and p = pF at ε0pσ = µ, we get

N(0) =
m∗pF
π2

(18)

Quasiparticle interaction. In general, quasiparticules will interact among each other, and the quasiparticule
energy, εpσ, depends on the entire quasiparticule distribution function, npσ. The interacting produces a variation of
the quasiparticule energy

δεpσ =
1
V

∑
p′σ′ 6=pσ

fpσ,p′σ′δnp′σ′ (19)

so that f can be identified with a second variation of the total energy with respect to changes in the quasiparticule
occupation

fpσ,p′σ′ = V
δ2E

δnpσδnp′σ′
(20)

We have thus obtained a fundamental energy functional

E{δnkσ} = E0 +
∑
kσ

ε0kσδnkσ +
1

2V

∑
kσ,k′σ′

fkσ,k′σ′δnkσδnk′σ′ + . . . (21)

where we expect that only momentum close to pF are relavant at low temperatures. In general the quasiparticule
interaction f is split in symmetric and antisymmetric part

fp↑,p′↑ = fp↓,p′↓ = fspp′ + fapp′ (22)
fp↑,p′↓ = fp↓,p′↑ = fspp′ − fapp′ (23)

and, since we restrict to momenta arbitrarily close to the Fermi surface, we expand the interaction in the angle
between p and p′

fspp′ =
∞∑
l=0

fsl Pl(cos θ) (24)

fapp′ =
∞∑
l=0

fal Pl(cos θ) (25)

The conventional Landau parameters are just these interactions multiplied by the density of states

F
s/a
l = N(0)fs/al (26)

Specific heat. The specific heat at constant volume is given by

CV =
1
V

∂E

∂T

∣∣∣∣
V

(27)

The change in temperature induces a change in the occupation numbers, so that we get

CV =
1
V

∑
pσ

ε0pσ
∂npσ

∂T
(28)

= − 1
V

∑
pσ

ε0pσ
εpσ − µ

T

∂npσ

∂εpσ
(29)

Now, in the limit T → 0, we have

∂npσ

∂εpσ
→ −δ(εpσ − µ)− π2T 2

6
∂2

∂ε2pσ
δ(εpσ − µ) +O(T 2) (30)
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and we get

CV =
N(0)T

3π2
=
m∗pF
3π2

T (31)

so that measuring the specific heat at low temperature determone the effective mass.
Effective mass and quasi-particle interaction. In a single component system, there is a simple relation between

the effective mass and the Landau parameters of the quasi-particle interaction

m∗

m
= 1 +

1
3
F s1 (32)

This relation is intrinsically related to the Galiean invariance of a normal Fermi liquid.
Let us consider an excitation of the system which changes the total momentum per unit volume

δP =
1
V

∑
p,σ

pδnpσ (33)

However, since the number of quasi-particles is equal to the number of real particles, the momentum is also given by
the real mass times the group velocity, ∂εp/∂p, and we have

δP =
1
V

∑
p,σ

m
∂εpσ{δnp′σ′}

∂p
δnpσ (34)

where we have indicated that the quasi-particle energy is a functional of the changes in the occupation number. Using
Eq. (21), we have

εpσ{δnp′σ′} =
δE{δnp′σ′}

δnpσ
= ε0pσ +

1
V

∑
p′σ′

fpσ,p′σ′δnp′σ′ (35)

and, equating Eq. (33) and Eq. (34), we have

p
m

=
∂ε0pσ
∂p

+
1
V

∑
p′σ′

∂fpσ,p′σ′

∂p
δnp′σ′ (36)

=
∂ε0pσ
∂p

+
1
V

∑
p′σ′

∂fpσ,p′σ′

∂p′
δnp′σ′ (37)

Now, replacing the sum by an integral on the rhs, we can integrate by parts, and use the zero-temperature approxi-
mation

∂δnp′σ′

∂p′
= − p′

pF
δ(pF − p′) (38)

together with |p| → pF , we get

p
m

=
p
m∗

+
1
pF

∑
σ′

∫
d3p′

(2π)3
p′fpσ,p′σ′δ(pF − |p′|) (39)

Taking the scalar product with p on both sides, the integral only depends on the angle θ between p and p′. Using
the exansion in Legendre polynoms of the Landau parameter, we finally get

1
m

=
1
m∗

+
pF
π2

∫
d cos θ

2π
cos(θ)

∑
l

fsl Pl(cos θ) (40)

=
1
m∗

(
1 +

N(0)
3

f1

)
(41)

which gives Eq. (32).
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Galilean invariance. If we observe the system from a different frame (denoted by a prime) moving with a velocity
u, the total energy and the total momentum in the primed frame is related to that of the lab frame by

P′ = P−Mu (42)

E′ = E −P · u +
1
2
Mu2 (43)

Introducing a quasiparticle of momentum p and energy εp in the lab frame, the momentum in the primed frame
increases by p−mu while the energy increases by εp − p · u +mu2/2,

ε′p−mu = εp − p · u +
1
2
mu2 (44)

or

ε′p = εp+mu − p · u− 1
2
mu2 (45)

However, in the primed frame, the ground state occupation of the filled Fermi sea is centered around −mu, so that
n′p = n0

p+mu, and the quasiparticle energy in the primed frame ε′p = εp{n′p}. Expanding them to first order in u, we
obtain

ε′p = εp +m
∑
p′σ′

δεp
δnp′

∂np′

∂p′
· u (46)

Equating with the Galilean invariance expression, Eq. (45), we get to first order in u,

m
∂εp
∂p
· u = p · u +m

∑
p′σ′

fpσ,p′σ′
∂np′

∂p′
· u (47)

For simplicity, we can put u ∼ p/m and we recover the formulas of above.
Non-equilibrium properties. If we are interested in small deviations from equilibrium, considering only long

wavelength (low energy) changes, we may characterize the occupation number by a occupation number smoothly
varying in time and space, np(r, t), with

np(r, t) = n0
p + δnp(r, t) (48)

which induces a change in the quaiparticle energy

δεp(r, t) =
∑
σ′p′

∫
d3r′fpσ,p′σ′δnp(r, t) (49)

In the absence of quasiparticle collisions the time variation of occupation number can be written in the form of a
continuity equation

∂np(r, t)
∂t

+∇r · [vp(r, t)np(r, t)] +∇p · [Fp(r, t)np(r, t)] = 0 (50)

where the quasiparticle velocity vp(r, t) and the force on the quasiparticle Fp(r, t) is given by the classical Hamilton
equations based on the quasiparticle energy

vp(r, t) = ∇pεp(r, t) (51)
Fp(r, t) = −∇rεp(r, t) (52)

and we have
∂np(r, t)

∂t
+ vp(r, t) · ∇rnp(r, t) + Fp(r, t) · ∇pnp(r, t) = 0 (53)

In the presence of quasiparticle collisions we have to add a collision integral I[np] on the rhs, and we get an equation
similar to Boltzmann’s equation. One can derive the usual hydrodynamic conservation laws.

Zero sound. At low enough temperature, one can argue that the quasiparticle collisions are strongly suppressed,
and we can use I[n] = 0. We can search for a solution of the hydrodynamic equations which give rise to collective
oscillations in the form

δnp(r, t) = ei(q·r−ωt)φp (54)

which can be calculated in the linearized regime.
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C. Connection with QMC

In order to understand Landau’s functional from a microscopic point of view, we recall the ground state wavefunction
of the electron gas in the RPA-approximation

Ψ0(R) ≈ N−1 det
ki
eik·r

↑
i det

ki
eik·r

↓
i e−

P
q uqρ−qρq (55)

which is a Slater-Jastrow wavefunction, and should become exact in the non-interacting limit rs → 0. The normal-
ization factor N will be dropped in the following.

In the ground state, all plane-waves with wavevector |k| ≤ kF are included in the Slater-determinant. Based on
this wavefunction, we can guess possible excitation of the system. Single particle excitations will be characterized by
a different occupation of plane-waves in the determinants, δnkσ, with respect to the ground state occupation. These
excitations have exactly the same structure (“quantum number”) of the ideal gas excitations. However, we further
have collective excitations (plasmons/ phonons), with occupation numbers aq, and the ground state wavefunction is
just multiplied by ρaqq . Including both types of excitations, we have an explicit functional of the excitations depending
on δnkσ and aq.

For the electron gas, we saw, that plasmon excitations start with a finite energy, whereas particle-hole (single-
particle) excitations can have arbitrary low energies for big enough systems. Therefore, at low enough temperature,
we can neglect collective excitations and the low-lying excitations are described by δnkσ, only. It is then reasonable,
to expand the excitation-energies in terms of δnkσ and we obtain Landau’s functional.

There are several possibilities, that the energies are not any more given as a functional of the occupation numbers.
First, of course, when collective excitations mix with single particle states, and both are not any more good “quantum
numbers”. Second, there can be a problem if two excitations which are in the same symmetry become degenerate. In
both cases, the system might not be any more descried by a Fermi liquid.
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