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A. Properties of liquid helium

Helium is the lightest element of the noble gases and has two stable isotopes, 4He which is compost out of an even
number of fermions (2 protons, 2 neutrons, 2 electrons), the 4He atom behaves as boson, and 3He which behaves
as fermion due to its odd number of fermionic constituents. At low temperatures, helium fluids show effects due to
the quantum nature of the motion and of the quantum statistics of the atoms. A precise microscopic description of
helium is still challenging.

Pair potential and kinetic energy The effective pair potential between two helium atoms is phenomenologically
described by a Lennard-Jones 12-6 potential
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where r is the distance between them, ε = 10.22K, and σ = 2.566A. (More accurate potentials are known under
the name Aziz potential.) In contrast to classical fluids, the kinetic energy is not directly given in terms of the
temperature, and introduces a second energy scale, t = h̄2/(2mσ2). For 4He, we have h̄2/2m = 6.02KA2 and
t ' 0.9K, and h̄/2m = 8.03KA2 for 3He leads to t ' 1.2K. At zero pressure, the equilibrium density of liquid 4He is
ρσ3 = 0.365, slightly higher than that of 3He with ρσ3 = 0.274. In reduced units, where distances are measured in σ
and energies in ε, the total Hamiltonian writes

H = K + V (2)
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v∗(rij) (3)

with λ = h̄2/(2mσ2ε) ' 0.0895 for 4He and λ = 0.119 for 3He.

B. Variational wavefunction

In the following we will (first) consider only the bosonic liquid, 4He. For a given many-particle wavefunction ΨT (R),
we want to evaluate the energy expectation value

ET =
∫
dR Ψ∗T (R)HΨT (R)∫

dR |ΨT (R)|2
(4)

=
∫
dR p(R)EL(R) (5)
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HΨT (R)
ΨT (R)

(7)

and ET is always an upper bound for the ground state energy E0. The simplest bosonic wavefunction (upon normal-
ization) is ΨT (R) = 1, however, the potential energy diverges, so the bound is not useful. In order to obtain some
more meaningful bound, the next simplest wavefunction writes

ΨT (R) =
∏
i<j

f(rij) (8)
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where f(r) is some function which vanishes for r → 0.
Jastrow wavefunction. There is a general theorem that the ground state wavefunction has no nodes, and we can

choose it to be positive everywhere, so that it is confinient to rewrite the wavefunction in the form

ΨT (R) = exp [−U ] (9)

U =
∑
i<j

u(rij) (10)

which is known as Jastrow wavefunction. The Jastrow potential u(r) must be choosen such that u(r → 0) → +∞,
and u(r →∞) = 0.

Local energy. The local energy is then expressed as
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+ V (R) (11)

so we need to calculate v(r), u(r), uα(r) = ∂u(r)/∂rα, and uαβ(r) = ∂2u(r)/∂rα∂rβ for each pair of distance rij , the
greek indices are for the spatial dimension.

Periodic boundary conditions. To describe the bulk behavior, we use periodic boundary conditions, and adapt
the potential to vanish for distances larger than rc ≤ K/2 in order to apply the nearest image convention. We use

ṽ(r) = v∗(r)− v∗(rc), r ≤ rc (12)

In addition, in contrast to classical systems, we have to consider the boundary conditions for the wavefunction, too.
Since the variational bound, ET ≥ E0, only applies for continous wavefunctions with continuous first derivatives, we
have to assure that u(r), and u′(r) vanishes for r ≥ rc, in order to use the image convention also for evaluating U .
Vanishing potential and first derivatives at rc can be assured using

ũ(r) = u(r) + u(2rc − r)− 2u(rc), r ≤ rc (13)

Monte Carlo evaluation. The probability π(R) ∼ |ΨT (R)|2 = exp[−2U ] cannot be created directly for many
particles. We construct it via a Markov chain using the Metropolis algorithm. At each Monte-Carlo step, we propose
to move some or all particles. For later purposes it is convinient to use a gaussian a-priori probability to displace the
configuration Rold to a new one Rnew, for example, moving all N particles, we use

A(Rold → Rnew) = (4πλτ)−dN/2 exp
[
− (Rnew −Rold)2

4λτ

]
(14)

The typical displacement per particle is ∼
√
λτ , and in order not to violate detailed balance, we have to take τ

sufficiently small so that the displacement is always smaller than L/2. The move will be accepted with a probability

p(Rold → Rnew) = min
[
1,
π(Rnew)A(Rnew → Rold)
π(Rold)A(Rold → Rnew)

]
(15)

which in our case simplifies to

p(Rold → Rnew) = min
[
1,
π(Rnew)
π(Rold)

]
= min

[
1, e−2[U(Rnew)−U(Rold)]

]
(16)

Compared to a Monte Carlo simulation of a classical fluid, the Jastrow potential 2U in the quantum system plays a
similar role as the interaction potential βV in the classical case.

Optimization. Since we do not know the ground state wavefunction exactly, we have to parametrize the potential
u(r) and optimize the trial energy obtained by the Monte Carlo evaluation by variation of the variational parameters.
In general, we will have a non-linear function to optimize, which is a difficult problem by itself. Here, we will just use
a very simple parametrization

u(r) = ar−b (17)

and determine roughly a and b.


