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We want to describe basic properties of systems containing a large numberN of particles, from mesoscopic (N ∼ 103)
up to macroscopic (N ∼ 1024) systems in d spatial dimensions. (In general we have d = 3.) Liquids and solids are
typical many-body systems. In many cases, the atoms/ molecules of the system are very well described by classical
dynamics. Only at very low temperatures, the quantum nature of the particles becomes important. Liquid helium
has been for long time “the example” of a quantum liquid, until experiments on alcaline gases have archieved the
neccessary densities/ temperatures to reach quantum degeneracy. Whereas obervation of quantum effects for “real
particles” neccessitates quite some experimental efforts, a different kind of quantum liquid is dominating every day’s
life, at least for condensed matter and solid state physicists: the electron gas.

Many body properties are best described in the framework of statistical mechanics, and we will give a brief intro-
duction in quantum statistics first.

A. Quantum Mechanics

Single partice quantum mechanics. The state of the system is characterized by by a vector |Ψ〉, and the mean
value of an observable with operator Ô in this state is given by

〈Ψ|Ô|Ψ〉 (1)

The state can be representated using any complete basis set, e.g. r̂|r〉 = r|r〉 is the position representation

〈Ψ|Ô|Ψ〉 =
∫
dr
∫
dr′Ψ∗(r)〈r|Ô|r′〉Ψ(r) (2)

Ψ(r) = 〈r|Ψ〉, Ψ∗(r) = 〈Ψ|r〉 (3)

In the Schrödinger eqution the time evolution of the system’s state is determined by Schrödinger’s equation

ih̄
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (4)

where Ĥ is the Hamiltonian of the system, and operators are time-independant. Eigenstates of Ĥ with energiegeladenes
Ei are stationary, and form a basis |Ei〉 with Ĥ|Ei〉 = Ei|Ei〉.

Many particle quantum mechanics: Bosons and Fermions. We can form a basis for many quantum particles
by labelling each of them as we do for classical particles. If we have single particle states, e.g. energy eigenstates of a
single particle hamiltonian |Ei〉 we can form a many-body state

|ΨN 〉 = |E1〉1 × |E2〉2 × . . . |EN 〉N (5)

putting the first particle in an energy state E1, the second into E2, etc.. However, there is no possibility of distinguish-
ing quantum particles, e.g. all Hamiltonians known up to now are symmetric with respect to particle permutations.
Therefore, all wavefunctions needed to describe the world so far are seperated in two main classes which do not mix:
Total symmetric and total antisymmetric wavefunctions

|ΨN 〉S/A =
1
N !

∑
P

(±)|P ||EP (1)〉1 × |EP (2)〉2 × . . . |EP (N)〉N (6)

where the summation is over all possible N ! permutations P of particle labels. Particles which are described by
symmetrical wavefunctions are called Bosons, antisymmetric wavefunctions describe Fermions. The framework for
formal calculations with symmetric/antisymmetric many-body wavefunctions is called second quantization.
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B. Statistical mechanics

Micro-canonical ensemble. Since any energy eigenstate is equally probably in the micro-canonical ensemble,
(N , V , E are constant), the expectation value of an obersable, e.g. the one-body density, ρ̂(1)(r) =

∑
i δ(r − r̂i), is

given by

〈ρ̂(1)〉 =
Tr
[
δĤ,E ρ̂

(1)(r)
]

Tr
[
δĤ,E

] (7)

=
∑
i δE,Ei〈Ei|ρ̂(1)(r)|Ei〉∑

i δE,Ei
(8)

where Ĥ is the Hamiltonian of the system and Ei are its eigenvalues.
The denominator counts just the degeneracy of the energy level under consideration, and it is common to define

the entropy S of the system which is proportional to that degeneracy

S(E,N, V ) = kB log TrδĤ,E (9)

= kB log
∑
i

δE,Ei (10)

Canonical ensemble. Let us consider now that the system is connected to a bigger bath and can exchange energy
with the bath. Bath and system together form an isolated system which can be described by the micro-canonical
ensemble. The probability, pi, to find the system at energy Ei is equal to the probability that the bath has energy
E − Ei

pi =
eSB(E−Ei)/kB∑
i e
SB(E−Ei)/kB

(11)

where SB(E) is the entropy of the bath for a given bath-energy E. If the bath is much bigger than the system, we
can expand SB(E − Ei) around Ei = 0. We get

SB(E − Ei) = SB(E)− dSB(E)
dE

Ei + . . . (12)

or

pi =
e−βEi∑
i e
−βEi

(13)

where we have defined the inverse temperature from the thermodynamic relation 1/T = ∂S
∂E

∣∣∣
V,N

, and β = 1/kBT ,.

Since the total entropy SB(E − ES) + S(ES) must be maximal for the most likely energy of the system Es, the
temperature of the bath must equal the temperature of the system in equilibrium.

The canonical ensemble describes a system in contact with an energy bath. It is therefore characterized by the
temperature T (instead of the energy), and the probability pα to find the system in a state |α〉,

pα = 〈α|ρ̂(β)|α〉 (14)

The probability is expressed introducing the density operator

ρ̂(β) =
e−βĤ

Z(β)
=
∑
i |Ei〉〈Ei|e−βEi

Z(β)
(15)

The normalisation factor Z(β) is called partition function of the canonical ensemble

Z(β) =
∑
i

e−βEi . (16)

The mean value, 〈Ô〉, of some obersable Ô can now be calculated

〈Ô〉 = Tr
[
Ôρ̂(β)

]
=
∑
α

〈α|Ôρ̂(β)|α〉 (17)
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One important observable is the energy E itself and the mean energy of the system at temperature T writes

〈H〉 =
∑
αEαe

−βEα∑
α e
−βEα

= −∂ logZ(β)
∂β

(18)

can be calculated directly from the partition function. The partition function, indeed, plays a central role in statistical
mechanics and the connections to thermodynamics is made by introducing the free energy, F (β), via

Z(β) = exp [−βF (β)] . (19)

From the thermodynamic definition of the free energy,

F = 〈E〉 − TS (20)

we can define the entropy S from thermodynamics. Again, we see that eS is connected to the typical number of states
with energy E in the system.

Classical Statistical Mechanics. The classical limit of the partition function for a system with Hamiltonian

Ĥ =
∑
i

p̂2
i

2m
+
∑
i

u(r̂i) +
∑
i<j

v(r̂ij) (21)

can be obtained by assuming that the momentum and position operators commute. In this limit we have

e−βĤ ' e−β
∑

i

p̂2
i

2m e
−β
[∑

i
u(ri)+

∑
i<j

v(rij)
]

(22)

Using position eigenfunctions |ri〉 as basis of indistinguishable particles to evaluate the trace, we get for the partition
function

Z(β) =
1
N !2

∑
P

∑
P ′

(±1)|P+P ′|
∫
dr1〈rP (1)|1 ×

∫
dr2〈rP (2)|2 · · ·

∫
drN 〈rP (N)|Ne−β

∑
i

p̂2
i

2m

×e−β
[∑

i
u(r̂i)+

∑
i<j

v(r̂ij)
]
|rP ′(1)〉1 × |rP ′(2)〉2 × · · · |rP ′(N)〉N (23)

=
1
N !

∑
P

(±1)|P |
∫
dr1〈rP (1)|1e−β

p̂21
2m |r1〉1 ×

∫
dr2〈rP (2)|2e−β

p̂22
2m |r2〉2 · · ·

∫
drN 〈rP (N)|Ne−β

p̂2
N

2m |rN 〉N

×e−β
[∑

i
u(ri)+

∑
i<j

v(rij)
]

(24)

Using

〈r|p〉 = (2πh̄)−d/2e−ip·r/h̄ (25)

we have

〈r′|e−β
p̂2

2m |r〉 =
∫
dp〈r′|p〉e−β

p2

2m 〈p|r〉 =
∫

dp
(2πh̄)d

e−β
p2

2m e−ip(r−r′)/h̄ =
∫

dp
(2πh̄)d

e−β
p2

2m e−2m(r−r′)2/h̄2β (26)

and we get

Z(β) =
1

N !h̄dN
∑
P

(±1)|P |
∫
dR
∫

dP
(2π)dN

e−β
∑

i
p2i /2me−2m

∑
i
(rP (i)−ri)

2/h̄2βe
−β
[∑

i
u(ri)+

∑
i<j

v(rij)
]

(27)

As long as the mean distance ∼ n−1/d between particle satisfies n−1/d � ∼ λT where λT = (2π/mt)1/2 is the thermal
wave length, all permutations different from the identity will be exponentially suppressed, and we obtain the classical
partition function

Z(β) =
1

N !h̄dN

∫
dP

(2π)dN

∫
dRe−βE(R,P) (28)

where the energy writes

E(R,P) =
N∑
i=1

p2
i

2m
+

N∑
i=1

u(ri) +
N∑
i<j

v(rij) (29)
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The coordinates R ≡ (r1, r2, . . . , rN ) and momenta P ≡ (p1,p2, . . . ,pN ) define the phase space of the classical
system, and the probability of finding the particles at the point (R,P) is given by

ρ(R,P)dRdP =
e−βE(R,P)dRdP

(2πh̄)dNZ(β)
(30)

where dR ≡
∏
i dri. The momentum integration in the partition function

Z(β) =
1

N !(2πh̄)dN

∫
dR
∫
dPe−βE(R,P) (31)

can be done explicitly in d spatial dimensions,

Z(β) =
(

m

2πh̄2β

)dN/2 1
N !

∫
dRe−β[U(R)+V (R)] (32)

and only the configuration integral over the potential energy in position space remains, U(R) ≡
∑
i u(ri) and V (R) ≡∑

i<j v(rij)
It is an important feature of a classical system, that kinetic and potential energy separates in the partition function.

Independantly of strength and form of the interactions, the distribution of momenta is always gaussian

ρ(P)dP ∼
∫
ρ(R,P)dRdP ∼ e−β

∑
i
p2i /2m (33)

and the kinetic energy is a direct measure of the temperature

d

2
kBT = 〈 1

N

∑
i

p2
i

2m
〉 = 〈 p

2
1

2m
〉 (34)

This result is the equipartition theorem for classical particles. This relation allows us to determine the temperature
in a Molecular Dynamics simulation of in experiments.

Galilean invariance. Let us consider a translational invariant system of interacting particles, e.g. particles on a
large ring without explicit single body confining potential, so that the total momentum, P =

∑
pi, is conserved,

H =
P2

2M
+ H̃ (35)

where H̃ is independent of the center-of mass motion, and M = Nm is the total mass. If we observe the system from
a different frame (denoted by a prime) moving with a velocity u, the total energy and the total momentum in the
primed frame is related to that of the lab frame by

P′ = P−Mu (36)

H ′ = H −P · u +
1
2
Mu2 =

[P−Mu]2

2M
+ H̃ (37)

If the system is stationary in the primed frame (one has to imagine that the ring contains small impurity potentials
which are important to determine the stationary frame, but which are neglected in the calculations), the partition
function is given by

Zu = Tre−βH
′

(38)

If we now consider the total momentum in the lab frame

〈P〉u ≡
1
Zu

Tr
[
Pe−βH

′
]

(39)

we can expand for very small velocities u→ 0,

〈P〉u = β〈P[P · u]〉u=0 +O(u2) (40)

For a classical system, momenta are always Boltzmann distributed ∝ exp[−βP2/2M ], as we have seen above, and
we have 〈P〉u = Mu. In general, quantum systems can show deviations from the classical result. However, as one
expects the center of mass motion to become classical for macroscopic systems so that deviations vanish in this limit.
As we will see, important deviations from the “normal” behavior may rest even for macroscopic systems, leading to
the phenomena of superfluidity and supraconductivity.
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C. Ideal Bose gas

Let us consider an ideal Bose gas at low temperatures, and denote the energy eigenstates of energy εi of the
corresponding single particle Hamiltonian, h, by |εi〉. Since the particles do not interact, any state of the form

|1 : εi1〉 ⊗ |2 : εi2〉 ⊗ · · · ⊗ |N : εiN 〉 (41)

is an eigenstate of total energy
∑
j εij of the N -particle Hamiltonian H =

∑
i hi. However, whereas for (ficticious)

quantum particles obeying Boltzmann statistics,

|1 : εi2〉 ⊗ |2 : εi1〉 ⊗ · · · ⊗ |N : εiN 〉 (42)

is a new eigenstate, degenerate in energy with the previous, the symmetric states obtained from both are identical.
All possible bosonic eigenstates of the Hamiltonian are therefore simply labelled by the occupation number ni of the
single-particle eigenstate |εi〉, whereas Boltzmann statistics would also require the actual particle number.

For an ideal Bose gas the total energy of the system is then given by a summation of the occupation number ni of
each energy eigenstate of energy εi

E({ni}) =
∑
i

niεi (43)

and the partition function at temperature T = 1/β in the canonical ensemble writes

ZN =
′∑
{ni}

e−βE({ni}) (44)

where the summation over all occupation numbers is done with the constraint that they sum up to the total number
of Bosons N ,

′∑
{ni}

=
∞∑

n1=0

∞∑
n2=0

· · · δ∑ni,N
(45)

Going over to the grand canonical ensemble, we can avoid this constraint introducing the chemical potential µ and
we get

Z =
∑
N

eβµNZN (46)

=
∞∑

n1=0

e−βn1(ε1−µ)
∞∑

n2=0

e−βn2(ε2−µ) · · · (47)

=
∏
i

[
1

1− e−β(εi−µ)

]
(48)

We get the mean occupation number of mode i by varying εi, e.g.,

Ni ≡ 〈ni〉 = −δ logZ
δβεi

(49)

=
1

eβ(εi−µ) − 1
(50)

which is the familar Bose-Einstein distribution.
Bose Einstein condensation. The number of particles N =

∑
i〈ni〉 is an increasing function for increasing

(negative) chemical potential. However, at µ = ε0 a singularity appears, where

N0 '
1

β|ε0 − µ|
, forµ→ ε0 (51)

It is important to distinguish if this singularity is approached for a system of finite density at finite temperature so
that the singularity indicates a transition to a new phase, e.g. in contrast to a singularity occuring as a consequence
of a diverging density. Therefore, let us calculate the total number of particles for a fixed system,

N =
∑
i>0

Ni =
∫ ∞
δ

dεN(ε)
1

eβ(ε−(µ−ε0)) − 1
(52)
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where we have introduced the density of states

N(ε) =
∑
i

δ(ε− (εi − ε0)) (53)

and introduced a small offset ε1−ε0 > δ > 0. The convergence properties of the integral in Eq. (52) in the limit δ → 0
determine if the singularity for N0 is approached for finite parameters of the system. In the case where the density
of states is non vanishing for small energies, N(ε) = c > 0 for ε → 0, the integral diverges Nc ∼ −T log δ/T � 1 for
µ = ε0, whereas for any N(ε) ∼ εx with x > 0, it approaches a finite limiting value Nc, and we may expect a phase
transition to occur at finite temperature.

Homogenous system. For a homogeneous system in 3 dimensions, where the energy eigenstates are plane waves
with energies εk = h̄2k2/2m, and the density can be expressed by

n =
1
V

∑
Nk =

∫
d3k

(2π)3

1
eβ(h̄2k2/2m−µ) − 1

=
(

2m
h̄2β

)3/2 1
8π3

∫
d3x

∞∑
n=1

e−n(x2−βµ) = λ−3
∑
n

enβµ

n3/2
(54)

where we have introduced the thermal wavelength λ =
√

2πh̄2/(mT ). Defining

gz(x) =
∑
n

n−zxn (55)

we have

nλ3 = g3/2(eβµ) (56)

Einstein condensation occurs at a finite density/ temperature in three dimensions, since the density at µ = 0 is finite

ncλ
3 ' 2.61 . . . (57)

This is the critical density of Bose Einstein condensation. Note that we approached µ→ 0 such that the ground state
occupation density n0 = N0/V remains zero.

Below the critical temperature (or above the critical density),

βµ ∼ − 1
V

(58)

and the ground state density n0 ∼ 1. However, whereas the condensate is macroscopically occupied, the excited state
occupation remains of order one. Since the density of states is non-vanishing in two or one dimensions, Bose-Einstein
condensation (in the sense of a true phase transition in the thermodynamic limit) does not occur in these lower
dimensions.

Superfluidity. Let us now discuss the response of the homogeneous d-dimensional Bose gas to a moving system
with small velocities. From the discussion above, we need to calculate the total momentum squared, e.g. in the
x-direction

〈P2
x〉 =

〈[∑
k

kxnk

]2〉
=
∑
k

k2
x

[
〈n2

k〉 − 〈nk〉2
]

+
∑
k

∑
p

kxpx〈nknp〉

=
1
d

∑
k

k2 ∂

∂(−βεk)
〈nk〉

∣∣∣
βµ

+
∑
k

∑
p

kxpx〈nk〉〈np〉 (59)

Whereas the last term on the rhs is clearly zero, we now use that εk = k2/2m, to simplify

〈P2
x〉 = −2m

d

∑
k

Nk

∣∣∣
βµ

= −2mV
d

∂n

∂β

∣∣∣
βµ

= −2mV
d

∂

∂β
λ−dgd/2(eβµ)

∣∣∣
βµ

= TnV m = TM (60)

We see that for N ≤ Nc the system behaves “normal”, howeever, for N > Nc the particles in the condensate have
zero momenta and will not contribute to the fluctuations of the total momenta and we have

〈P〉u = (N −N0)Mu (61)

and the normal mass is smaller than the total mass leading to a the superfluid mass density N0M/V in the non-
interacting system.

Non-ideal gases. Important questions arises concerning what properties of the ideal gas survive when the particles
interact. How is Bose condensation and superfluidity affected and what are the changes in dilute gases? How to
describe dense fluids, e.g. 4He?
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D. Ideal Fermi gas

Let us now discuss the ideal Fermi gas where we have to antisymmetrize the Boltzmann energy-eigenstates. Similar
to a Bose system, two Boltzmann states with the same set of occupation numbers but occupied by different permutation
of particle labels will describe exactly the same state after antisymmetrization. In addition, we can see that if two or
more particles occupy the same state, the state vanishes after antisymmetrization, e.g.

[1− Pij ] |i : εk〉 ⊗ |j : εk〉 = 0 (62)

Therefore, similar to bosons, the eigenenergies of the ideal system writes

E({ni}) =
∑
i

niεi (63)

but, now, all occupation numbers are either zero or one, ni = 0, 1. It is again advantageous to consider the grand
canonical ensemble where we have

Z =
∑
N

eβµNZN (64)

=
1∑

n1=0

e−βn1(ε1−µ)
1∑

n2=0

e−βn2(ε2−µ) · · · (65)

=
∏
i

[
1 + e−β(εi−µ)

]
(66)

We then get the mean occupation number of mode i by varying εi, e.g.,

Ni ≡ 〈ni〉 = −δ logZ
δβεi

(67)

=
1

eβ(εi−µ) + 1
(68)

which is the Fermi-Dirac distribution. We see that, in contrast to the Bose distribution, no singularity can occur at
finite temperature. In the zero temperature limit we have

Ni = θ(µ− εi) (69)

so that all single particle levels with energies less than the chemical potential are occupied.

Appendix: gaussian integrals

Gaussian integrals play a central role in statistical mechanics, in d dimensions we have

Id(γ) =
∫
ddxe−γx

2
(70)

where x2 = x2
1 + x2

2 + . . .+ x2
d. We can easily relate the integrals beween different dimensions using

Id(γ) = [I1(γ)]d (71)

In d = 2 dimensions, the integral can be canlculated easily changing to radial variables, r =
√
x2

1 + x2
2 and cos θ = x1/r,

I2 =
∫ 1

−1

d cos θ
∫
drre−γr

2
= π

∫
d(r2)e−γr

2
=
π

γ
(72)

So we get the general result

Id(γ) =
(
π

γ

)d/2
(73)


