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We will consider the very basic properties of dilute Bose gases in homogeneous and trapped
systems. We remind the basic results of scattering theory, and argue that the interaction of quantum
gases at low temperatures is well described by the first phase shifts, in many cases, via the s-wave
scattering length only. There are various formalisms to account for that, here we use a simple
zero-range pseudo-potential. The Hartree ansatz for the wavefunction leads directly to the Gross-
Pitaevskii equation for the condensate at zero temperature. We will derive the finite-temperature
mean-field equation and the Bose-Einstein transition in mean-field by using minimizing a variational
upper bound for the free energy.

We will look at the problem of interacting Bosons, mainly with the aim to describe the experimens of Bose-Einstein
condensation of alcaline atoms in trapped systems. Some time will be spend with the two-body problem. Many
properties of Bose condensates can be quantitatively explained by a simple non-linear Schrödinger equation, the
Gross-Pitaevskii equation. However, in the non-linearity enters the scattering length, and not the bare potential. For
analytical calculations, zero-range pseudo-potentials are quite useful.

A. Interacting Bosons: the two-body problem

In order to understand the N-body problem, we need some basic concepts and results from quantum scattering
theory concerning simple two-body collisions. Quite generally, we can assume that the interaction potential between
two particles, V (r1, r2) = V (|r|), depends only on the relative coordinate, r ≡ r1 − r2. We further assume, that the
external potential also seperates in relative, and center-of-mass coordinates, so that the complete Hamiltonian of the
two particles writes

H12 = Hcm +H0 + V (|r|) (1)

H0 =
h̄2

2mr
∆r (2)

where mr = m/2 and Hcm depends only on the center-of-mass coordinates rcm = (r1 + r2)/2, e.g. a homogeneous
system, or a system in an external harmonic potential. The wavefunction therefore separates

Ψ(r1, r2) = ψcm(rcm)φ(r) (3)

and we will concentrate on φ(r) in the following, which contains all collisional properties and is determined by

(H0 + V )|φ〉 = E|φ〉 (4)

together with the boundary conditions on |φ〉.
For a formal solution, we rearrange the Schrödinger equation

(E −H0)|φ〉 = V |φ〉 (5)

Starting from the known free solution, |φ0(E)〉, which satisfies the homogeneous equation,

(E −H0)|φ0〉 = 0 (6)

we would like to obtain the full solution of Eq. (5) by inverting the operator E−H0. However, since for a continuous,
infinite system, scattering states will have the same energy than the free states, we cannot invert (E−H0)−1, but we
introduce a small imaginary offset

|φ±(E)〉 = |φ0(E)〉+
1

E −H0 ± iε
V |φ±(E)〉 (7)

with infinitesimal ε > 0. As we will see, the wave functions φ± describe different sets of solutions. Eq. (7) is called
Lippmann-Schwinger equation.
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1. Scattering amplitude and cross section

The interatomic (or molecular) potential is not necessarily known with high precision. Therefore, theoretical results
on the N-particle problem should be expressed in terms of measurable quantities. Here we analyse the scattering prob-
lem in terms of quantities which may be obtained directly from scattering experiments, e.g the scattering amplitude
and the cross section.

Let us start analyzing the Lippmann-Schwinger equation, Eq. (7), in position space, using plane waves.

φ±k (r) = eik·r +
∫
d3r′G±(r− r′;E = k2/2mr)V (r′)φ±k (r′) (8)

where

G±(r− r′;E) = 〈r| 1
E −H0 ± iε

|r′〉 (9)

Explicitly, in three dimensions, d = 3, we have

G±(r− r′;E) =
∫

dq
(2π)3

eiq·(r−r′) 2mr

2mrE − q2 ± iε
=

2mr

(2π)2

∫ ∞
0

dq
q2

2mrE − q2 ± iε
eiq|r−r′| − e−iq|r−r′|

iq|r− r′|
(10)

=
2mr

(2π)2
1

i|r− r′|

∫ ∞
−∞

dq
qeiqr

(
√

2mrE − q)(
√

2mrE + q)± iε
= −2mr

4π
e±i
√

2mrE|r−r′|

|r− r′|
(11)

Inserting into Eq. (8), we get

Ψ±k (r) ∼ eik·r + f(k′,k; k2/2mr ± iε)
e±ikr

r
, large r with k′ ≡ k r/r (12)

f(k′,k;E = k2/2mr ± iε) = −2mr

4π

∫
dr′e−ik

′·r′
V (r′)Ψ±k (r′), (13)

Using the asymptotic solution Ψ+
k (r) in Eq. (12), we describe the scattering of an incident plane wave of wave vector

k with a scattered outgoing spherical wave of amplitude f(k′,k;E = k2/2mr + iε) where k′ points into the scattering
direction. The flux of of scattered particles into direction k′ is then proportional to the square of the scattering
amplitude, and the differential cross section writes

dσ

dΩ
= |f(k′,k;E = k2/2mr + iε)|2 (14)

2. Partial wave analysis

For a detailed analysis of the scattering problem including explicit solutions, it is useful to adapt to the symmetry
of the problem. Using rotational symmetry, we introduce angular coordinates (r, θ, ϕ) and we separate the angular
part of the wavefunction using the eigenfunctions of angular momentum

φ(r) =
∑
nlm

anml
unl(r)
r

Ylm(θ, ϕ) (15)

where the spherical harmonics Ylm(θ, ϕ) ∝ Pl(cos θ)eimϕ can be expressed using the Legendre polynomials Pl(x). Since
|k| = |k′| in Eq. (13), we expand the scattering amplitude only depends on the angle θ between k and k′ = kr/r,

f(k′,k; k2/2mr + iε) =
∑
l

(2l + 1)fl(k)Pl(cos θ) (16)

Using now the asymptotic expansion of the plane wave in terms of spherical waves

eikr cos θ ∼ 1
2ikr

∑
l

(2l + 1)Pl(cos θ)
[
e−ilπe−ikr + eikr

]
, kr � 1 (17)
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we get from Eq. (12) and Eq. (15) (with n = k in the infinite system limit)

ukl(r) ∼
1

2ikr

∑
l

(2l + 1)Pl(cos θ)
[
e−ilπe−ikr + [1 + 2ikfl(k)]eikr

]
, kr � 1 (18)

Due to flux conservation in each partial wave, the absolute value of the amplitude of in-going waves e−ikr must equal
that of out-going waves eikr so that [1+2ikfl(k)] = ei2δl(k) with real δl(k). The total scattering amplitude then writes

f(k′,k; k2/2mr + iε) =
1

2ik

∑
l

(2l + 1)
[
e2iδl(k) − 1

]
Pl(cos θ) (19)

in terms of the phase shiftts, δl(k), and the radial wave function is asymtotically given by

ukl(r) ∼
1

2ikr

∑
l

(2l + 1)Pl(cos θ)
[
e−ilπe−ikr + ei2δl(k)eikr

]
∼ e−i(lπ/2−δl(k)) sin [kr − lπ/2 + δl(k)] (20)

3. Low energy scattering

Phase shifts for a given potential can be obtained by directly solving the Schrödinger equation using partial waves
in a spherical box of infinite radius. The radial part satisfies a one-dimensional differential equation for each angular
momentum l

− h̄2

2mr

d2unl(r)
dr2

+
[
l(l + 1)h̄2

2mr2
+ V (r)

]
unl(r) = Enlunl(r) (21)

The interatomic potential V has a characteristic length scale Re; for distances r > Re we can neglect the potential,
V (r > Re) ≡ 0. For vanishing potential correspoding to free particles, the solution of Eq. (21) are the spherical

Bessel functions, jl(kr) and nl(kr), with k =
√

2mrEnl/h̄
2. The solution of Eq. (21) for r < Re has to be calculated

for any specific potential V (r) and can then be matched at r = Re to the free solution, such that the wavefunction
and its derivative are continuous functions at r = Re. The outside solution is a superposition of jl and nl which is
conviniently written as

ul(kr)
kr

≡ unl(r)
kr

= 2 [cos δljl(kr)− sin δlnl(kr)] (22)

Writing the superposition coefficient in terms of the phase shift δl(k) is motivated by considering the large distance
asymptotic of the Bessel functions

jl(x) →
sin
[
x− lπ2

]
x

, x→∞ (23)

nl(x) → −
cos
[
x− lπ2

]
x

, x→∞ (24)

so that we get

ul(kr)
kr

→ 2
sin
[
kr − lπ2 + δl

]
kr

≈ 2jl(kr + δl), kr →∞ (25)

Hard sphere scattering. Note that for small arguments, the Bessel functions behave as

jl(x) → xl

(2l + 1)!!
, x→ 0 (26)

nl(x) → − (2l − 1)!!
xl+1

, x→ 0 (27)

For hard spheres, the wavefunction has to vanish at r = a where a is the diameter of one sphere, or ul(ka) ≡ 0. Using
the asymptotic expansion (27), valid for low-energy scattering, in the expression (22), we obtain for the phase-shift

tan δl ' −
(ka)2l+1

(2l + 1)!!(2l − 1)!!
, ka→ 0 (28)
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In this low energy limit ka→ 0, the dominant contribution comes from l = 0, called s-wave scattering. Note that the
s-wave phase shift δ0 = −ka is negative for the repulsive potential.

Scattering length, alcaline atoms. For low-energy scattering (k → 0) one introduces the s-wave scattering
length as for a general interaction potential writing

k

tan δ0
= − 1

as
+

1
2
reffk

2 (29)

where reff is called effective range of the potential. The phase shift, and therefore also the scattering length can be
measured. Let us consider alcaline atoms. The short range interactions at the range of the Bohr radius is dominated
by the exchange energies of the overlapping electronic wavefunctions, and strongly repulsive. The long-range tail
of the interaction can be described by a van-der-Waals interaction V (r) = −C6/r

6 with characteristic distance
Re = (4mC6/h̄

2)1/4 with h̄2/(2µR2
e) = C6/R

6
e. For alcalines Re ranges from 20 Å for Li, 80 Å for Rb, up to 100 Å

for Cs. For larger distances, the scattering properties are described by the phase shifts, corresponding to a scattering
length of 55 Å for Rb, and −600 Å for Cs.

4. Universality and pseudo-potentials

If we consider properties where the distance between partiicles is large compared to the characteristic length scale
of the interaction Re, we expect that we can express all properties by the phase shifts. The properties which depend
only on the phase shifts are universal with respect to different interactions. Since we can obtain the same phase-shifts
for different microscopic interactions, we are free to choose the one which is best suited for our calculations. These
potentials are called pseudo-potentials. In particular, at low energy, we generally have

f(k,k′; k2/2mr + iε) = −as, k → 0 (30)

and the scattering amplitude is minus the scattering length which is the only parameter needed to describe collisions.
The idea of pseudo-potentials is to replace the true scattering potentials by a model. The model is chosen to

simplify the calculations still maintaining the scattering properties.
A particular simple potential for analytical calculations would be a delta-function potential gδ(r). However, inserting

it together with Eq. (12) (continued to r = 0) in Eq. (13), we get f = −2mrg/4π limr→0[1 + f/r]. As long as we
would restrict to first order in f ∼ g, we get a simple result, but the second order is diverging. Note that the small
corrections in r′2/r2 neglected in Eq. (12) to describe the full behavior outside the scattering potential do not change
this result.

Since, the simple delta-function potential cannot be used in general, a regularized delta-function potential eliminates
this problem

Ṽδ(r) = gδ(r)
[
d

dr
r·
]

(31)

The scattering amplitude, Eq. (13), is now given by

f(k′,k;E = k2/2mr + iε) = −2mr

4π

∫
dr′e−ik

′·r′
Vδ(r′)Ψ+

k (r′) = −2mrg

4π
lim
r→0

d

dr

(
rΨ+

k (r)
)

(32)

which gives a close relation using Eq. (12) for Ψ+
k (r → 0):

f(k′,k;E = k2/2mr + iε) = −2mrg

4π
1

1 + ik2mrg/4π
(33)

In order to recover the scattering length for vanishing momenta, we set g = 4πa/2mr and get

f(k′,k;E = k2/2mr + iε) = − a

1 + ika
(34)

Note that acting with the regularized pseudopotentials, Eq. (31) on functions which are regular at the origin, reduces
to the action of a simple delta-function potential.

The exact solution of the two-body wave function for the regularized pseudo-potential is

Ψ+
k (r) = eik·r − a

1 + ika

e±ikr

r
(35)
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Let us explicitly verify that Eq. (35) is indeed a solution of the Schrödinger equation. Using that

∆
f(r)
r

= ∆
1
r

+ ∆
f(r)− 1

r
= 4πδ(r) +

f ′′(r)
r

(36)

for any radial function f(r) and the laplacian in d = 3, we have

−∆Ψ+
k (r) = k2Ψ+

k (r) +
4πa

1 + ika
δ(r) (37)

We then get

[
−∆ + 2mrh̄

−2Vδ(r)
]

Ψ+
k (r) = k2Ψ+

k (r) +
4πa

1 + ika
δ(r) + 2mrh̄

−2gδ(r)
[
1− iak

1 + ika

]
= k2Ψ+

k (r) (38)

so that Ψ+
k (r) is an energy-eigenfunction with energy k2/2mr.

Since we expect that also the N -body wave function of a gas must be an eigenfunction of the two-body Hamiltonian
for two particles coming arbitrary close to each other, the wave function must be proportional to Eq. (35) when all
the other N − 2 particles are kept fixed. At low temperatures, we can use the limit k → 0 and we get

ΨN (r1, r2, . . . , rN )→ (1− a/|ri − rj |)Ψ̃ij(r1, r2, . . . , rN ), for any ri → rj (39)

where Ψ̃ij(r1, r2, . . . , rN ) is regular when ri → rj . Notice that the wave function is well defined for all |ri − rj |,
including distances smaller than a, so that the a/r in the wave function will dominate the momentum distribution at
large k, leading to an universal behavior.

5. Delta-Potential truncated in momentum space

Perturbation expansions of the many-body problem are often done in Fourier-space, and the application of the
real-space pseudopotential is not always simple there. In this case, we can define a smooth potential by

Vη(k) =
∫
dre−ik·rV (r) = g0η(k) (40)

with η(k) = 1 for k � kc and η(k) = 0 for k � kc. The true delta function would be described by kc →∞, but this
will introduce divergent expressions, circumvented by the use of a large, but finite kc.

Let us look directly at the T-matrix given by

Tk,k′ = 〈k|V |Ψ+
k′〉 (41)

which can be generalized inserting the Lippmann-Schwinger equation, Eq. (7), to obtain the operator equation (for
general E)

T (E) = V + V
1

E −H0 + iε
T (E) (42)

Note the connection to the scattering amplitude, Eq. (13),

〈k|T (E = k2/2m+ iε)|k′〉 = − 4π
2mr

f(k,k′; k2/2mr + iε) (43)

We then have for our model potential

Tkk′(E) = g0η(k− k′) +
∫

dq
(2π)3

g0η(k− q)
E − q2/2mr + iε

Tqk′(E) (44)

For E around k2/2mr we can approximate Tqk′(E) ≈ Tkk′(E) since the nominator is peaked around q ≈ k. We then
get

Tkk′(E) = g0η(k− k′) + Tkk′(E)
∫

dq
(2π)3

g0η(k− q)
E − q2/2mr + iε

(45)
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or

Tkk′(E) =
g0η(k− k′)

1 + g0
∫

dq
(2π)3

η(k−q)
E−q2/2mr+iε

(46)

Let us now look at low energy properties, E ∼ k2/2mr ≈ 0, and relate the on-shell T-matrix with the scattering
amplitude, Eq. (43), and using the pseudo-potential expression for s-wave scattering, we have

Tkk′(E = k2/2mr) =
4πa
2mr

1
1 + ika

(47)

so that we can eliminate g0 in favour of a, e.g. from Eq. (45) for E ∼ k2/2m→ 0, which we write as

1
g0

=
1 + ika

4πa/2mr
−
∫

dq
(2π)3

η(q)
(q2 − k2)/2mr − iε

(48)

We can further simplify by evaluating the integral on the rhs∫
dq

(2π)3
η(q)

q2/2mr − E − iε
=

2mr

2π2

[∫
dq
q2 − 2mrE

q2 − 2mrE
η(q)−

√
2mrEP

∫
dx
η(x
√

2mrE)
1− x2

+ iπ

∫
dqq2δ(q2 − 2mrE)

]
=

2mr

4π2

[
Ckc + i

π

2

√
2mrE

]
(49)

where C =
∫∞
0
d(q/kc)η(q/kc)/2 is a constant of order one. We then have

g =
g0

1 + 2mrCg0kc/4π
(50)

where g = 4πa/2mr, or

g0 =
g

1− Cakc
(51)

Notice that second order effects in g0 are not proprotional to second order effects in a.

B. Ground state wavefunction for a Bose gas (T = 0): variational calculation

We are in the following considering the experiments on Bose-Einstein condensation with (metastable) alcaline atoms.
Typically N ∼ 107 atoms are confined in a harmonic trapping potential with typical peak densities n <∼ 1015cm−3.
The typical interparticle distance n−1/3 <∼ 103 Å is large compared to the characteristic distance Re of the van-der
Waals interaction, and many low-temperature properties should be well universal in terms of the scattering length a.
Further, we also have na3 � 1 characteristic for a dilute gas.

Since the system is dilute, on might consider an ideal gas Hartree wavfunction as a first starting point for the
ground state wavefunction

Ψ0(R) =
∏
i

ϕ(ri) (52)

and minimize the variational energy 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉 to obtain the best single particle wavefunction ϕ. However, the
real interparticle interaction between alcaline atoms is not smooth at all, it is rather diverging at distances comparable
to the Bohr radius. Therefore, the variational energy of an ideal gas wavefunction using the bare interatomic potential
is not giving any reasonable result; certainly it is not a good starting point, we have to consider effects of the
interactions already in the lowest order. In addition, experiments on alcaline gases are not in the ground state (which
is a solid), but they are metasable. In general, the variational principle gives only upper bounds for the energy of the
true ground state and might lead into serious troubles when applied to high energy metastable states.

In order to avoid bound states already in the two-body scattering problem, one convientiently introduces pseudo-
potentials which lead to the same scattering properties but emiminate bound states. We will see that they also
facilitate analytical calculations. Therefore we consider from now on the generic many-body Hamiltonian

H =
∑
i

[
− h̄2

2m
∇2
i + u(ri)

]
+
∑
i<j

v(rij) (53)
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where u is the external potential and v is the interparticle pseudo-potential

v(r) = gδ(r)
d

dr
(r·) , g =

4πh̄2a

m
(54)

and we denote the s-wave scattering length a.
From the uncorrelated Hartree wavefunction, Eq. (52), we obtain an upper bound for the total free energy

E0 − µN ≤ F [ϕ,∇ϕ] = N

∫
dr
[
h̄2|∇ϕ(r)|2

2m
+ [u(r)− µ] |ϕ(r)|2 +

(N − 1)g
2

|ϕ|4
]

(55)

We have used a partial integration, and vary the energy as a functional of ϕ and ∇ϕ independently using the Euler-
Lagrange equations

δF

δϕ(r)
−∇ δF

δ(∇ϕ)
= 0 (56)

We obtain a non-linear Schrödinger equation(
− h̄

2∇2

2m
+ u(r) +Ng|ϕ(r)|2

)
ϕ(r) = µϕ(r) (57)

Since all particles are in the same single-particle state ϕ(r), this single particle wavefunction describes a Bose-
Einstein condensate and the non-linear Schrödinger equation is called Gross-Pitaevskii equation in this context. The
condensate wavefunction must be normalized to one, and the chemical potential corresponds to the mean energy per
particle in the system at zero temperature. The density is given by

n(r) = N |ϕ(r)|2 (58)

Ground state energy of the homogeneous system, healing length. The ground state wavefunction for a
homogeneous system u(r) ≡ 0 must be constant and one immediatly gets

µ = gn (59)

The length scale, ξ associated with the interaction energy,

h̄2

2mξ2
= gn (60)

or

ξ =

√
h̄2

2mgn
(61)

is called healing length.
Thomas-Fermi approximation. Let us consider a very smoothly varying external potential. We can regard the

system as locally homogeneous and treat the system in the local density approximation. The kinetic energy contribu-
tion corresponding to the laplacian in the Gross-Pitaevskii equation, Eq. (57), is expected to be small compared to
the interaction contribution. This allows us to express the chemical potential as a functional of the local density n(r)

µ[n(r)] = gn(r) + u(r) (62)

However, for thermodynamic stability, the chemical potential must be constant in space, and we can determine the
density distribution in an external trapping potential

n(r) =
1
g

[µ− u(r)] = n(0)− 1
g
u(r), µ− u(r) ≥ 0 (63)

and

n(r) ≡ 0, µ− u(r) < 0 (64)
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From the normalization we can easily calculate the total number of atims N =
∫
drn(r) as a function of the chemical

potential. Further, we can check, if the kinetic energy can be indeed neglected. Typically, the kinetic energy contri-
bution changes the wavefunction at the egde and smoothes the distribution in order to obtain a density profile with
continuous derivatives. The Thomas-Fermi distribution further breaks down for small systems.

Harmonic trapping potential. In most of the experiments, the atoms are trapped by a harmonic oscillator
potential

u(r) =
1
2
mω2r2 (65)

with small (or even strong) asymmetric oscillator strengths. The typical length scale of the trapping potential is then
given by the harmonic oscillator length, a0,

1
2
mω2a2

0 =
h̄2

2ma2
0

(66)

or

a0 =

√
h̄

mω
(67)

The kinetic energy per particle is roughly ∼ h̄2/(2ma2
0) ∼ h̄ω, whereas the interaction energy is proportinal to the

density gn(r). For gn(r) ∼ µ � h̄ω or ξ � a0, the Thomas-Fermi approximation is justified, and the density
distribution has a typical parabolic shape. Whenever, the kinetic energy dominates, the wavefunction will be rather
similar to the non-interacting gaussian, since the level-spacing of the trap is dominating.

Collective excitations, vortices. Stationary solutions of the Gross-Pitaevskii equation (57) with higher energies
than the ground state correspond to collective excitations of the condensate. Solutions with non-zero angular mo-
mentum are called vortices. The centrifugal potential forces that the condensate wavefunction to vanish around the
vortex core which is of size of the healing length ξ.

Stability, Bogoliubov excitations. The stability of the condensate with respect to small variations in the
wavefunctions will lead to the Bogoliubov excitation spectrum in linear respons. These excitations remain occupied
even at zero temperature and lead to a deplition of the condensate density of order of (na3)1/2.

Notice that even though the Hartree-wave function, Eq. (52), can give good estimates for the ground state energy, it
is clear that it is never an eigenstate of the Hamiltonian, e.g. it does not satisfy the two-particle Schrödinger equation.
Therefore, it is a-priori not clear, if the true system is really Bose condensed.

Appendix: Some results for the phase shifts

We have chosen the normalization for the radial wavefunction such that∫ ∞
0

drul(kr)ul(k′r) = 2πδ(k − k′) (68)

in the continuum limit.
Let us denote u(0)

nl (r) the free solution of Eq. (21) for vanishing potential

− h̄
2

2µ
d2u

(0)
nl (r)
dr2

+
l(l + 1)h̄2

2mr2
u

(0)
nl (r) = Enlu

(0)
nl (r) (69)

u
(0)
l (kr)
kr

= 2jl(kr) (70)

We multiply Eq. (21) with u(0)
nl (r) from the left and subtract Eq. (69) multiplied by unl(r). Integrating over r from 0

to R we obtain

2µ
h̄2

∫ R

0

dr u
(0)
l (kr)V (r)ul(kr) = −ul(kR)

du
(0)
l (kr)
dr

∣∣∣
r=R

+ u
(0)
l (kR)

dul(kr)
dr

∣∣∣
r=R

(71)
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where we have integrated by parts and used that ul and u(0)
l vanish at r = 0. For large R we can use the asymptotic

expressions and obtain

ul(kR)
du

(0)
l (kr)
dr

∣∣∣
r=R
− u(0)

l (kR)
dul(kr)
dr

∣∣∣
r=R

= −4k sin
(
kr − l π

2
+ δl

)
cos
(
kr − l π

2

)
+ 4k sin

(
kr − l π

2

)
cos
(
kr − l π

2
+ δl

)
= −4k sin δl (72)

We obtain a quite useful result ∫
dr
u

(0)
l (rk)
2kr

V (r)
ul(rk)

2kr
= −4πh̄2

m

sin δl
k

(73)


