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In this lecture I briefly review the basics of second quantization and discuss two simple applications. First, I will
derive the Hartree-Fock mean-field equation of a dilute Bose gas at finite temperature from a variational principle.
Within this approximation, Bose-Einstein condensation is expected exactly at the same critical temperature than an
ideal gas at the same density. In order to improve the description of dilute Bosons at low (zero) temperature, we will
discuss the Bogoliubov approximation.

A. Reminder on second quantization

Whereas explicit symmetric or antisymmetric wave functions to describe few-body Bose or Fermi systems can be still
written down, this description gets lengthy and cumbersome for many-body ”bulk” systems. The actual calculation
of the partition function of ideal Bose and Fermi gases was much simpler, as only the single particle energies and their
occupation number were involved. The formalism of second quantization provides the formal framework for a more
compact description basically based on the representation of the wave function in terms of occupation numbers.

1. Creation and annihilation operators

From studying the harmonic oscillator, we should be familiar with creation and annihilation operators which allowed
us to construct states of energy n times the fundamental energy ~ω of the oscillator from the state with n−1 times that
energy. We now describe our many-body wave function by a set of single particle wave functions with corresponding
single particle energies εk, e.g. the eigenstates and energies of a non-interacting single particle Hamiltonian. A basis
for our many-body states can the be build out of states that are simply described by their occupation number, nk, of
each energy level of energy εk

|ε1 : n1, ε2 : n2, . . . , εk : nk, . . . 〉 (1)

where |nk = 0〉 is simply the empty (vaccum) state. For Bosons, we can now introduce creation and annihilation
operators similar to the harmonic oscillator, but for each single particle state, which can be occupied by one or more
than particles

ak|ε1 : n1, ε2 : n2, . . . , εk : nk, . . . 〉 =
√
nk|ε1 : n1, ε2 : n2, . . . , εk : nk − 1, . . . 〉 (2)

a†k|ε1 : n1, ε2 : n2, . . . , εk : nk, . . . 〉 =
√
nk + 1|ε1 : n1, ε2 : n2, . . . , εk : nk + 1, . . . 〉 (3)

We can explicitly verify that

[ak, a
†
k]− ≡ aka†k − a

†
kak = 1 (4)

and

[ak, a
†
k′ ]− = δk,k′ , [ak, ak′ ]− = [a†k, a

†
k′ ]− = 0 (5)

as the order of adding or removing particles does not enter for bosons.
For Fermions, we have to consider that only 0 or 1 fermion can occupy one single particle state, so that we have

ak|ε1 : n1, ε2 : n2, . . . , εk : nk = 1, . . . 〉 = |ε1 : n1, ε2 : n2, . . . , εk : nk = 0, . . . 〉 (6)
ak|ε1 : n1, ε2 : n2, . . . , εk : nk = 0, . . . 〉 = 0 (7)

a†k|ε1 : n1, ε2 : n2, . . . , εk : nk = 0, . . . 〉 = |ε1 : n1, ε2 : n2, . . . , εk : nk = 1, . . . 〉 (8)

a†k|ε1 : n1, ε2 : n2, . . . , εk : nk = 1, . . . 〉 = 0 (9)
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and we get anti-commutation relations

[ak, a
†
k]+ ≡ {ak, a†k} ≡ aka

†
k + a†kak = 1 (10)

as well as a2
k = (a†k)2 = 0. Note that the assumption of bosonic commutation relations, Eq. (5), will lead to

contradictions. For consistency, we must use anti-commutation rules for the remaining combinations

[ak, a
†
k′ ]+ = δk,k′ , [a†k, a

†
k′ ]+ = [ak, ak′ ]+ = 0 (11)

The anticommutation expresses that the antisymmetrization of a state with m labels, depend on the order of the m
labels. Interchanging two labels will introduce a minus sign. (The basis states in the occupation number representation,
Eq. (1), are associated to a Slater determinant for Fermions, whereas the symmetrized states associated for Bosons
do not introduce signs.)

2. Field operators

Using creation and annihilation operators, we immediately see that a†kak gives the number of particles in the state
k. Similar, we get simple expressions for all diagonal only involving this occupation number, e.g. the total number
of particles in the system, the total energy of a non-interacting system with single particle energies εk. Using the
corresponding single particle wavefunctions, ϕk(r), we can define general field operators

Ψ(r) =
∑
k

ϕk(r)ak (12)

Ψ†(r) =
∑
k

ϕ∗k(r)a†k (13)

which satisfy

[Ψ(r),Ψ†(r′)]∓ = δ(r− r′), [Ψ(r),Ψ(r′)]∓ = [Ψ†(r),Ψ†(r′)]∓ = 0 (14)

where we have used the completeness of single particle states
∑
k ϕ
∗
k(r)ϕk(r′) = δ(r − r′). The operator Ψ(r) and

Ψ†(r) simply describe the annihilation and creation of a particle at position r, and

|r1, r2, . . . , rN 〉 =
1√
N !

Ψ†(rN ) · · ·Ψ†(r2)Ψ†(r1)|0〉 (15)

is the state of N particles with one at r1, one at r2, etc.
A general N -body wave function can then be build via

|Φ〉 =
∫
dr1 · · ·

∫
drNϕ(r1, . . . , rN )|r1 . . . , rN 〉 (16)

with

〈r′1 . . . , r′N |φ〉 =
1
N !

∑
P

(±)Pϕ(r′P (1), . . . , r
′
P (N)) (17)

is properly (anti)symmetrized.

3. Operators in second quantization

Since field operators provide a simple tool to manipulate matrix elements in the occupation number representation,
it is useful to express the general operators in terms of field operators. The expressions are rather intuitive, the proofs
can be found in any quantum mechanics text book. The density of particles at r is given by

ρ(r) = Ψ†(r)Ψ(r) (18)

since the definition of the field operators above, merely presents a change of the basis vectors of single particle states
from k to r.
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Similar, the kinetic energy is given in terms of free-particle (plane-wave) states

T =
∑
k

k2

2m
a†kak (19)

which can be written as

T = − 1
2m

∫
drΨ†(r)∇2Ψ(r) =

1
2m

∫
dr[∇Ψ†(r)][∇Ψ(r)] (20)

The potential energy is diagonal in position space, and we have

V =
1
2

∫
dr1

∫
dr2v(r1 − r2)ρ(r1)ρ(r2)− lim

ε→0

1
2

∫
drv(ε)ρ(r) (21)

which gives

V =
1
2

∫
dr
∫
dr′ v(r − r′)Ψ†(r)Ψ†(r′)Ψ(r′)Ψ†(r) (22)

Note that the order of the operators is important.

B. Bose-Einstein condensation of a dilute gas: mean-field

At zero temperature, the variational principle could be applied to find the lowest energy state and we obtained the
Gross-Pitaevskii equation. At finite temperature we can use a similar variational principle, namely any trial density
matrix, ρ0, will lead to an upper bound of the free energy F = E − TS − µN = −T logZ of the system, at fixed
chemical potential, µ.

We will write the normalized trial density matrix using a trial Hamiltonian, H0,

ρ0 =
e−βH0

Z0
(23)

The mean energy using this trial density matrix writes 〈H〉0 whereas −〈log ρ0〉0 is the entropy (〈. . . 〉0 denotes the
quantum mechanical average using ρ0). The free energy is then bounded by

F ≤ T 〈log ρ0〉0 + 〈H〉0 = −T logZ0 + 〈H −H0〉0 (24)

where we can easily identigy F0 = −T logZ0 as the free energy of a system with Hamiltonian H0.
Thermal cloud T > Tc, homogeneous. Let us consider that H0 is essentially given by the non-interacting

system

H0 =
∑
k

(~2k2/2m+ ξ − µ)a†kak (25)

where ak is the annihilation operator of state k, and ξ is our variational paramter, a global shift of all energies, or
equivalently, an effective change of the chemical potential. The corresponding free energy, F0, is almost the same as
the ideal system calculated in the first lecture. Since

〈Ψ†(r)Ψ†(r)Ψ(r)Ψ(r)〉0 = 2n(r) = 2n (26)

we have 〈H −H0〉0 = V g
2 2[n(ξ)]2 − ξV n(ξ), with

n(ξ) = g3/2(eβ(µ−ξ)) (27)

so that we have

F ≤ F̃ (ξ) ≡ F0(ξ) + V g[n(ξ)]2 − ξV n(ξ) (28)

Since

∂F0(ξ)
∂ξ

= −∂F0(ξ)
∂µ

= V n(ξ) (29)
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we can easily minimize the right hand side of Eq. (28)

∂F̃ (ξ)
∂ξ

= V n(ξ) + 2V gn(ξ)n′(ξ)− V n(ξ)− ξV n′(ξ) = [gn(ξ)− ξ]V n′(ξ) (30)

We see that the (true) minimum is reached for ξ = 2gn(ξ). This leads to the mean-field (Hartree-Fock) equations
which have to be solved self-consistently

nmf = g3/2

(
eβ(µ−2gnmf )

)
(31)

since the rhs depends on nmf . In the mean-field approach, Bose-Einstein condensation occurs for µ = 2gnmf .
However, since the mean-field just leads to a shift of all energy levels, the critical density/temperature is just the
same as for the ideal gas

nc,mfλ
3 = 2.61... (32)

Mean-field condensed system. For a system below the Bose-Einstein transition, we have to split of the finite
condensate density, n0. We will use n0 as a parameter in favour of the chemical potential µ. We describe the excited
state by a thermal trial density matrix with parameter ξ as above. However, since n0 is treated as a parameter,
H −H0 contains all terms of H which involve n0. We first minimize with respect to ξ, where we get

ξ = 2g[n(ξ) + n0] (33)

Mimizining the residuals with respect to n0 we can eliminate µ via

µ = gn0 (34)

This constitutes a simple set of mean-field equations to describe the condensed phase.

C. Bogoliubov approximation

Up to now, we have essentially approximated the state of the system by an essentially non-interacting one, the
interaction was treated within a mean-field approximation. In particular at zero temperature, we described the
system by a pure condensate – all particles occupied the same single particle state, k = 0 for a homogeneous system;
within this ansatz, the occupation of this state N0 is always equal to N . Let us look at the interaction energy again,
this time in Fourier space,

V =
g0
2V

∑
p,k,q

a†p−qa
†
k+qakap (35)

using a pseudo-potential in Fourier space as discussed previously. Since N0 = a†0a0 is expected to be the only
occupation which is extensive, we have ak ∼ a†k ∼ N−1/2a0 for k 6= 0, and we keep only terms which contain
condensate operators

V ≈ g0N
2
0

2V
+
g0
2V
∑
k 6=0

[
2a†kakN0 + a†ka

†
−ka0a0 + a†0a

†
0aka−k

]
(36)

The total Hamiltonian then writes

H =
g0N

2
0

2V
+
∑
k6=0

[
k2

2m
a†kak +

g0
V
a†kakN0

]
+
g0
2V
∑
k6=0

[
a†ka
†
−ka0a0 + a†0a

†
0aka−k

]
(37)

Let us now introduce new operators bk and b†k in order to diagonalize the Hamiltonian

a†0akN
−1/2 =

1√
1−A2

k

(
bk +Akb

†
−k

)
(38)

a†ka0N
−1/2 =

1√
1−A2

k

(
b†k +Akb−k

)
(39)
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We further assume that Ak depends only on |k| and is real, so that we have

bk =
1√

N(1−A2
k)

[
a†0ak −Aka

†
−ka0

]
(40)

and we see that the coefficient was chosen such that

[bk, b
†
k] =

1
N(1−A2

k)

(
[a†0ak, a

†
ka0] +A2

k[a†−ka0, a
†
0a−k]

)
=

1
N(1−A2

k)

(
a†0a0(1−A2

k)− a†kak +A2
ka
†
−ka−k

)
= 1 +O(N−1) = [ak, a

†
k] (41)

and all other usual commuation relations for creation and annihilaton.
We now have

a†kak ' a
†
kakN0/N =

1
1−A2

k

[
b†kbk +A2

kb−kb
†
−k +Akb−kbk +Akb

†
kb
†
−k

]
=

1
1−A2

k

[
A2
k + b†kbk +A2

kb
†
−kb−k +Akb−kbk +Akb

†
kb
†
−k

]
(42)

and

a†ka
†
−ka0a0/N =

1
1−A2

k

[
Akb

†
kbk +Akb−kb

†
−k + b†kb

†
−k +A2

kb−kbk

]
=

1
1−A2

k

[
Ak +Akb

†
kbk +Akb

†
−kb−k + b†kb

†
−k +A2

kb−kbk

]
(43)

The Hamiltonian now writes

H =
g0N

2

2V
+
∑
k 6=0

1
1−A2

k

[(
k2

2m
+ g0n

)
A2
k + g0nAk

]

+
∑
k 6=0

1
1−A2

k

[(
k2

2m
+ g0n

)
(1 +A2

k) + 2g0nAk

]
b†kbk

+
∑
k6=0

1
1−A2

k

[(
k2

2m
+ g0n

)
Ak +

g0n

2
(1 +A2

k)
] [
b†kb
†
−k + bkb−k

]
(44)

where n = N/V is the density. We can now eliminate the off diagonal terms in the last line choosing(
k2

2m
+ g0n

)
Ak +

g0n

2
(1 +A2

k) = 0 (45)

A2
k +

2
g0n

[
k2

2m
+ g0n

]
Ak + 1 = 0 (46)

or

Ak =
1
g0n

− k2

2m
− g0n±

√(
k2

2m
+ g0n

)2

− (g0n)2

 (47)

= −x− 1±
√
x(x+ 2), x ≡ k2

2mg0n
(48)

We then have[
1−A2

k

]−1
=
[
1− (x+ 1)2 − x(x+ 2)± 2(x+ 1)

√
x(x+ 2)

]−1

=
[
−2x(x+ 2)± 2(x+ 1)

√
x(x+ 2)

]−1

=
−2x(x+ 2)∓ 2(x+ 1)

√
x(x+ 2)

4x2(x+ 2)2 ∓ 4(x+ 1)2x(x+ 2)
=

−2x(x+ 2)∓ 2(x+ 1)
√
x(x+ 2)

4x(x+ 2) + [(4x4 + 16x3 + 16x2)∓ (4x4 + 16x3 + 16x2)]
(49)
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The coefficient in front of b†kbk must be positive, since excitation energies must be positive for the ground state energy.
In particular for k → 0, since implies that 1 − A2

k must be positive, which can only be true if we chose the positive
sign in front of the square root in Ak, Eq. (48). We therefore have

[
1−A2

k

]−1
=
−2x(x+ 2)− 2(x+ 1)

√
x(x+ 2)

4x(x+ 2)
= −1

2
−

(x+ 1)
√
x(x+ 2)

2x(x+ 2)
(50)

Resubstituting, we get for the Hamiltonian

H = E0 +
∑
k6=0

ωkb
†
kbk (51)

where E0 is the ground state. Explicitly, we get

ωk =

√
k2

2m

[
k2

2m
+ 2g0n

]
(52)

which gives a linear (sound-wave) spectrum at small k, and a free particle behavior at large momenta. Further

E0/N =
g0n

2
− 1

2N

∑
k6=0

[
k2

2m
+ g0n− ωk

]
(53)

Notice that the summation on the rhs does not converge for large k since

ωk =
k2

2m

[
1 +

4mg0n
k2

]1/2
' k2

2m

[
1 +

1
2

4mg0n
k2

− 1
4

(
4mg0n
k2

)2

+ · · ·

]
=

k2

2m
+ g0n−

2mg2
0n

2

k2
+ · · · , k →∞(54)

However, notice that we cannot use a simple constant g0 for the bare potential but rather

g0 =
g

1− Cakc
' g

1 +
g

V

∑
q 6=0

4m
q2

 (55)

and the divergence is cancelled by using g0n/2 up to second order in g ∼ a where a is the physically relevant scattering
length. The ground state energy then writes

E0/N =
2πan
m

[
1 +

128
15

√
na3/π

]
(56)

The non-condensed number fra of particles is given by

n′ =
1
V

∑
k6=0

a†kak = n
8
3

√
na3/π (57)

so that even at zero temperature not all particles are in the condensate

n0/n = 1− n′/n = 1− 8
3

√
na3/π (58)

The Bogoliubov vacuum |0〉B is given by

bk|0〉B = 0 (59)

Since we have

bk ∼ a†0ak −Aka
†
−ka0 (60)

the structure of the vaccum is given by

|0〉B ∼

a†0a†0 −∑
k 6=0

Aka
†
−ka

†
k

N/2 |0〉 (61)
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in leading order N0 ∼ N . The many-body wave function is then represented by a Jastrow function in position space

ΨN (r1, . . . , rN ) ∼
∏
i<j

[1 + f(rij)] (62)

where f(r) ∼
∑

kAke
ik·r. Since Ak ∼ g/k2 for large k we recover the a/r divergences of the s-wave two-body wave

function.


