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A. Fixed-node approximation

Quite generally, the ground state of any (regular) Hamiltonian, is nodeless and symmetric with respect to particle
exchange. Thus, all QMC methods described above can be directly applied to obtain the ground state of a system
containing N Bosons. This is not the case for Fermions, since the ground state wave function of a Fermi system must
be antisymmetric,

ΨF (. . . , ri, . . . , rj) = −ΨF (. . . , rj , . . . , ri), for any i, j (1)

leading to nodes where Ψ(R) = 0. Thus, in general, the ground state of fermions is never the lowest eigenstate of
the Hamiltonian of the system. Only in particular situations which we do not adress here, e.g. for some particular
Hamiltonian in one spatial dimension, it can be degenerate with the Bose ground state.

It is possible to extend the variational principle for the energy to some excited states, |Ψm〉 with Em > E0,
imposing orthogonality of the trial wave function to all lower eigenfunctions, 〈ΨT |Ψn〉 = 0 for all n with En < Em.
Since the Fermion ground state wave function is the lowest eigenfunction in the space of anti-symmetric wave functions,
orthogonality to states is guaranteed by symmetry. Since VMC based methods are based on sampling |ΨT (R)|2 ≥ 0,
they can be directly applied to Fermions by using antisymmetric trial wave functions which obey Eq. (1).

Fermion sign problem. In contrast to VMC, Projection Monte Carlo methods stochastically sample Ψ0(R)
which now contains negative regions where the wave function cannot be interpreted as probability. Let us try to
represent a Fermion wave function, starting with

ΨT = Ψ+
T −Ψ−T , Ψ+

T ≥ 0,Ψ−T ≥ 0 (2)

Ψ+
T =

1
2

(|ΨT |+ ΨT ) , Ψ−T =
1
2

(|ΨT | −ΨT ) (3)

and now we will diffuse Ψ±T separately. Using |ΨT | for importance sampling, we obtain the mixed distribution

f±β (R) = |ΨT (R)|Ψ±β (R) (4)

However, both Ψ±β do have some overlap with the bosonic ground state, ΨB , of energy EB ,

Ψ±β =
1
2
(
cBe
−βEB ΨB(R)± cF e−βEF ΨF (R) + . . .

)
(5)

cB =
∫
dRΨB(R)|ΨT (R)|, cF =

∫
dRΨF (R)ΨT (R) (6)

We can now calculate the expectation value of some operator for the Fermion state as

〈O〉 =

∫
dRs(R)O(R)(f+

β − f
−
β )∫

dRs(R)(f+
β − f

−
β )

=
1
s̄

∫
dRs(R)O(R)(f+

β − f
−
β )∫

dR(f+
β + f−β )

(7)

where s(R) ≡ ΨT (R)/|ΨT (R)| = ±1 and

s̄ =

∫
dRs(R)(f+

β − f
−
β )∫

dR(f+
β + f−β )

=
c2F e
−βEF + . . .

c2Be
−βEB + . . .

(8)

Therefore, we have

s̄ ∼ exp[−Nβ(EF − EB)/N ] (9)
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which enters in the normalization of any expectation value of an observable. Assuming a finite gap between the
fermionic and bosonic ground state energy per particle, s vanishes exponentially in Nβ � 1. Since 〈s2〉 = 1, the
variance is one, and the signal to noise ratio prevents any direct sampling involving s.

σ2
s = s2 − s̄2 ≈ 1� s̄ ∼ exp[−Nβ(EF − EB)/N ] (10)

Therefore the error bar of the sign ∼
√
σ2
s/P will be always of order P−1/2 where P is the number of independent

points. But since the signal is exponentially small, we roughly need

P ∼ 1
s̄2
∼ exp[2Nβ(EF − EB)/N ] (11)

independent samples, increasing exponentially with N and β. This is called Fermion sign problem.
Antisymmetry and nodes. Importance sampling DMC was based on the overlap

f(R) = ΨT (R)Ψ0(R) (12)

Let us imaging that we have found a trial wave function with exacly the same positive and negative regions as the
Fermion ground state we are looking for, f(R) ≥ 0 for Ψ0 ∈ ΨF . In this case, if we impose f(R) ≥ 0 during the
time evolution in DMC, we expect that DMC converges to the exact Fermion ground state. What happens? Looking
at the drifted random walk created by the importance sampling, imposing f(R) ≥ 0 for all R, we reject any move
R → R′ with ΨT (R)ΨT (R′) < 0. Our population of walkers can be separated into two sets, positive walkers at
R+ which satisfy ΨT (R+) ≥ 0, and negative walkers at R− with ΨT (R−) < 0. Postive and negative walkers are
separated by the nodal surface S where ΨT (S) ≡ 0, and it is enough to know the exact nodal surface. Note that
the nodal surface S is a hypersphere in Nd− 1 dimensions. For any sufficiently regular antisymmetric trial function,
applying the Permutation operator to any positive configuration, we obtain a negative walker, and vice versa. It is
therefore sufficient to sample only the positive space as long as we are only interested in physical observables which
commutes with the permutation operator.

Fixed-node approximation. Everything above is fine, but we still do not know the nodal surface for almost all
fermion problems. Since we have no further idea right now, let us search for the best approximation we can do. In
the fixed-node approximation, we simple impose the nodes of a given trial wave function. Once started with positive
walkers, our fixed-node DMC algorithm will converges to an eigenfunction of the Hamiltonian

HΨFN (R) = EFNΨFN (R), for all R in R+, the positive region with ΨT (R) ≥ 0 (13)

On the nodes S of ΨT , we also have ΨFN (S) = 0, and we can continue the wave function to the negative regions,
R− using permutations ΨFN (R) = (−)|P |ΨFN (PR), where the permutation P can be determined from solving
ΨT (R) = (−)|P |ΨT (PR) for P . As long as ΨT is a sufficiently regular fermionic trial wave function, we can reach all
configuration space by this procedure, and the continued ΨFN is a continuous antisymmetric wave function.

Upper bound theorem for fixed-node wave functions. Unfortunately, the first derivatives of the constructed
FN wavefunction with respect to ri are in general not continuous at the nodal surface. Therefore, we cannot directly
apply the variational principle as the underlying expansion in eigenfunctions of the true Hamiltonian is only complete
for wavefunctions with continuous first derivatives. However, we can smear out our wave function at a distance ε
close to the nodes to make them sufficiently smooth to apply the variational theorem, so that the smoothed function
provides an upper bound for the energy. This smoothing will increase the absolute value of the curvature ∼ ε−1

close to the node and the laplacian of the kinetic energy will produce large absolute values, ∼ ε−1 However, since the
wave function vanishes as ε, the kinetic energy contribution of the smoothed wave function close to the nodal region
∼
∫
ε
ψ∇2ψ ∼ ε vanishes. Therefore, the energy of our fixed-node wave function provides a true upper bound to the

fermion ground state energy, EF ,

EF ≤ EFN =
∫
dRΨFN (R)EL(R)ΨFN (R)∫

dRΨFN (R)ΨFN (R)
(14)

For many-body fermion problems, the fixed-node energies are the most accurate values. The upper bound property
further allows us to judge the quality of different trial wave function without relying on comparison with experiment.

Fixed-phase approximation. As a generalization of the fixed-node approach, the fixed-phase approximation is
based on a complex trial wave function

ΨT (R) = A(R) exp[−iϕ(R)], with positive ampltude A(R) ≥ 0 and real phase ϕ(R) (15)

For any given phase, we can then minimize the energy of the trial wave function for an explicitly given phase, ϕ(R).
However, since the phase is only well defined (and behaved) for non-vanishing amplitude, we also have to fix the nodes
of the amplitude. An argument similar to that above shows that the fixed-phase wave function provides also an upper
bound for the ground state energy in the same symmetry class as ΨT . Fixed-phase methods are needed for treating
twisted boundary conditions, magnetic field effects, etc.
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B. Fermionic Trial Wave Functions

We are interested in describing extended condensed matter, e.g. gas, liquid or solid. As our simulation can only
contain a finite number of particles, and the Hamiltonian contains the lon-ranged Coulomb interaction, boundary
conditions play an important role for extracting bulk properties. Most common are periodic boundary conditions
where wave functions obey

Ψ(. . . , ri + L, . . .) = Ψ(. . . , ri, . . .) (16)

but also different conditions are possible.
Slater-Jastrow wave function. Let us consider the simplest model, the electron gas embedded in a uniform

positive background charge. To simulate a bulk system, we require translational invariance of the system which
we can impose by periodic boundary conditions, Eq. (16). The simplest antisymmetric trial wave function of N
(spin-polarized) electrons is a simple Slater determinant

D[ϕn(r)] ≡ det
ni
ϕn(ri) (17)

where ϕn(r) =
∑
k e

ik·rϕnk is some single particle orbital which must be expressed in Fourier sum over discrete
k-vector for any finite system. In the high density region of the electron gas rs ∼ n−1/3 → 0, the kinetic energy
strongly dominates the repulsive Coulomb interaction, and Fourier components with high momentum in the orbitals
are punished. The best single particle orbitals we can chose in this region are just based on the lowest N wave vectors,
ki, i = 1 . . . N . and the determinant simplifies

D ∼ det
ni
eikn·riwith n = 1, . . . N (18)

Building a wave function of superpositions of orthogonal Slater determinants, we we would simply recover what’s
called Configuration Interaction methods, and for larger systems, we typically have to increase quite dramatically the
number of determinants to reach equal accuracy. To avoid this, we note that any function of the form u(ri − rj) is
automatically translational invariant, therefore we try

ΨSJ = det
ni
eikn·ri exp[−U ], U =

∑
i<j

u(ri − rj) (19)

which is still an antisymmetric function and U is the two-body Jastrow potential. We can now parametrize the
Jastrow function u(r), e.g. by expanding in a basis set, and optimize the parameters within VMC. However, before
doing that, it is worth to examine the asymptotic properties of u one might expect.

Cusp conditions. Let us assume a particular configuration of the electrons, R, where all electrons have roughly
the same distance, but two, i and j become arbitrary close, rij → 0. Due to the diverging Coulomb repulsion of
between i and j, the effect of the interaction with all other electrons is secondary, and we may write the wave function
as Ψ(R) = Ψ̃(R)ϕ(rij) and assume that ϕ(r) satisfies

− h̄
2

m
∇2ϕ(r) +

e2

r
ϕ(r) = εϕ(r), for r → 0 (20)

corresponding to the relative wave function of two particles interacting via the Coulomb repulsion. Assuming spherical
symmetry we have

− h̄
2

m

(
ϕ′′(r) +

D − 1
r

ϕ′(r)
)

+
e2

r
ϕ(r) = εϕ(r) (21)

where D is the dimension. Assuming a regular ϕ(r) the coefficient in front of the 1/r must vanish, which implies

ϕ′(r)
ϕ(r)

=
me2

2h̄2 , or ϕ(r) ∼ exp[me2r/2h̄2], r → 0 (22)

which implies a cusp in the wave funcion

u(r) = − logϕ(r) = −Cr, with C = me2/2h̄2 for r → 0 (23)

assuming that Ψ̃(R) is more regular for rij → 0. The same argument for electron close to a nuclei of charge Z just
recovers the hydrogen s orbital behavior u(r−Rp) = me2|r−Rp|/h̄2.
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Plasmon excitations. Let us now consider the limit of large distances u(r) for r → ∞. However, we should be
more careful, and consider the boundary conditions of our wave function

u(r) =
1
V

∑
k

uke
ik·r, U =

1
2V

∑
k

ukρkρ−k, ρk =
∑
n

eik·rn (24)

Let us again consider the local energy of the Slater-Jastrow wave function

EL =
h̄2

2m
[
∇2U − (∇U)2

]
+ V + parts containing ∇D and ∇2D (25)

Using the collective coordinates, ρk, the expression contains the following term in k-space

− 1
V

∑
k 6=0

h̄2k2

2m
ukρkρ−k +

1
V 2

∑
k 6=0

∑
p6=0

ukup
h̄2(k · p)

2m
ρk+pρ−kρ−p +

1
2V

∑
k 6=0

vkρkρ−k (26)

=
1
V

∑
k6=0

−h̄2k2

2m
ukρkρ−k +

1
V 2

∑
k6=−p6=0

ukup
h̄2(k · p)

2m
ρk+pρ−kρ−p −

n

V

∑
k6=0

h̄2k2

2m
u2
k +

1
2V

∑
k 6=0

vkρkρ−k (27)

Since the Fourier transform of the Coulomb potential, vk = 4πe2/k2 is singular for k → 0, the Jastrow factor uk must
also be singular, and the most singular expressions in the local energy for k → 0 (the last two terms in the expression
above) must compensate

uk →
(
mvk

nh̄2k2

)1/2

∼ 1
k2
, for k → 0 (28)

which corresponds to a 1/r tail in real space. Notice that the Slater determinant does not contain any singular terms
in ρk in the longrange limit, and the first two terms in (27) are less singular, the second since it involves one more
summation. Using this argument we can also see that the structure factor (the Fourier transform of the electronic
pair correlation function)

S(k) =
1
N
〈ρkρ−k〉 (29)

is dominated by the Jastrow singularity for k → 0 and we can use |Ψ| ∼ e2U in this limit

S(k)→ 1
N

∫
dRρkρ−k exp

[
− 1
V

∑
p upρpρ−p

]
∫
dR exp

[
− 1
V

∑
p upρpρ−p

] =
1
N

∫
dRρkρ−k exp

[
−uk

V ρkρ−k

]∫
dR exp

[
−uk

V ρkρ−k

] (30)

which is nothing else than a gaussian integration when changing dR to dρk. We get

S(k)→ 1
2nuk

∼ k2, for k → 0 (31)

Let us for a moment consider the wave function ρkΨ0(R) which represents a collective (phonon-like) excitation
for small k, approaching an exact eigenstate for k → 0 as Feynman argued. The excitation energy of this state,
εk = Ek − E0, is given by

εk =
∫
dRΨ0(R)ρ−kHρkΨ0(R)

NS(k)
− E0 '

k2

2mS(k)
= h̄ωp, for k → 0 (32)

where ωp = (4πne2/m)1/2 is the classical plasma frequency. Therefore, the long-range part of the Jastrow factor simply
describes plasmon excitations, a simple harmonic oscillator wave function when introducing collective coordinates.
This result can be generalized, the long-range part of the Jastrow is responsible for the description of collective
long-range excitations in fluids.

Backflow wave functions. How can we improve the variational wave function, in particular the antisymmetric
part? For atomic and molecular systems, the orbitals can be optimized, and multideterminant wave function can
be introduced. However, for extended systems, in particular for the uniform electron gas, multideterminants are not
only costly, but are not size-consistent: increasing the system size at uniform densities, much more determinants are
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need to reach the same accuracy. In order to avoid this problem, we search for a functional form which introduces
many-body correlations into a single determinant. This is possible, if we allow for new generalized coordinates, q,
inside the arguments of the orbitals in the determinant

D = det
ni
ϕn(qi), qi(R) = ri + di(R), di =

∑
j

∇iy(ri − rj) (33)

where y(r) is the backflow potential. Notice its form in Fourier space

qj = rj +
i

V

∑
k

kykeik·rjρ−k (34)

Originally, it was introduced by Feynman to improve the description of excitations in liquid He, however, from the
discussion of the Jastrow factor above, we see that backflow describes the coupling between single particle excitations in
the determinant and collective excitations described by ρk. Although the calculation of the local energy using backflow
scales as N3, the gain in energy and variance often compensates the increasing cost of back-flow calculations.

General structure. One can obtain the general structure of a many body wave function by looking at the
structure of the local energy. Let us start with a simple wave function given by a product of single particle states,
the antisymmetrization for fermions can be done later

Ψ1 =
∏
i

φi(ri) (35)

We see that the local energy of this wave function

HΨ1

Ψ1
= −

∑
i

∇2
iφ

2mφ
+ V (36)

contains a single particle term and a two-particle term V =
∑
i<j vij , the interaction. Whereas the single particle

term can in principle be optimized by varying the single particle wave functions φ contained in Ψ1, traces of the
two-body potential will always remain. In order to have a chance to reach a an eigenstate with constant energy, we
have to extend the wave function and use a Slater-Jastrow form

Ψ2 =
∏
i

φi(ri)e−U (37)

where U =
∑
i<j uij . Now we look at the local energy of Ψ2

HΨ2

Ψ2
= − 1

2m

∑
i

(
∇2
iφ

φ
− ∇iφ

φ
∇iU −∇2

iU + (∇iU)2
)

+ V (38)

Now we can identify single particle terms, (∇2φ)/φ, two particle terms, ∇2U and V , and we can optimize the functions
in φ and u to make them vanish. However, the local energy contains also a mixed term (∇φ)(∇U)/φ and a three-body
term (∇U)2. The mixed term necessites the introduction of backflow in the single particle functions and to eliminate
(∇U)2 in the local energy we need a three-body term of the same structure. It is clear that we can continue with this
structure, and basically all kind of many-body correlations compatible with the symmetries will be contained in the
wave function, and we should rather look at the possibilities what kind of many-body potentials can be calculated
efficiently.

General Many-body Correlation. One can generalize the structure of Jastrow and backflow potential and
introduce higher order many-body correlations by introducing vector and tensor function

vαi =
∑
j

∇iαv(ri − rj), wαβ
i =

∑
j

∇iα∇iβw(ri − rj), etc... (39)

and notice that we have to construct a scalar, e.g.
∑
iα vαi vαi , in order to include 3 or higher body effects in the

Jastrow correlations, and a vector, e.g.
∑
β wαβ

i vβi , in order to build a three-body backflow. Of course all functions
of the new potentials have to be parametrized and optimized.

Geminals/ Pairing wave functions. Determinants are a special case of a Pfaffian, an antisymmetric function
of paris

P = Aφ(r1; r2)φ(r3; r4) . . . φ(rN−1; rN ) (40)
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In the case of a spin-singlet pairing where the two electrons inside a pair have different spin, it reduces to a pairing
determinant, or geminal,

S = det
ij
φ(ri↑; rj↓) (41)

In the case where φ(r) involves exactly N/2 orbitals, the geminals reduces to the Slater determinants of these orbitals,
otherwise they may introduce stronger spin correlations and also describe a superconducting ground state.

C. Variational Path Integral and Reptation Monte Carlo

Sampling the DMC wavefunction, three sources of systematic bias are important:

• short time discretization → extrapolation τ → 0

• population bias → extrapolation Nw →∞

• mixed estimator bias for observables different from energy

The following Projector Monte Carlo methods avoid the last two sources of systematic errors. They are based on
the path-integral representation of Eq. (??) for fixed β, and introduce a finite projection time which necessites the
explicit extrapolation β →∞.

Variational Path Integral. Since we have an explicit expression for Ψβ(R) in terms of high dimensional integrals
with a non-negative integrand, we can simply try to sample |Ψβ/2(R)|2, but now in a configuration space R ≡
{R0,R1, · · · ,RM} which is M + 1 times bigger than just R ≡ RM/2

〈O〉β/2 =
〈
O(RM/2

〉
π

=
∫
dR0 . . .

∫
dRMO(RM/2)π(R), (42)

π(R) = ΨT (R0) exp

[
−

M∑
t=0

S(Rt; Rt+1)

]
ΨT (RM ) (43)

where S(R,R′) = logG(R,R′;β/M). However, in contrast to simple VMC moves, updates which change the whole
configuration space R will be most likely rejected, and we have to create new moves in order to equilibrate the
(M + 1)N particles in the simulation. I will not discuss typical moves as they are in general borrowed from finite
temperature Path-Integral calculations beyond the scope of this lecture.

Reptation Monte Carlo. A particular update in Variational Path Integral is given by simple shifting the old
configurations R in the time directions, e.g.

R′ = {R′0, . . .R′M} with R′0 ≡ R1,R′1 ≡ R2, . . . ,R′M−1 ≡ RM (44)

together with a new proposition for RM based on the drifted random walk used in DMC, GD(RM → R′M ; τ). The
inverse move is realized by the shift in the opposite direction which involves a drivted random walk R′0 ≡ R1 → R0.
Choosing randomly the direction before any move, the Metropolis acceptance probability then writes

p = min
{

1,
π(R′)
π(R)

GD(R1 → R0, τ)
GD(RM → R′M ; τ)

}
(45)

Further use of the importance sampling propagator, Eq. (??), in the statistical weight of the path, we have

π(R) = ΨT (R0)
M∏
i=1

G(Ri−1,Ri; τ)ΨT (RM ) (46)

= Ψ2
T (R0)

M∏
i=1

GT (Ri−1 → Ri; τ) (47)

so that
π(R′)
π(R)

=
ΨT (R1)

ΨT (R0)G(R0,R1; τ)
G(RM ,R′M ; τ)ΨT (R′M )

ΨT (RM )
=
GT (RM → R′M ; τ)
GT (R0 → R1; τ)

|ΨT (R′M )|2

ΨT (RM )|2
(48)

Inserting the explicit expression of the DMC propagator, Eq. (??), the acceptance ratio finally simplifies

p = min
{

1,
Ψ2
T (R′M )

Ψ2
T (RM )

exp (−τ [EL(R′M ) + EL(RM )]/2)
exp (−τ [EL(R1) + EL(R0)]/2)

}
(49)
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D. Many-body propagator

Zero-temperature DMC propagator. Whereas the primitive approximation may contain singularities, e.g. for
systems with Coulomb or hard core interactions, importance sampling based on ΨT eliminates this problem. If we are
mainly interested in ground state properties, we can also use the expression of the importance sampling propagator
used in DMC, Eq. (??), and use Eq. (??) to obtain

G(R,R′; τ) =
1

ΨT (R)
GT (R′ → R; τ)ΨT (R′) (50)

Note that the propagator, G, is not any more symmetric with respect to interchanging R and R′, however, within
the order of the approximation, we can conserve this important property by explicit symmetrization, either

G(R′,R, τ) ≈ [GT (R′,R; τ)GT (R,R′; τ)]1/2 (51)

or

G(R′,R, τ) ≈ min
[
ΨT (R′)GT (R′,R; τ)Ψ−1

T (R),ΨT (R)GT (R,R′; τ)Ψ−1
T (R′)

]
(52)

together with the explicit expression, Eq. (??).
Pair product approximation. Better approximations for the potential energy can be found, e. g. by considering

the effective pair potential, up, given by the solution of the two-particle problem

e−up(ri,rj ;r
′
i,r

′
j ;τ) ≡

〈rirj |e−τ(T2+V2)|r′i, r′j〉
〈rirj |e−τT2 |r′i, r′j〉

(53)

and the whole propagator is then approximated by

G(R,R′; τ) ≈ G0(R,R′; τ)e−τ [UN (R)+UN (R′)]/2e
−
∑

i<j
up(ri,rj ;r

′
i,r

′
j ;τ) (54)

where T2 is the kinetic energy and V2 the interatomic potential. This propagator is frequently employed in finite
temperature path-integral Monte Carlo calculations. As the time-step error is small, less discretization points M are
needed, however, the parametrization of up(r, r′; τ) for a given interaction potential v as a function of the relative
coordinates r and r′ is a majeur complication.


