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A. Variational Monte Carlo

Zero Variance Principle. Within VMC, we use Monte Carlo integration methods to sample the probability
distribution ∼ |ΨT (R)|2 of particles at position R = (r1, . . . , rN ) for an explicitly known, unnormalized many-body
wave function ΨT (R). Expectation values of any operator in position space, O(R), can then be calculated

〈O〉T = 〈O(R)〉π ≡
1
Z

∫
dRO(R)π(R), π(R) = |ΨT (R)|2, Z =

∫
dRπ(R) (1)

The most important observable is the total energy of the system,

ET = 〈H〉T = 〈EL(R)〉π , EL(R) =
HΨT (R)
ΨT (R)

(2)

where EL(R) is called local energy. According to the variational principle we have to minimize the energy to approach
the true ground state energy. Closer to the ground state, we also expect to lower the variance of the local energy

σ2
E,T =

〈
(H − ET )2

〉
T

=
〈

[EL(R)− ET ]2
〉
π

(3)

as ET (R) = En (constant independent of R) for any exact eigenstate ΨT = Ψn. Therefore, optimization of the trial
wave function is in general based on minimizing a combination of energy and variance. As a side-effect of improving
the trial wave function by optimization of parameter set is that we also improve the statistical accuracy of the energy,
as the error, εE , of a finite simulation scales as

εE ≈
√
σ2
E

P ∗
(4)

where P ∗ is the number of uncorrelated configurations created within the time of the simulation. If we reduce the
variance by a factor two using a better wave function, we do not only have improved on getting a lower energy, but
we also need only half of the simulation time for the same statistical accuracy. This may also compensate the slowing
down of the calculations with increasing complexity of more accurate wave functions.

Off-diagonal operators. The sampling of general operators which are local in space and can be written in the
form O(R), e.g. the pair correlation function or static structure factor, is straightforward. Sometimes one is also
interested in off-diagonal quantities, for example the single particle momentum distribution, nk,

nk =
N

V

1
Z

∫
dr′1

∫
dr1 · · ·

∫
drNe−ik(r′

1−r1)Ψ∗T (r′1, r2, . . . , rN )ΨT (r1, r2, . . . , rN ) (5)

which can be obtained by reweighting

nk = 〈nk(R)〉π , nk(R) =
1
V

∑
i

∫
dr′ie

ik(r′
i−ri)

Ψ∗T (r1, . . . , r′i, . . . , rN )
ΨT (r1, . . . , ri, . . . , rN )

(6)

To calculate nk within VMC, one therefore adds an additional particle at r′i, e.g. uniformely distributed, so that the
rhs can be evaluated and add to the expectation value when observables are calculated. The underlying random walk
to create π(R) is not affected by this reweighting method.

Generalized partition functions. However, if we are interested in off-diagonal quantities of the general structure
Ψ∗T (R)ΨT (R′), instead of doing a random walk to create the probability π(R) ∼ |ΨT (R)|2 and reweight this prob-
ability when evaluating the off-diagonal operator, we can also directly perform a random walk in an extended space
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{R,R′} to create the probability πoff(R′,R) ∼ |ΨT (R′)ΨT (R)| correponding to a partition function Zoff. Whereas
this random walk in extended space reduces the variance of off-diagonal observables, the overall-normalization Z may
be more difficult to obtain as it involves only diagonal configurations R′ = R which are never sampled in practice.
This normalization problem can be avoided by extending the random walk over both, diagonal, and off-diagonal space
with a generalized partition function Z ′ given by

Z ′ =
∫
dRπ(R) +

z

V

∫
dR
∫
dR′πoff(R′,R), π(R) = |ΨT (R)|2, πoff(R′,R) = |ΨT (R′)ΨT (R)| (7)

The Monte Carlo moves must now include also the possibility to “open” the diagonal configurations {R,R} → {R,R′}
and close the off-diagonal ones {R,R′} → {R,R}. The parameter z can be adapted to modify the frequency of
switching between diagonal and off-diagonal configurations.

Standard VMC algorithm. Our general MC algorithm last time, was based on a uniform displacement of the
particles. Here we will discuss the standard implementation within VMC based on force-bias MC. Therefore, let us
try to improve the Metropolis acceptance rate using a gaussian a-priori probability

AD(R→ R′) ∼ e−(R′−R−τF(R))2/2τ (8)

where F(R) is a generalized force vector which only depends on R. Let us look at the factor

r =
|ψT (R′)|2

AD(R→ R′)
AD(R′ → R)
|ψT (R)|2

(9)

which enters into the Metropolis acceptance rate, p = min[1, r], and expand log |ΨT (R′)| ' log |ψT (R)]|+ (R−R′) ·
∇ log |ψT (R)|, we have

|ψT (R′)|2

AD(R→ R′)
' |ΨT (R′)ΨT (R)| e(R′−R)·∇ log |ψT (R)|

e−(R′−R)2/2τ+(R′−R)·F(R)/τ−F(R)2/2τ
(10)

and similar (exchanging R′ with R and inverse)

AD(R′ → R)
|ψT (R)|2

' |ΨT (R′)ΨT (R)|−1 e
−(R′−R)2/2τ−(R′−R)·F(R′)−τF(R′)2/2

e−(R′−R)·∇ log |ψT (R′)| (11)

We get r close to one by choosing

F(R) = ∇ log |ΨT (R)|, r ' eτ [F(R)−F(R′)][F(R)+F(R′)]/2 ' 1 +O
(
τ3/2

)
(12)

Therefore, in the limit τ → 0, the drifted random walk based on

AD(R→ R′; τ) ∼ e−(R′−R−τ∇ log |ΨT (R)|)2/2τ (13)

directly samples |ΨT (R)|2 as a stationary distribution

|ΨT (R′)|2 =
∫
dRAD(R→ R′; τ)|ΨT (R)|2 (14)

used later as an important ingredient in Diffusion Monte Carlo. However, the Metropolis Monte Carlo step is in general
necessary to enforce detailed balance. Without detailed balance, small corrections, although formally of higher order
in τ , may destroy the stationary solution. The VMC algorithm including the drift-forces writes

• subroutine MCstep including drift

• # fist move the old configuration R to sample a new one Rnew

– Calculate forces F (R) = ∇ log |ΨT (R)|
– create gaussian random numbers, δ, of variance τ
– Rnew = R + τF (R) + δ

– calculate new forces F (Rnew)
– calculate δnew which realizes the inverse: δnew = R−Rnew − τF (Rnew)
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• # MC acceptance/ rejection using Metropolis algorithm

– p = exp[−δ2
new/2τ + δ2/2τ ]|ψT (Rnew)|2/|ψT (R)|2

– IF p >rnd():

∗ # accept move
∗ use Rnew as new configuration: R = Rnew

• return configuration R

Dynamical Interpretation of VMC with drift. Notice that the propagator GD(R→ R′; τ) satisfying

− d

dτ
GD(R→ R′; τ) = − h̄2

2m

∑
i

∇i [∇i − 2∇ log Ψ(R)]GD(R→ R′; τ) (15)

leads to the stationary distribution |ΨT (R)|2 as can be seen by direct insertion. Further, from the comparison with
AD(ατ) for τ → 0, we see that GD(τ) ∼ AD(h̄2τ/m). The Monte-Carlo time in VMC based on gaussian a-priori
probilities containing the drift h̄2τ/m∇ log ΨT thus realized the time-evolution given by Eq. (15), at least in the τ → 0
limit.

B. Projector Monte Carlo

In principle, any trial wave function can be improved by applying the operatore exp[−βH], and it is straightforward
to show that

|Ψβ〉 =
e−βH |ΨT 〉

(〈ΨT |e−2βH |ΨT 〉)1/2
' e−βE0c0|Ψ0〉+ e−βE1c1|Ψ1〉 . . .

(e−2βE0c20 + e−2βE1c21 . . .)
1/2

(16)

converges exponentially to the true ground state of the system for large projection time β. To sample Ψβ(R) ≡ 〈R|Ψβ〉,
we need an explicit expression for the propagator G(R,R′;β) ≡ 〈R| exp[−βH]|R′〉, which can be obtained from path-
integral representation

Ψβ(R) ∝
∫
dR′G(R,R′;β)ΨT (R′) (17)

G(R,R′;β) = lim
M→∞

∫
dR1 · · ·

∫
dRM−1G(R,R1;β/M) · · ·G(RM−1,R′;β/M) (18)

together with explicit short-time expressions of the propagator, G(τ), valid in the limit τ ≡ β/M → 0. Projector
Monte Carlo methods use in general a fixed discretization, M , and sample the integrals in Eq. (18) by Monte Carlo
methods based on an explicitly known short-time approximation of the propagator G(τ). The extrapolation with
respect to τ → 0 is done separately.

Primitive approximation. Conceptually simple is the primitive approximation, which neglects effects due to the
commutator between the kinetic energy TN = −

∑
i∇2

i /2m, the external potential UN =
∑
i u(ri), and the interaction

energy VN =
∑
i

∑
i<j v(rij) with H = TN + UN + VN ,

G(R,R′; τ) ≈ e−τ [VN (R)+UN (R)]/2G0(R,R′; τ)e−τ [VN (R′)+UN (R′)]/2eO(τ2) (19)
G0(R,R′; τ) = 〈R|e−τTN |R′〉 (20)

=
(

m

2πh̄2τ

)dN/2
exp

[
− m

2h̄2τ

∑
i

(ri − r′i)2

]
(21)

In practice, the primitive approximation converges slowly with τ → 0, and may also not converge at all for long-range
or hard core potentials. However, let us first consider the practical implementation of projector Monte Carlo methods.
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C. Diffusion Monte Carlo

Diffusion Monte Carlo directly addresses the β →∞ limit, noticing that the (unnormalized) ground state distribu-
tion

Ψ0(R) = lim
β→∞

eβET
∫
dR′G(R,R′;β)ΨT (R′) (22)

is also stationary under application of the short-time evolutio for ET = E0,

Ψ0(R) = eτET
∫
dR′G(R,R′; τ)Ψ0(R′) (23)

or, using the primitive approximation

Ψ0(R) =
∫
dR′G0(R,R′; τ)eτET−τ [V (R′)+V (R)]/2Ψ0(R′) (24)

Notice, that G0(R,R′; τ) involves a pure diffusion from R to R′ which we can realize using a displacement based on
gaussian random numbers of variance h̄τ/2m. The remaining positive weights w(R,R′) = eτ(ET−V (R)/2−V (R′)/2] can
then be interpreted as a change of weigth when moving to the new configuration.

Imagine now that we have M � 1 replicas of our system realizing an ensemble of configurations, {R1,R2, . . .RM}.
Each system (Ri), called walker, is independent of the others. We can now diffuse one walker from Ri to a new
configuration R′i according to G0. If the weight factor w(Ri,R′i) is exactly given by the non negative integer [w], we
can simple add [w] new walkers at RM+i ≡ R′i to the ensemble. But what should we do in the general case where
1 > p = w− [w] ≥ 0 (here [w] is the closest integer to w with w− [w] ≥ 0)? In this case, p realizes the probability that
the original walker survives (or, equivalently, (1−p) the probability for dying). For large enough ensembles, the mean
number of walkers will fluctuate, due to this branching process. Successif iterations will lead to an exponential grow
or death of the population, whenever ET differs from the true ground state energy. Therefore, ET must be adapted
in time in order to reach a stationary process, which determines E0. Alternatively, we have

E0 =
HΨ0(R)
Ψ0(R)

→ lim
β→∞

〈V (R)〉ψβ (25)

A sketch of the basic DMC program is

• program DMC

• call initialize(R,ET )

• LOOP over MC time

– LOOP over all walkers

∗ call Diffuse(R)
∗ call Branch(R,ET )

– END LOOP walkers

– average over observables

– call PopulationControl(ET )

• END LOOP MC time

In Diffuse(R) we just diffuse R → R + η where η is gaussian distributed with variance h̄2τ/m, whereas Branch
creates or destroys walkers

• subroutine Branch(R,ET )

– calculate weight w = exp[τ(ET − V (R))]

– total number of copies is n = [w + rand()]

– n > 0? → add n− 1 walkers

– n = 0? → delete walker
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The population control can be done by assuming simple exponential law for the change of the population. If we aim
for a stable number of walkers, Nw, and NW is the actual number, we want

Nw = NW e
tδET (26)

after a certain time t. We then adapt the new trial energy ET + ∆ET according to

δET =
1
t

logNw/Nw (27)

A finite number of walker in the ensemble will introduce a small population bias which should be estimated by changing
the population size.

Importance Sampling. The DMC algorithm describes above, clearly suffers from a large variance of of the
potential energy around its average value which results in rather uncontrolled branching. Since our trial wave function
ΨT (R) should correspond to the best approximation of Ψ0(R), we should try to include this physical information in
our DMC algorithm. Since our latest VMC algorithm provided an almost rejection free sampling to obtain |ΨT (R)|2
in the limit τ → 0, we should implement this purely diffusive dynamics to sample

f(R) ≡ lim
β→∞

ΨT (R)Ψβ(R) (28)

Similar to Eq. (23), f(R) is the stationary solution of

f(R) = eτET
∫
dR′GT (R′ → R; τ)f(R′) (29)

where the importance sampling propator is

GT (R′ → R; τ) =
1

ΨT (R′)
G(R′,R; τ)ΨT (R) (30)

In the case where we have the exact eigen function, ΨT (R) = Ψ0(R), we know that GT is exactly given by GD which
described the drifted random walk used in VMC. In that case, branching is not any more necessary. This motivates
further explicit simplification of the importance sampling propagator GT in a form where GD is separated. Indead,
we have

− d

dτ
GT (R→ R′; τ) =

1
ΨT (R)

〈
R|e−τHH|R′

〉
ΨT (R′) =

ΨT (R′)
ΨT (R)

[
HR′

〈
R|e−τH |R′

〉]
(31)

or inserting
〈
R|e−τH |R′

〉
= ΨT (R)GT (R→ R′)/ΨT (R′) we get

− d

dτ
GT (R→ R′; τ) = ΨT (R′)H

1
ΨT (R′)

GT (R→ R′; τ) (32)

where H is applied with respect to R′ on the right (but a similar equation can be obtained by applying H to R).
Now the only non-comuting part is the kinetic energy involving

ΨT∇2 1
ΨT

GT = ∇
[
ΨT∇

1
ΨT

GT

]
− [∇ΨT ]∇[

1
ΨT

GT ] (33)

= ∇ [−(∇ log ΨT )GT +∇GT ] +
[∇ΨT ]2

Ψ2
T

GT − (∇ log ΨT )∇GT (34)

= ∇ [∇− 2(∇ log ΨT )]GT + [∇2 log ΨT ]GT + (∇ log ΨT )2GT (35)

but ∇2 log ΨT = Ψ−1
T ∇2ΨT − (∇ log ΨT )2 so that we get

− d

dτ
GT (R→ R′; τ) = − h̄

2m

∑
i

∇′i [∇′i − 2∇′i log ΨT (R′)]GT (R→ R′; τ) + EL(R′)GT (R′ → R; τ) (36)

Neglecting the term containing the local energy, EL(R), we recover the drifted random walk used in a standard VMC
calculation, Eq. (15). Applying the Trotter breakup, we thus obtain

GT (R→ R′; τ) = GD(R→ R′; τ)e−τ [E(R)+E(R′)]/2 (37)
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for τ → 0. Therefore, for updating a standard VMC algorithm to include DMC, just the branching term, creating
[eτ [ET−E(R)/2+E(R′)/2] + rand()] copies of one configuration, must be added.

Within DMC, the ground state energy can be obtained from the expectation value of the local energy

E0 = 〈EL(R)〉 =
∫
dREL(R)f(R)∫

dRf(R)
=
∫
dRΨT (R)HΨ0(R)∫
dRΨT (R)Ψ0(R)

(38)

Other observables can be adressed by so-called mixed estimators,

〈O〉 =
∫
dRΨT (R)O(R)Ψ0(R)∫
dRΨT (R)Ψ0(R)

(39)

which lead to a systematic small bias.

D. Variational Path Integral and Reptation Monte Carlo

Sampling the DMC wavefunction, three sources of systematic bias are important:

• short time discretization → extrapolation τ → 0

• population bias → extrapolation Nw →∞

• mixed estimator bias for observables different from energy

The following Projector Monte Carlo methods avoid the last two sources of systematic errors. They are based on the
path-integral representation of Eq. (16) for fixed β, and introduce a finite projection time which necessites the explicit
extrapolation β →∞.

Variational Path Integral. Since we have an explicit expression for Ψβ(R) in terms of high dimensional integrals
with a non-negative integrand, we can simply try to sample |Ψβ/2(R)|2, but now in a configuration space R ≡
{R0,R1, · · · ,RM} which is M + 1 times bigger than just R ≡ RM/2

〈O〉β/2 =
〈
O(RM/2

〉
π

=
∫
dR0 . . .

∫
dRMO(RM/2)π(R), (40)

π(R) = ΨT (R0) exp

[
−

M∑
t=0

S(Rt; Rt+1)

]
ΨT (RM ) (41)

where S(R,R′) = logG(R,R′;β/M). However, in contrast to simple VMC moves, updates which change the whole
configuration space R will be most likely rejected, and we have to create new moves in order to equilibrate the
(M + 1)N particles in the simulation. I will not discuss typical moves as they are in general borrowed from finite
temperature Path-Integral calculations beyond the scope of this lecture.

Reptation Monte Carlo. A particular update in Variational Path Integral is given by simple shifting the old
configurations R in the time directions, e.g.

R′ = {R′0, . . .R′M} with R′0 ≡ R1,R′1 ≡ R2, . . . ,R′M−1 ≡ RM (42)

together with a new proposition for RM based on the drifted random walk used in DMC, GD(RM → R′M ; τ). The
inverse move is realized by the shift in the opposite direction which involves a drivted random walk R′0 ≡ R1 → R0.
Choosing randomly the direction before any move, the Metropolis acceptance probability then writes

p = min
{

1,
π(R′)
π(R)

GD(R1 → R0, τ)
GD(RM → R′M ; τ)

}
(43)

Further use of the importance sampling propagator, Eq. (30), in the statistical weight of the path, we have

π(R) = ΨT (R0)
M∏
i=1

G(Ri−1,Ri; τ)ΨT (RM ) (44)

= Ψ2
T (R0)

M∏
i=1

GT (Ri−1 → Ri; τ) (45)
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so that

π(R′)
π(R)

=
ΨT (R1)

ΨT (R0)G(R0,R1; τ)
G(RM ,R′M ; τ)ΨT (R′M )

ΨT (RM )
=
GT (RM → R′M ; τ)
GT (R0 → R1; τ)

|ΨT (R′M )|2

ΨT (RM )|2
(46)

Inserting the explicit expression of the DMC propagator, Eq. (37), the acceptance ratio finally simplifies

p = min
{

1,
Ψ2
T (R′M )

Ψ2
T (RM )

exp (−τ [EL(R′M ) + EL(RM )]/2)
exp (−τ [EL(R1) + EL(R0)]/2)

}
(47)

E. Many-body propagator

Zero-temperature DMC propagator. Whereas the primitive approximation may contain singularities, e.g. for
systems with Coulomb or hard core interactions, importance sampling based on ΨT eliminates this problem. If we are
mainly interested in ground state properties, we can also use the expression of the importance sampling propagator
used in DMC, Eq. (37), and use Eq. (30) to obtain

G(R,R′; τ) =
1

ΨT (R)
GT (R′ → R; τ)ΨT (R′) (48)

Note that the propagator, G, is not any more symmetric with respect to interchanging R and R′, however, within
the order of the approximation, we can conserve this important property by explicit symmetrization, either

G(R′,R, τ) ≈ [GT (R′,R; τ)GT (R,R′; τ)]1/2 (49)

or

G(R′,R, τ) ≈ min
[
ΨT (R′)GT (R′,R; τ)Ψ−1

T (R),ΨT (R)GT (R,R′; τ)Ψ−1
T (R′)

]
(50)

together with the explicit expression, Eq. (37).
Pair product approximation. Better approximations for the potential energy can be found, e. g. by considering

the effective pair potential, up, given by the solution of the two-particle problem

e−up(ri,rj ;r
′
i,r

′
j ;τ) ≡

〈rirj |e−τ(T2+V2)|r′i, r′j〉
〈rirj |e−τT2 |r′i, r′j〉

(51)

and the whole propagator is then approximated by

G(R,R′; τ) ≈ G0(R,R′; τ)e−τ [UN (R)+UN (R′)]/2e
−
∑

i<j
up(ri,rj ;r

′
i,r

′
j ;τ) (52)

where T2 is the kinetic energy and V2 the interatomic potential. This propagator is frequently employed in finite
temperature path-integral Monte Carlo calculations. As the time-step error is small, less discretization points M are
needed, however, the parametrization of up(r, r′; τ) for a given interaction potential v as a function of the relative
coordinates r and r′ is a majeur complication.

F. Fixed-node approximation

Quite generally, the ground state of any (regular) Hamiltonian, is nodeless and symmetric with respect to particle
exchange. Thus, all QMC methods described above can be directly applied to obtain the ground state of a system
containing N Bosons. This is not the case for Fermions, since the ground state wave function of a Fermi system must
be antisymmetric,

ΨF (. . . , ri, . . . , rj) = −ΨF (. . . , rj , . . . , ri), for any i, j (53)

leading to nodes where Ψ(R) = 0. Thus, in general, the ground state of fermions is never the lowest eigenstate of
the Hamiltonian of the system. Only in particular situations which we do not adress here, e.g. for some particular
Hamiltonian in one spatial dimension, it can be degenerate with the Bose ground state.
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It is possible to extend the variational principle for the energy to some excited states, |Ψm〉 with Em > E0,
imposing orthogonality of the trial wave function to all lower eigenfunctions, 〈ΨT |Ψn〉 = 0 for all n with En < Em.
Since the Fermion ground state wave function is the lowest eigenfunction in the space of anti-symmetric wave functions,
orthogonality to states is guaranteed by symmetry. Since VMC based methods are based on sampling ΨT (R)|2 ≥ 0,
they can be directly applied to Fermions by using antisymmetric trial wave functions which obey Eq. (53).

Fermion sign problem. In contrast to VMC, Projection Monte Carlo methods stochastically sample Ψ0(R) which
now contains negative regions where the wave function cannot be interpreted as probability. It poses no problem to
adapt to sample |Ψ(R)| and to treat the sign s(R) ≡ Ψ(R)/|Ψ(R)| = ±1 as observable. However since |Ψ(R)| has a
non-vanishing overlap with the bosonic ground state of energy EB , we have

s ≡ 〈s〉β ∼ exp[−Nβ(EF − EB)/N ] (54)

which enters in the normalization of any expectation value of an observable. Assuming a finite gap between the
fermionic and bosonic ground state energy per particle, s vanishes exponentially in Nβ � 1. Since 〈s2〉 = 1, the
variance is one, and the signal to noise ratio prevents any direct sampling involving s.

Antisymmetry and nodes. Importance sampling DMC was based on the overlap

f(R) = ΨT (R)Ψ0(R) (55)

Let us imaging that we have found a trial wave function with exacly the same positive and negative regions as the
Fermion ground state we are looking for, f(R) ≥ 0 for Ψ0 ∈ ΨF . In this case, if we impose f(R) ≥ 0 during the
time evolution in DMC, we expect that DMC converges to the exact Fermion ground state. What happens? Looking
at the drifted random walk created by the importance sampling, imposing f(R) ≥ 0 for all R, we reject any move
R → R′ with ΨT (R)ΨT (R′) < 0. Our population of walkers can be separated into two sets, positive walkers at
R+ which satisfy ΨT (R+) ≥ 0, and negative walkers at R− with ΨT (R−) < 0. Postive and negative walkers are
separated by the nodal surface S where ΨT (S) ≡ 0, and it is enough to know the exact nodal surface. Note that
the nodal surface S is a hypersphere in Nd− 1 dimensions. For any sufficiently regular antisymmetric trial function,
applying the Permutation operator to any positive configuration, we obtain a negative walker, and vice versa. It is
therefore sufficient to sample only the positive space as long as we are only interested in physical observables which
commutes with the permutation operator.

Fixed-node approximation. Everything above is fine, but we still do not know the nodal surface for almost all
fermion problems. Since we have no further idea right now, let us search for the best approximation we can do. In
the fixed-node approximation, we simple impose the nodes of a given trial wave function. Once started with positive
walkers, our fixed-node DMC algorithm will converges to an eigenfunction of the Hamiltonian

HΨFN (R) = EFNΨFN (R), for all R in R+, the positive region with ΨT (R) ≥ 0 (56)

On the nodes S of ΨT , we also have ΨFN (S) = 0, and we can continue the wave function to the negative regions,
R− using permutations ΨFN (R) = (−)|P |ΨFN (PR), where the permutation P can be determined from solving
ΨT (R) = (−)|P |ΨT (PR) for P . As long as ΨT is a sufficiently regular fermionic trial wave function, we can reach all
configuration space by this procedure, and the continued ΨFN is a continuous antisymmetric wave function.

Upper bound theorem for fixed-node wave functions. Unfortunately, the first derivatives of the constructed
FN wavefunction with respect to ri are in general not continuous at the nodal surface. Therefore, we cannot directly
apply the variational principle as the underlying expansion in eigenfunctions of the true Hamiltonian is only complete
for wavefunctions with continuous first derivatives. However, we can smear out our wave function at a distance ε
close to the nodes to make them sufficiently smooth to apply the variational theorem, so that the smoothed function
provides an upper bound for the energy. This smoothing will increase the absolute value of the curvature ∼ ε−1

close to the node and the laplacian of the kinetic energy will produce large absolute values, ∼ ε−1 However, since the
wave function vanishes as ε, the kinetic energy contribution of the smoothed wave function close to the nodal region
∼
∫
ε
ψ∇2ψ ∼ ε vanishes. Therefore, the energy of our fixed-node wave function provides a true upper bound to the

fermion ground state energy, EF ,

EF ≤ EFN =
∫
dRΨFN (R)EL(R)ΨFN (R)∫

dRΨFN (R)ΨFN (R)
(57)

For many-body fermion problems, the fixed-node energies are the most accurate values. The upper bound property
further allows us to judge the quality of different trial wave function without relying on comparison with experiment.

Fixed-phase approximation. As a generalization of the fixed-node approach, the fixed-phase approximation is
based on a complex trial wave function

ΨT (R) = A(R) exp[−iϕ(R)], with positive ampltude A(R) ≥ 0 and real phase ϕ(R) (58)
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For any given phase, we can then minimize the energy of the trial wave function for an explicitly given phase, ϕ(R).
However, since the phase is only well defined (and behaved) for non-vanishing amplitude, we also have to fix the nodes
of the amplitude. An argument similar to that above shows that the fixed-phase wave function provides also an upper
bound for the ground state energy in the same symmetry class as ΨT . Fixed-phase methods are needed for treating
twisted boundary conditions, magnetic field effects, etc.


