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Abstract

Many body trial wave functions are the key ingredient for accurate Quantum Monte Carlo estimates of total electronic

energies in many electron systems. In the Coupled Electron-Ion Monte Carlo method, the accuracy of the trial function

must be conjugated with the efficiency of its evaluation. We report recent progress in trial wave functions for metallic

hydrogen implemented in the Coupled Electron-Ion Monte Carlo method. We describe and characterize several types

of trial functions of increasing complexity in the range of the coupling parameter 1.0 ≤ rs ≤ 1.55. We report wave

function comparisons for disordered protonic configurations and preliminary results for thermal averages.
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1. Introduction

Modern ab initio simulation methods for sys-
tems of electrons and nuclei mostly rely on Density
Function Theory (DFT) for computing the elec-
tronic forces acting on the nuclei, and on Molecular
Dynamics (MD) techniques to follow the real-time
evolution of the nuclei. Despite recent progress,
DFT suffers from well-known limitations[1,2]. As a
consequence, current ab initio predictions of met-
allization transitions at high pressures, or even the
prediction of structural phase transitions, are often
only qualitative. Hydrogen is an extreme case[3,4,5],
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but even in silicon, the diamond/β-tin transition
pressure and the melting temperature are seriously
underestimated[6].

An alternative route to the ground-state prop-
erties of a many-electrons system is the Quantum
Monte Carlo method (QMC)[7,2]. In QMC, a many-
body trial wave function for the electrons is as-
sumed and the electronic properties are computed
by Monte Carlo methods. Bosonic details of the
trial wave functions are automatically optimized by
projecting the trial state onto the ground state with
the same nodal structure. Hence for fermions, QMC
is a variational method with respect to the nodes
of the trial wave function and a systematic, often
unknown, error remains[7,2]. Over the years, the
level of accuracy of the fixed-node approximation
has been improved[8,9,10,11] such that, in most
cases, fixed-node QMC methods have proven to be
more accurate than DFT-based methods, on one
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side, and less computationally demanding than cor-
related quantum-chemistry strategies (such as cou-
pled cluster method)[2] on the other side. Recently
we have developed an ab-initio simulation method,
the Coupled Electron-Ion Monte Carlo (CEIMC)
method, based entirely on Monte Carlo algorithms,
both for solving the electronic problem and for
sampling the ionic configuration space in the Born-
Oppenheimer approximation[12]. A Metropolis
Monte Carlo simulation of the ionic degrees of free-
dom (represented either by classical point particles
or by path integrals) at fixed temperature is per-
formed based on the electronic energies computed
during independent ground state Quantum Monte
Carlo calculations. Application of CEIMC has been
limited so far to high pressure hydrogen for several
reasons: a) hydrogen is the simplest element of the
periodic table, and the easiest to cope with since the
absence of the additional separation of energy scales
between core and valence electrons as in heavier
elements; b) it is an important element since most
of the matter in the universe consists of hydrogen;
c) its phase diagram at high pressure in the inter-
esting region where the metallization occurs is still
largely unknown because present experiments are
not able to reach the relevant pressures. We have
investigated the very high pressure regime where all
molecules are dissociated and the system is a plasma
of fully ionized protons and electrons[13], and we
have studied the pressure-induced molecular disso-
ciation transition in the liquid phase[14]. In both
studies the CEIMC results were not in agreement
with previous Car-Parrinello Molecular Dynamics
(CPMD) calculations[15,16]. While we have evi-
dence now that the discrepancy in the fully ionized
case is removed by taking a more accurate trial wave
function in the QMC, in the second study more
accurate CEIMC calculations predict a continuous
molecular dissociation with increasing pressure at
variance with CPMD where a first order molecular
dissociation transition was observed by increasing
pressure at constant temperature[16]. More re-
cently, using constant volume Born-Oppenheimer
Molecular Dynamics rather then constant pressure
CPMD, a continuous dissociation transition has
been reported from DFT-GGA studies [17].

In the present paper we discuss in some details the
various trial wave functions we have implemented
for hydrogen and we compare their accuracy at var-
ious densities. We will not review the details of the
CEIMC method which have been described at length
in reference [12]. We just mention that in metals

huge finite size effects, caused by the discrete na-
ture of the reciprocal space, can be alleviated by
averaging electronic properties over the overall un-
determined phase of the many-body wave function
(Twist Average Boundary Conditions). Results re-
ported in this work are obtained by this method
(see also ref.[18] for recent development). Section 2
will be devoted to describing the different trial wave
functions and some details on their efficient imple-
mentation. In Section 3 we will report numerical
comparisons among the various trial functions. Fi-
nally, in Section 4 we collect our conclusions and
perspectives.

2. Trial Wave Functions for Hydrogen

The trial wave functions we have adopted for hy-
drogen are of the simple Slater-Jastrow form. We
have considered spin unpolarized hydrogen only. For
each spin state, a single determinant of one electron
orbitals φk(r) is used to account for the fermionic
symmetry of the many-body wave function. A Jas-
trow factor e−U is then added to account for (at
least) two body correlations directly into the trial
wave function

ΨT (R, S) = D↑D↓e
−U (1)

with

Dξ =
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and U =
∑

i<j uij(rij). An accurate and parame-
ter free Jastrow factor can be obtained within the
RPA uRPA

ij (r) (i, j = e, p) [19]. This simple form
satisfies the correct cusp conditions at short particle
separations and the right plasmon behavior (screen-
ing) at large distances. It was shown[20] to pro-
vide good energies for hydrogen even at intermedi-
ate densities if supplemented by gaussian functions

ũij(r) = uRPA
ij (r)−αije

−r2/w2

ij , with the variational
parameters αij , wij . The additional terms preserve
the short- and long-distance behavior of the RPA
function and correct for possible inaccuracies at in-
termediate distances. However, they introduce four
variational parameters to be numerically optimized,
namely αee, wee, αep, wep. We have adopted the RPA
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form of the two body correlation in all different trial
function discussed below.

In Ref. [10] we have described a procedure to it-
eratively improve any initial trial function based on
the Feynman-Kac formula. If a determinant of single
electron orbitals is assumed as an initial ansatz, the
first iteration generates a bosonic (symmetric) two-
body correlation function (Jastrow) while the next
iteration naturally provides the backflow transfor-
mation of the orbitals and a three-body bosonic cor-
relation term. Unfortunately, this is a formal theory
which cannot provide, in general, analytical expres-
sions for the various terms. Nonetheless the general
structure is illuminating in searching for improve-
ments.

In the first implementation of CEIMC[21,22]m
single electron orbitals consisting of a linear com-
bination of few optimizable guassian orbitals cen-
tered on each molecule was used in order to simulate
the insulating phases of molecular hydrogen. Opti-
mization of the variational parameters, in number
proportional to the number of electrons in the sys-
tem, needed to be performed at each ionic configura-
tion and was a major bottleneck for the efficiency of
the method. Subsequently, we have developed trial
functions with a very limited number of variational
parameters (even zero when possible) and therefore
reduced the complexity of the optimization step in
the electronic calculation (or to reduce to a linear
optimization in the case of DFT orbitals).

2.1. The Metallic Wave Function

At a very high pressure, beyond metallization and
molecular dissociation, the electron liquid is a good
Fermi liquid and correlation effects, with protons
and among electrons, can be treated as perturba-
tions. In this case it is natural to assume a determi-
nant of free electron states (plane waves) as an initial
ansatz. As stated above, the first iteration provides
the two-body Jastrow factor for which we adopted
the modified RPA form discussed above. Although
this form of the trial function has been extensively
used in the early QMC study of hydrogen[20], it
is worthwhile to emphasize that the proton coor-
dinates do not appear in the fermionic part of the
trial function, that is in its nodal structure, which is
ultimately the limit of the accuracy of QMC. This
limitation is overcome at the next iteration in the
Feynman-Kac procedure, which suggests the back-
flow transformation of the orbitals and a three-body

correlation factor. The form of the backflow trans-
formation is

xi = ri +
∑

j

ηij (|rij |) rij , (3)

where ηαβ are the electron-electron and electron-
proton backflow functions that must be parameter-
ized. When the single body-orbitals in the determi-
nants are expressed in terms of the quasi-particle
coordinates xi, the nodal surfaces of the trial wave
function become explicitly dependent on the proton
positions, a crucial characteristic for inhomogeneous
electron systems which will provide a more accurate
energy even at the RQMC level. Similar to the case
of the homogeneous electron gas[9], the backflow and
three-body functions were at first parametrized as
gaussians[22]. This trial function has a total of 10
free parameters to be variationally optimized and
has been used in a first CEIMC study of the melting
transition of the proton crystal in hydrogen at rs =
1 [22]. Subsequently, we were able to derive approxi-
mate analytical expressions for the backflow and the
three-body functions, as well as for the two-body
correlation factor, in the Bohm-Pines collective co-
ordinates approach [10]. This form is particularly
suitable for the CEIMC because it is parameter-free.
At the same time, it provides comparable accuracy
to the numerically optimized wave function, both in
the crystal configuration and for disordered protons.
Explicit forms of the various terms can be found
in the appendix of Ref.[10]. With this kind of wave
function we have investigated the melting at three
densities (rs = 0.8, 1.0, 1.2) including quantum ef-
fects for protons[13,12].

2.2. Band-structure-based Wave Functions
(IPP/LDA)

The metallic wave function is expected to pro-
vide an accurate description of the electronic ground
state at high density, well beyond molecular disso-
ciation and metallization. On the other hand we ex-
pect it to be a poor representation of the true ground
state at lower densities near the molecular dissocia-
tion. At lower densities, molecules appear and plane-
wave single-electron orbitals (although in terms of
backflow coordinates) are certainly not a good rep-
resentation. Natoli et al.[23,24] have previously used
a Slater determinant of Kohn-Sham self consistent
orbitals to study the solid phases of atomic hydrogen
at rs = 1.31 and T = 0, and of molecular hydrogen

3



at lower densities. They have found a typical energy
gain of 0.5eV/electron by replacing the plane-wave
with the self consistent orbitals in the Slater deter-
minant. Here we have implemented similar ideas.

The single-particle orbitals, {φn}, that comprise
the Slater determinant are computed on-the-fly dur-
ing the CEIMC calculation as the eigenstates of
some single-particle Hamiltonian

ĥφn (r) = εnφn (r) , (4)

where the N/2 orbitals with the lowest eigenvalue,
εn, are selected to fill the determinants. The single-
particle Hamiltonian describes electron-nuclear in-
teractions and approximates electron-electron inter-
actions through an effective potential. In Hartree
atomic units

ĥ = −1

2
∇2 + Veff (r; S) . (5)

The effective potential, Veff (r; S), depends on the
nuclear coordinates, S, as parameters and is, by con-
struction, invariant under translation of the electron
coordinate from one simulation cell to another:

Veff (r + L; S) = Veff (r; S) . (6)

The many-body Slater-Jastrow wave function
should obey twisted boundary conditions[25]. The
effect is that translating any single-electron coordi-
nate by a lattice vector twists the overall phase of
the wave function

Ψ (r1, . . . , ri + L, . . . , rN ) = eiθΨ (r1, . . . , ri, . . . , rN ) (7)

which is achieved by enforcing Bloch’s theorem on
the single-particle orbitals for the first-Brillioun
zone wavevector corresponding to the twist angle

φnk (r) = Unk (r) eik.r;k ∈ 1BZ. (8)

The Bloch functions, Unk, are then cell-periodic
functions, which are particularly well-represented
in a plane-wave basis set, with basis functions of
the form

BG (r) =
1√
V

eiG.r. (9)

The basis functions are orthogonal in G and nor-
malized to 1 through the simulation cell of volume
V . The G vectors are vectors of the reciprocal-space
lattice, defined such that G.L = 2mπ; m ∈ Z. The
quality of the plane-wave basis is controlled by a sin-
gle parameter, an energy cutoff, which determines
that largest wavevector that is present in the set:

1

2
G2 ≤ Ecut. (10)

In the plane-wave basis, the orbitals can be ex-
pressed as

φnk (r) =
1√
V

∑

G

CnkGei(k+G).r. (11)

The problem of filling the Slater determinant re-
duces to a problem of finding the plane-wave co-
efficients, CnkG, of the Bloch states and evaluat-
ing the resulting determinant for the QMC elec-
tronic configuration. The plane-wave orbital coeffi-
cients are found by solving the eigenvalue problem
of the single-particle Hamiltonian

∑

G′

〈

BG

∣

∣

∣
ĥk

∣

∣

∣
BG′

〉

CnkG′ = εnkCnkG, (12)

where

〈

BG

∣

∣

∣
ĥk

∣

∣

∣
BG′

〉

=−1

2
|k + G|2 δG,G′ (13)

+
1

V

∫

cell

Veff (r; S) ei(G−G
′).rd3r

From this Fourier transform, it is clear that if the
simulation cell is centrosymmetric then the poten-
tial is real and inversion symmetric in G−G′. How-
ever, this and other symmetry considerations, such
as the existence of point-group operations that leave
the single-particle Hamiltonian invariant, are gen-
erally not relevant in a CEIMC simulation in which
the nuclear coordinates are typically not ordered.
One relevant symmetry, time-reversal symmetry for
k → −k, implies that only half of the Brillioun zone
must be explicitly sampled. Further, the eigenvec-
tors corresponding to k = 0 are real.

Note that the effective potential in reciprocal
space depends on G − G′ only, and can therefore
be stored as a one-dimensional vector of size 8NG

in place of an array of size N2
G. This property is due

to the locality of the potential in real space. One
method of solving the eigenvalue problem would be
to use standard numerical matrix diagonalization
techniques. However, such approaches are much too
slow when the number of basis functions signifi-
cantly exceeds the number of required eigenstates,
as in the case of a plane-wave basis. Instead, we use
an iterative, conjugate-gradient band-by-band mini-
mization scheme[26] that is particularly effecient for
these classes of problems. The method employs the
variational principle to minimize residuals and the
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Gram-Schmidt scheme to preserve orthogonaliza-
tion of the eigenstates. In our studies, we typically
use one of two choices for the effective potential:
– Veff = Ve−n, the bare electron-nuclear interaction.

We refer to this method as the independent par-
ticle potential (IPP) because electron-electron in-
teractions and nuclear screening are absent from
the orbitals.

– Veff = VLDA, the Kohn-Sham effective potential
within the local density approximation (LDA).

Further complexities may be introduced to all of
these wave functions through backflow transforma-
tions and the Jastrow factor.

2.3. IPP and LDA Orbitals

For hydrogen, the IPP orbitals are generated with
Veff from the bare electron-proton Coulomb poten-
tial such that the potential term from Equation 14
becomes

Vep (G − G′) =
1

V
SG−G′vc (|G − G′|) , (14)

where SG is the simulation-cell structure factor

SG =
∑

I

e−iG.RI , (15)

with RI a proton coordinate, and vc is the Fourier
transform of the Coulomb potential

vc (G) = − 4π

G2
. (16)

The diverging G = G′ components are equated
to zero, which corresponds to shifting the arbitrary
zero of electrostatic potential.

DFT-LDA orbitals are generated from the Kohn-
Sham effective potential with the local density ap-
proximation. The effective potential becomes a sum
of three terms

Veff (r) = Vep (r; S) + VHa (r) + V LDA
xc (r) . (17)

Both the Hartree potential and the exchange-
correlation potential depend on the electron density

n (r) =
occ
∑

n

|φn (r)| , (18)

which in turn depends on the eigenfunctions of the
Hamiltonian. These potentials must therefore be de-
termined self-consistently, through an iterative pro-
cedure, such that the Hamiltonian yields orbitals

corresponding to a density equal to that used to gen-
erate the potentials. The local density approxima-
tion that we use is the Perdew-Zunger[27] parame-
terization of Ceperley-Alder[28] electron-gas data.

For hydrogen, both the LDA and IPP wave func-
tions are eigenstates of a Hamiltonian which con-
tains a bare Coulomb interaction between electrons
and protons. The singularity in the potential results
in a derivative cusp in φ (r) when r = RI . The pres-
ence of this cusp with orbitals that properly sat-
isfy Kato’s cusp condition is important for obtain-
ing good energies or short projection times for QMC
algorithms. The electron-proton cusp condition is:

∂φ (r)

∂r

∣

∣

∣

∣

r=RI

= −φ (r = RI) (19)

Representing this cusp in reciprocal space is chal-
lenging due to the slow algebraic decay of G−4. For
this reason, we implement a cusp-removal method
by dividing the orbitals by a function that satisfies
the cusp condition exactly (in this case, the RPA ep
Jastrow function discussed earlier),

φ̃nk (r) =
φnk (r)

e−
∑

I
uRPA

ep (r−RI)
, (20)

before reverse Fourier transforming to retrieve the
CnkG coefficients used to build the Slater determi-
nant. The proper electron-proton cusp is later rein-
troduced exactly in real space using the same RPA
Jastrow function. This procedure greatly enhances
the convergence of the Slater-Jastrow wave function
with respect to the size of the plane-wave basis set
used to represent the orbitals, as demonstrated by
Figure 1.

2.4. Backflow Transformations of IPP/LDA
Orbitals

Similarly to the metallic wave function case, we
can think of applying the Feynman-Kac iteration
procedure to generate a backflow transformation
even for IPP/LDA orbitals. This transformation
introduces correlation effects into the Slater deter-
minant part of a Slater-Jastrow wave function, with
the advantage that modifications of the nodal sur-
face are possible and the energy is improved. The
specific form for the transformation is unknown,
but as a first ansatz we can use the same analyti-
cal expressions we have developed in the metallic
case. As we will show in the next section, backflow
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Fig. 1. VMC total energy for a fixed proton configuration
and a Slater-Jastrow trial wave function with IPP orbitals.
The VMC energy converges slowly with respect to the or-
bital plane-wave basis cutoff, but this is greatly improved
by removing the inaccurate ep cusp and correcting in real

space with an analytic Jastrow function.

is found to improve the total energy and the vari-
ance of the total energy, both indicating that it is a
better representation of the ground state of the sys-
tem. Only the electron-electron backflow is applied,
while the electron-proton term is found to reduce
the quality of the trial function.

3. Comparisons of Wave Functions

3.1. Fixed protonic configurations

In this section we consider fixed protonic config-
urations and we compare the quality of the vari-
ous wave functions at several densities. We consider
first protons in crystal structures at rs = 1.0 and
rs = 1.4. Results for BCC hydrogen at rs = 1.31
obtained from various improvements of the metal-
lic wave function are reported in Table III of Ref.
[10] where they are also compared to the results ob-
tained with self-consistent Kohn-Sham orbitals[23].
There we have shown that the quality of the analyt-
ical form of the metallic wave function is superior to
its numerically optimized version and comparable to
that of the LDA orbitals for hydrogen in the BCC
structure and for various system sizes. Our present
implementation of LDA orbitals provides results in
agreement with previous estimates[29].

In Tables 1 and 2 we report QMC energies for
hydrogen in several crystal structures and for var-
ious system sizes at two densities corresponding to
rs = 1 and rs = 1.4 respectively. A complete study

Table 1
Energy and variance of hydrogen in various structures with

different trial functions at rs = 1.0. All results are obtained
averaging over a 6x6x6 fixed grid of twist angles. Ev and
σ2

v
represent, respectively, energy and variance at the varia-

tional level while Er and σ2
r

are the energy and the mixed
estimator for the variance obtained with RQMC. Units are
Hartree/atom.

WFS Ev σ2
v

Er σ2
r

Met -0.36931(1) 0.0279(2) -0.3721(1) 0.0182(7)

BCC IPP -0.3681(3) 0.0765(3)

(Np = 54) LDA -0.3681(2) 0.0765(2)

IPP+BF -0.3705(1) 0.0359(1)

LDA+BF -0.36805(2) 0.04636(4) -0.3705(1) 0.0357(1)

Met -0.3792(1) 0.01543(4)

FCC IPP -0.3756(2) 0.0756(2)

(Np = 32) LDA -0.3757(2) 0.0753(2)

IPP+BF -0.3779(1) 0.03550(9)

LDA+BF -0.3779(1) 0.0351(1)

Met -0.3477(2) 0.0268(1)

DIAM IPP -0.3621(2) 0.0830(4)

(Np = 64) LDA -0.3613(2) 0.0823(3)

IPP+BF -0.3637(1) 0.0404(1)

LDA+BF -0.3635(1) 0.0406(1)

Met -0.41060(4) 0.02136(4) -0.41368(6) 0.01032(2)

IPP -0.40198(8) 0.0863(1) -0.4094(1) 0.04342(8)

DIAM LDA -0.40206(8) 0.0865(1) -0.4098(1) 0.04356(6)

(Np = 8) IPP+BF -0.40632(6) 0.04958(8) -0.41070(6) 0.02382(4)

LDA+BF -0.40638(6) 0.04958(8) -0.4107(1) 0.02382(6)

of the size dependence and the relative stability of
those structure is not our concern here and will be
reported elsewhere[29]. We observe that LDA always
provides a small or negligible improvement over IPP,
while IPP is significantly cheaper through the lack
of the self-consistent requirement. Comparing var-
ious structures and system sizes, we observe that
the best wave function depends on the structure: for
BCC, FCC structures and the diamond structure
with N=8, the metallic wave function is superior
to the others. The opposite is true for the diamond
structure with N=64, where IPP and LDA provide
lower energies at all densities. We also observe that
the ordering of the wave functions does not appear to
depend on density, at least in the limited range inves-
tigated. Note that rs = 1.31 corresponds to the den-
sity predicted by ground state QMC calculations[20]
for the molecular dissociation to occur. Another im-
portant test is the effect of backflow (BF) on the
band orbitals. We see that both variation and rep-
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Table 2
Energy and variance of hydrogen in various structures with

different trial functions at rs = 1.4. All results are obtained
averaging over a 6x6x6 fixed grid of twist angles. Ev and
σ2

v
represent, respectively, energy and variance at the varia-

tional level while Er and σ2
r

are the energy and the mixed
estimator for the variance obtained with RQMC. Units are
Hartree/atom.

WFS Ev σ2
v

Er σ2
r

Met -0.5203(2) 0.036(2) -0.5224(1) 0.01008(4)

BCC IPP -0.5139(1) 0.0887(2) -0.5209(2) 0.0284(1)

(Np = 54) LDA -0.5145(1) 0.0869(3) -0.5210(2) 0.0286(1)

IPP+BF -0.5228(1) 0.01413(7)

Met -0.5272(1) 0.00872(3)

FCC IPP -0.5210(1) 0.0835(3) -0.5256(1) 0.0276(1)

(Np = 32) LDA -0.5212(1) 0.0828(3) -0.5259(1) 0.02724(9)

IPP+BF -0.5280(1) 0.01352(5)

Met -0.5168(1) 0.01656(8)

DIAM IPP -0.5189(2) 0.1027(8) -0.5321(5) 0.0339(3)

(Np = 64) LDA -0.5323(1) 0.0331(2)

IPP+BF -0.5346(1) 0.01740(7)

tation energies are slightly improved and the vari-
ational variance is halved by the backflow, which
means a net improvement of the trial function and
the need of a shorter projection in imaginary time to
reach the ground state. The high level of accuracy
observed for the metallic wave function in crystal
structures induced us to perform a detailed study of
liquid hydrogen at finite temperature[13].

Next, we consider how the various wave functions
perform on disordered protonic configurations rep-
resentative of atomic hydrogen in the liquid state in
the range of densities corresponding to the interval
rs ∈ [1.0, 1.55]. As before, all results reported here
are averaged over a 6x6x6 fixed grid in the twist
space. At rs = 1 we compare the Metallic wave func-
tion with the LDABF wave function, while at lower
densities we report data for the IPP, LDA and LD-
ABF wave functions.

In the left panel of Figure 2 we display VMC and
fully converged RQMC energies for 18 protonic con-
figurations at rs = 1.0 obtained with the metalllic
and the LDABF wave functions. Configuration 0 is
a 32 protons warm crystal (FCC) near melting, con-
figuration 1 is the perfect BCC crystal with 54 pro-
tons, configurations 2 to 12 are statistically indepen-
dent configurations of 54 protons obtained during a
CEIMC run at T=2000K performed with the LD-

0 5 10 15
 # conf
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-0.36

-0.35
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 LDABF RQMC 

0 5 10 15
 # conf
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0.0005
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 LDABF
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c

Fig. 2. Total energy (left panel) and quality parameter (right
panel) for a number of static proton configurations as ob-
tained with the metallic and the LDABF trial functions at
rs = 1.0. TABC with a 6x6x6 fixed grid in the twist space is
performed. Energies are in h/atom. The quality parameter
is defined in the text.

ABF trial function, while the remaining 5 configura-
tions have been obtained during a CEIMC run at the
same temperature performed with the metallic trial
function. Several interesting facts can be inferred
from this figure. With the noticeable exception of
the perfect BCC crystal, energies from LDABF wave
function are always lower than energies from the
metallic wave function. In particular, the fully con-
verged RQMC energies from the metallic wave func-
tions are above the VMC energies from LDABF trial
function. This implies that changing the form of the
nodes provides more energy than fully projecting
the initial state. Why the excellent quality of the
metallic wave function observed in perfect crystals
is deteriorated by disorder remains unclear to us,
but as a matter of fact, it appears that LDA nodes
supplemented by e-e backflow perform much better
both in the liquid state and in the crystal state with
thermal fluctuations. Another interesting observa-
tion concerns the dispersion of the energies over a
set of configurations. The dispersion of the energy,
measured by its standard deviation with respect to
the mean value, is a measure of the roughness of the
BO energy surface, the key quantity in determining
the structure and the thermal properties of hydro-
gen. The dispersions over the first 11 liquid config-
urations (from conf. 2 to conf. 13 generated during
a run with the LDABF trial function) is reported
in Table 3. Dispersion of the RQMC energies with
the metallic trial function is roughly twice as large
than the dispersion from the LDABF trial function
which indicates as the BO surface with LDABF is
smoother than the other, providing a less structured
liquid state and a lower melting temperature of the
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Fig. 3. Total energy (left panel) and quality parameter (right
panel) for a number of static proton configurations as ob-
tained with the metallic and the LDABF trial functions at
rs = 1.31. TABC with a 6x6x6 fixed grid in the twist space
is performed. Energies are in h/atom. In the right panel
open symbol represent VMC energies for IPP (circles), LDA
(squares) and LDABF (triangles), respectively. RQMC en-
ergies for the same trial functions are represented by closed
symbols.
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Fig. 4. Total energy (left panel) and quality parameter (right
panel) for a number of static proton configurations as ob-
tained with the metallic and the LDABF trial functions at
rs = 1.40. TABC with a 6x6x6 fixed grid in the twist space
is performed. Energies are in h/atom. In the right panel
open symbol represent VMC energies for IPP (circles), LDA
(squares) and LDABF (triangles), respectively. RQMC en-
ergies for the same trial functions are represented by closed
symbols.

proton crystal. Moreover, it is interesting to compare
the dispersion of the VMC and the RQMC energies
for a given trial function and a given set of config-
urations. For the same set of liquid configurations
and for the LDABF wave function, the VMC and
RQMC dispersions differ by 0.09mH/at correspond-
ing to roughly 30K, a tiny difference in the rough-
ness of the BO energy surface. This suggest that at
rs = 1.0 the VMC BO energy surface is likely to be
accurate enough. In the right panel of Figure 2 we
report for the same static configurations the qual-
ity parameter for the two wave functions considered.
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Fig. 5. Total energy (left panel) and quality parameter (right
panel) for a number of static proton configurations as ob-
tained with the metallic and the LDABF trial functions at
rs = 1.55. TABC with a 6x6x6 fixed grid in the twist space
is performed. Energies are in h/atom. In the right panel
open symbol represent VMC energies for IPP (circles), LDA
(squares) and LDABF (triangles), respectively. RQMC en-
ergies for the same trial functions are represented by closed
symbols.

Table 3
Dispersion of the energy over representative static config-
urations at various densities. All results are obtained av-
eraging over a 6x6x6 fixed grid of twist angles. Units are
mHartree/atom.

VMC

rs Met IPP LDA LDABF

1.0 1.666(1) – – 0.820(1)

1.31 – 0.93227(2) 0.66897(2) 0.53286(1)

1.40 – 2.10255(4) 1.01702(2) 0.74335(1)

1.55 – 2.59550(5) 2.9005(1) 1.62655(3)

RQMC

rs Met IPP LDA LDABF

1.0 1.380(3) – – 0.730(2)

1.31 – 0.81059(3) 0.46996(2) 0.48619(1)

1.40 – 1.60822(5) 0.76393(3) 0.75089(1)

1.55 – 2.15821(6) 1.8410(1) 1.74226(5)

The quality parameter of a trial function is defined
as the negative logarithm of the overlap of the trial
state onto its fully projected state. It is easy to prove
that it reduces to the integral over positive imagi-
nary time of the difference between the energy and
its extrapolation at infinite time. The smaller the
quality parameter the better the trial function is. We
observe that, with the exception of the BCC crystal,
the metallic wave function has larger values, which
means that it is less accurate than the LDABF wave
function. Note also, how the quality of the LDABF
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wave function is uniform (at fixed number of parti-
cles) through the perfect crystal and the disordered
configurations, no matter how these configurations
have been generated. This is an important require-
ment to accurately predict phase transitions. On the
other hand, the quality of the metallic wave func-
tion on the 5 liquid configurations generated with
this wave function is higher than on the remaining
10 liquid configurations generated in a LDABF run.
A good trial function should have a uniform quality
throughout the entire proton configurational space
in order to provide an unbiased sampling.

A similar analysis has been performed at rs =
1.31, 1.40 and 1.55 considering 5 liquid configura-
tions generated during a CEIMC run at T = 2000K
with the LDABF trial function. Results are dis-
played in Figures 3, 4 and 5 respectively. Since the
metallic wave function is certainly not accurate at
this density, we compare the IPP, LDA and LDABF
wave functions only. At all densities LDABF trial
function provides lower energies (its VMC energy
is very close the RQMC-IPP energy). Moreover its
quality parameter is smaller than for the other wave
functions because the backflow provides a consid-
erable improvement already at the VMC level and
the gap between the VMC and the RQMC energies
is smaller than for the other cases. Also the quality
parameter appears to be more uniform over the
(small number of) configuration examined. Qual-
ity parameters of IPP and LDA trial functions are
within error bars to each other except at rs = 1.55
where the IPP one is quite smaller, and close to
the LDABF values, than the LDA values. This is
caused by an larger energy gap between VMC and
RQMC energies and a slower convergence in imagi-
nary time for LDA trial function than for the other
trial functions.

Energy dispersions are collected in Table 3. We
observe a large dependence of the dispersion (be-
tween 2 and 3 times) on the trial function and, for
IPP and LDA, on the level of optimization of its
bosonic part. As mentioned above, this fact would
imply a large sensitivity of thermal properties to the
type of trial function and on the QMC method ex-
ploited to obtain the BO energy surface. These con-
clusions are in agreement with our finding that the
nature of the dissociation process changes from the
VMC to the RQMC energy surface[14]. In the LD-
ABF case the difference in dispersion between VMC
and RQMC energies corresponds to only few tens of
degrees Kelvin, probably a negligible effect in most
interesting cases. On the other hand VMC remains
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Fig. 6. Left panel: rs = 1, T = 1500K, Np = 54. Proton-pro-
ton pair correlation functions as obtained with LDABF and
metallic wave functions. Results are obtained with TABC
by using twist sampling around a 4x4x4 grid. CPMD data
from ref.[15] are also represented by a thick dashed line.
Right panel: rs = 1.4, T = 2000K, Np = 54. Proton-proton
pair correlation functions as obtained with IPP and LDABF
wave functions. Results are obtained with TABC by using
a 6x6x6 fixed grid (IPP) and by twist sampling around a
4x4x4 grid (LDABF).

much more efficient in terms of computational re-
sources required.

3.2. Liquid-State Simulations

After the validation of LDABF trial function of
the previous section, we report here results for the
liquid structure of hydrogen at the same densities.
We have simulated systems of 54 protons. The
TABC is performed here using twist sampling[18]
around the nodes of a 4x4x4 grid in twist space at
each protonic step. In the left panel of Figure 6 we
report a comparison of proton-proton pair corre-
lation functions gpp(r) at rs = 1 and T = 1500K
as obtained from the metallic and LDABF trial
functions at the VMC level. As expected from the
results of the previous section, we observe consider-
ably more structure with the metallic trial function
than with the LDABF one, which indeed would
correspond to having an effective lower tempera-
ture. On the same figure we report results from a
CPMD simulation[15] performed within the LDA
approximation. The agreement between CPMD
data and our present CEIMC data from LDABF
trial function is striking and somehow unexpected.
Indeed our representation of the electronic ground
state is much more accurate than the simpler LDA
one. Also the finite size effect in the CPMD calcu-
lation was addressed only partially by using only
closed shells systems at the Γ point. Nonetheless
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the observed agreement testify that the structure
of the proton liquid is not very sensitive to details
of the ground state representation, at least at such
high density. Finally, in the right panel of Figure 6
we report preliminary data for gpp(r) of 54 protons
at rs = 1.4 and T = 2000K. We compare IPP and
LDABF trial functions at the VMC and RQMC
levels. The statistical noise is still large but it seems
that the overall behavior does not depend too much
on the kind of trial functions, although small de-
tails could still be different. Note, however, that
the liquid has little structure. More investigations
of the influence of the trial function on the liquid
structure is certainly needed, in particular, in the
molecular dissociation region.

4. Conclusions

We have reported important progress in CEIMC,
an efficient and accurate method to perform ab-
initio simulations of condensed system with QMC
energies. We have shown how the method performs
in the case of hydrogen at high pressure, the sim-
plest, but yet not understood, system. The new
method allows us to cover a range of temperatures
inaccessible to previous QMC methods for hydro-
gen, a range where most of the interesting physics
of hydrogen occurs, including the melting of the
molecular and proton crystals, the molecular disso-
ciation both in the liquid and in the crystal and the
metallization of the system.

A key ingredient in CEIMC is the trial function
used to represent the electronic ground state. Even
when a projection technique such as Reptation
QMC is exploited to improve the bosonic part of
the trial many-body wave function, its fermionic
part, that is its nodal surface, is still playing a very
crucial role in determining the electronic energies
and therefore the overall thermal behavior of the
system. In the present paper, we have reported a
detailed investigation of these effects for hydrogen
by comparing a number of different trial wave func-
tions at two densities. We have shown as a fully
analytical trial wave function, that is optimal in
terms of computational efficiency in CEIMC, and
which has been previously demonstrated to provide
excellent accuracy for crystalline states, degrades as
soon as some disorder is introduced in the protonic
configurations. This result has been established
by comparing with results for new trial functions
obtained from a Slater determinant of IPP/LDA

orbitals together with a two-body Jastrow correla-
tion factor. A further backflow transformation of
these orbitals has been introduced and character-
ized. The new trial functions provide lower energies
and more uniform overlap over a number of fixed
representative configurations, which we use as an
indication of the overall quality of the trial function.
The most striking result on disordered configura-
tions is that the LDABF energies at the VMC level
are lower than the fully projected energies from
the metallic trial function. This indicates that the
improvement of performance comes mainly from
the different nodal surfaces, while the bosonic part
is responsible only for smaller improvements. The
failure of the metallic wave function is most prob-
ably due to the presence of some degeneracy of its
orbital structure around the Fermi surface which is
removed by solving the instantaneous band struc-
ture. On the other hand, the use of complex wave
functions and twist averaged boundary conditions
in connection with the metallic trial function was
expected to remove most of these degeneracies. A
better understanding of this failure is desirable and
deserves more investigation.

The difference in energies for different trial func-
tions, or more precisely the dispersions of the ener-
gies from different wave functions, translates into a
overall temperature factor at thermal equilibrium.
The metallic trial function provides a dispersion
which is roughly twice that of the corresponding dis-
persion from the LDABF trial function. Therefore
the metallic gpp(r) at temperature T should corre-
spond to the LDABF gpp(r) at∼ T/2. This is indeed
observed and the new gpp(r)’s from LDABF are in
fair agreement with predictions of Car-Parrinello
MD[15]. This agreement remains somehow surpris-
ing since, beyond the different methods of sampling
protonic configurational space, the electronic de-
scription in the two methods is quite different. We
use LDA orbitals with a backflow transformation
and a two body RPA Jastrow while in CPMD, only
LDA orbitals are employed. Adding the backflow
and the Jastrow, we obtain a fair gain of energy
and, moreover, we can improve the bosonic part of
the trial function by projecting in imaginary time.
Further, we strongly reduce the finite size effects
by averaging over the undetermined phase of the
wave function, while CPMD calculations are per-
formed at the Γ point only for closed shell systems
(Np = 54 and 162). However the final agreement
between the two methods indicates that the effects
of these improvements on energy differences is only
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minor. On the other hand, it is well known in simple
liquids that g(r) is not very sensitive to changes of
the interaction potential and this might explain the
observed agreement.

At lower densities, employing IPP orbitals and
RPA Jastrow, we have recently found[14] a contin-
uous molecular dissociation with density, at vari-
ance with CPMD which has predicted a first order
molecular dissociation transition[16]. The reliabil-
ity of IPP trial function was only tested on crystal
structures and should be further investigated for dis-
ordered configurations along the lines shown here.
This study is in progress. A recent BOMD study[17]
within DFT/GGA has reported a continuous molec-
ular dissociation in agreement with our findings.
This agreement suggests that improving the trial
functions from IPP to LDABF might change the de-
tails of the results but not the overall picture. This
confirms that our present method can be most useful
in condition where new interesting physics is hap-
pening, such as near a liquid-liquid phase transitions
or a metallization transition.
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[6] D. Alfé, M. Gillan, M. Towler, R. Needs, Phys. Rev. B
70 (2004) 161101.

[7] B. L. Hammond, W. A. Lester, P. J. Reynolds, Monte
Carlo methods in Ab Initio Quantum Chemistry, World
Scientific, Singapore, 1994.

[8] R. M. Panoff, J. Carlson, Phys. Rev. Letts. 62 (1989)
1130.

[9] Y. Kwon, D. Ceperley, R. Martin, Phys. Rev. B 50

(1994) 1684–1694.
[10] M. Holzmann, D. M. Ceperley, C. Pierleoni, K. Esler,

Phys. Rev. E 68 (2003) 046707–[1–15].
[11] P. L. Rios, A. Ma, N. D. Drummond, M. Towler, R. J.

Needs, Phys. Rev. E 74 (2006) 066701–[1–15].
[12] C. Pierleoni, D. M. Ceperley, The Coupled Electron-

Ion Monte Carlo Method, Vol. 703 of Lecture Notes in
Physics, Springer-Verlag, 2005, pp. 641–683.

[13] C. Pierleoni, D. Ceperley, M. Holzmann, Phys. Rev.
Letts. 93 (2004) 146402–[1–4].

[14] K. T. Delaney, C. Pierleoni, D. M. Ceperley, Phys. Rev.
Letts. 97 (2006) 235702–[1–4].

[15] J. Kohanoff, J. P. Hansen, Phys. Rev. E 54 (1996) 768.
[16] S. Scandolo, Proc. Natl. Acad. Sci. U.S.A. 100 (2003)

3051.
[17] J. Vorberger, I. Tamblyng, B. Militzer, S. A. Bonev,

Phys. Rev. B 75 (2007) 024206.
[18] C. Pierleoni, K. T. Delaney, M. A. Morales, D. M.

Ceperley, M. Holzmann, Recent Progress in Coupled
Electron-Ion Monte Carlo Method, Vol. – of Advances
in Many Body Theories, World Scientific, 2007.

[19] T. Gaskell, Proc. Phys. Soc. London 77 (1961) 1182.
[20] D. M. Ceperley, B. J. Alder, Phys. Rev. B 36 (1987)

2092.
[21] M. Dewing, D. M. Ceperley, The Coupled Electron-Ion

Monte Carlo Simulation Method, World Scientific, 2002.
[22] D. M. Ceperley, M. Dewing, C. Pierleoni, The Coupled

Electron-Ion Monte Carlo Simulation Method, Vol. 605
of Lecture Notes in Physics, Springer-Verlag, 2002, pp.
473–499.

[23] V. D. Natoli, R. M. Martin, D. M. Ceperley, Phys. Rev.
Letts. 70 (1993) 1952.

[24] V. D. Natoli, R. M. Martin, D. M. Ceperley, Phys. Rev.
Letts. 74 (1995) 1872.

[25] C. Lin, F. H. Zong, D. M. Ceperley, Phys. Rev. E 64
(2001) 016702[1–12].

[26] M. Payne, M. Teter, D. Allan, T. Arias, J. Joannopoulos,
Rev. Mod. Phys. 64 (1992) 1045.

[27] J. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048.
[28] D. Ceperley, B. Alder, Phys. Rev. Lett. 45 (1980) 566.
[29] K. T. Delaney, et al., to be published.

11


	Introduction
	Trial Wave Functions for Hydrogen
	The Metallic Wave Function
	Band-structure-based Wave Functions (IPP/LDA)
	IPP and LDA Orbitals
	Backflow Transformations of IPP/LDA Orbitals

	Comparisons of Wave Functions
	Fixed protonic configurations
	Liquid-State Simulations

	Conclusions
	References

