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Shaping an ultracold atomic soliton in a travelling
wave laser beam
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Abstract

An ultracold wave packet of bosonic atoms loaded into a travelling laser wave may form a many-

atom soliton. This is disturbed by a homogeneous force field, for example by the inevitable gravi-

tation. The wave packet is accelerated and therefore the laser frequency appears to be chirped in

the rest frame of the atoms. We derive the effective nonlinear Schrödinger equation. It shows a time

dependent nonlinearity coefficient which amounts to a damping or antidamping, respectively. The

accelerated packet solution remains a soliton which changes its shape adiabatically. Similarly, an ac-

tive shaping can be obtained in the force-free case by chirping the laser frequency thus representing

a way of coherent control of the soliton form. The experimental consequences are discussed.
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After the recent realizations of Bose-Einstein condensation in ultracold and dilute gases [1-4], it may
be expected for the near future that a new source of atoms will be available which provides atoms of
high flux and coherence. The output coupler of such an atom laser is based on atom-light interaction
[5]: Coherent coupling of atoms in two distinct hyperfine states by microwaves is used in [6] to transfer
the Bose condensate from a trapped to an untrapped state. A significant consequence of the quantum
field theory of ultracold bosons interacting with photons [7, 8] is that two-body interactions like the
dipole-dipole interaction lead to nonlinear effects in the propagation of wave packets. This opens a new
exciting field of research in atom optics called nonlinear atom optics. It has been worked out by several
authors [9, 10, 11] that due to this nonlinearity an ultracold atomic wave packet may form a many-atom
soliton guided by a travelling or standing laser mode of constant frequency. Thus the atoms are immune
to wave packet spreading if no additional forces are present. Evidently the realization of such solitons is
of great importance for atom interferometry and other domains of quantum optics.

The considerations mentioned above are in some sense incomplete. Atoms are massive and therefore
necessarily subject to the influence of the gravitational field of the earth. This is one of the main differences
between nonlinear photon optics and nonlinear atom optics. In the set up of [6] it is the acceleration
due to gravitation which gives the outcoupled atoms a distinct direction. Will this destroy the soliton
character of the matter wave packet, so that in fact the set up sketched above is of limited use? In any
case a reshaping of the wavepacket is to be expected. Let us therefore look at the same problem from a
different point of view: Consider an unaccelerated ultracold many-boson soliton (no force present) and
study the influence of a frequency chirping of the laser wave. Will this allow us to manipulate the packet
envelope so that a coherent control of the soliton shape becomes possible? It is the aim of this paper
to show that this can indeed be done. To do so we have in a first step to reexamine all the underlying
approximations used to derive soliton solutions in the force-free (or constant laser frequency) case. We
will thereby assume the reader to be familiar with [9].

We discuss an ideal gas of identical two-level atoms interacting with the vacuum electromagnetic field
and a travelling laser wave. The gas is assumed to be composed of ultracold Bose atoms, which can
be treated as a vector quantum field with two components ψ̂g and ψ̂e corresponding to the internal
ground state and the excited state of the atoms, respectively. The internal energy difference is h̄ωa. Due
to the coupling to the electromagnetic vacuum (virtual) photon exchanges between different ultracold
atoms are possible. After the elemination of the vacuum field these photon exchanges result in a long
range interatomic correlation which is responsible for the existence of atomic solitons. Following [9] we
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propose a scheme where ultracold atoms are loaded into a travelling laser beam with frequency ωl, which
propagates in the z direction. But in contrast to [9] the additional influence of a homogeneous force field
parallel to the z direction is explicitly taken into account. This leads in the inertial reference frame to
additional potential terms −mazψ̂g/e in the coupled differential equations for the ground and excited
field components of the atomic gas whereby a may be positive or negative.

Let us first note the equivalence of the influence of a homogeneous force field to a frequency chirping.
The narrow atomic wave packet is assumed to propagate collinearly within the laser beam. The following
transformations

ψ̂g(r, t) = φ̂g(r, t)e
ikGze−iα(z,t), (1)

ψ̂e(r, t) = φ̂e(r, t)e
i(kG+kl)z−iωlte−iα(z,t), (2)

Ω̃(+) = Ω(+)(x, y)eiklz−iωlt (3)

where kG is the initial wave vector of the center of the atomic beam and where

α(z, t) =
1

h̄

(
h̄2k2

G

2m
t−mazt+

akGt
2

2
+
ma2t3

6

)
(4)

corresponds to the total kinetic energy of the atomic beam, yield the equations of motion for the atomic
field envelopes φ̂g/e(r, t) and the Rabi frequency of the laser field Ω(+)(r). These equations are of such a
nature that after having changed to the co-moving frame of the accelerated atoms by

z → z − h̄kGt/m− 1

2
at2, (5)

the effect of the homogeneous force field is reduced to a chirping of the laser frequency. This means that
after the transformations (1)-(5) we obtain the same equations of motion for the envelope fields as in the
forcefree case ([9], group velocity vg = h̄kg/m = 0) but with a time dependent effective detuning ∆(t)
due to the Doppler shifted laser detuning

∆(t) = ωl − ωa − ωr − kl(h̄kG/m+ at) (6)

where ωr = h̄k2
l /2m is the recoil frequency. We introduce ∆0 = ∆(a = 0) for later use.

To avoid the influence of spontaneous emission, which induces inelastic processes, we assume a large
detuning. The probability of light scattering by single atoms, proportional to (Ω/∆)2, needs to be suf-
ficiently small. However, for negative detuning the mean field interaction between atoms can be signif-
icantly changed without excessive recoil or photoassociation losses due to the presence of vibrational
quasimolecular states [12].

In that region far from atomic resonance (that holds as long as |Ω/∆(t)| ≪ 1) we can adiabatically
eliminate the excited state component up to the order ∆−2(t) and obtain the nonlinear Schrödinger
equation of Ref. [9] but with the time dependent detuning ∆(t). This adiabatic elemination is possible
as long as the relative change of the detuning due to its time dependence is small, that applies for times
t ≪ T with T = |∆0/kla|. The resulting equation of motion for the ground state field operator of the
atoms contains an effective single particle potential V (x, y) ∼ Ω(x, y)/∆(t) (the usual dipole potential
from the laser field) and a nonlinear part ∼ ∆−2(t) due to the two-body dipole-dipole interaction.

Essentially allN ultracold Bose atoms occupy the same state. This justifies the time-dependent Hartree
approximation for the coherent evolution of the ultracold atoms [10, 13]: The N -atom wavefunction
Φ(r1, r2, . . . , rN ; t) is written as a product of N single atom wavefunctions Φ(ri, t)

Φ(r1, r2, . . . , rN ; t) ≃
N∏

i=1

Φ(ri, t). (7)

To be consistent with the Hartree approximation (7) we neglect dissipative processes due to sponta-
neous emissions and laser driven collisions between the ultracold atoms. Spontaneous emission can be
ignored for a highly detuned laser (|∆(t)| ≫ γ, where γ is the spontaneous emission rate) as shown
numerically in [14] for a comparable situation, whereas the effect of binary collisions depends strongly
on the laser detuning [15]. For a red detuned laser we must assure that the laser does not excite a bound
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state level ν, which can be built up due to the dipole-dipole potential between a ground and an excited
atom. If the detuning of the laser is choosen between two vibrational levels with energy difference h̄δν ,
this condition is fulfilled for t < Tν with Tν = |δν/kla| if the linewidths of the excited bound states γν are
small compared with δν (γν/δν ≪ 1). Otherwise the laser driven collision rate is increased, the colliding
pairs get a higher momentum than the other atoms and cannot be described by the Hartree ansatz.

Furthermore we replace the true dipole-dipole interaction by a contact potential [10]. This is not allowed
in general and has been criticised [16], but should be reasonable for ultracold atoms. Since the range of
the dipole-dipole interaction is of the order of an optical wavelength λ = 2π/kl, the description of the
full potential by its first moment is expected to be valid for the long thermal de Broglie wavelenth of the
ultracold atoms λdB ≫ λ. In practice the spatial orientation of the atomic dipole moment d is uncertain,
so that we must take the mean value over the orientation of the dipoles in the dipole-dipole interaction.
With the averaged dipole-dipole interaction we get a positive correlation volume Vc = 2π/8k3

l .
Thereby we obtain as an intermediate result a nonlinear Schrödinger equation for the effective single

particle states of the ground state atoms:

ih̄
∂Φ

∂t
= − h̄

2∇2

2m
Φ +

h̄|Ω(x, y)|2
4∆(t)

Φ − Nh̄γVc|Ω(x, y)|2
2∆2(t)

|Φ|2Φ. (8)

The possibility of manipulationg the value and the sign of the scattering length, corresponding to the
mean field interatomic interaction, is also studied in [12], where the neglect of the dissipative terms and
the contact potential approximation are justified in another approach.

Let us now try to find a solution of the nonlinear Schrödinger equation with a propagation of the atoms
guided by the laser beam. Since the single particle potential in (8) is independent of the longitudinal
coordinate z, we split the wave function in a transverse and a longitudinal part by a separation ansatz
Φ(r, t) = u(x, y, t)ϕ(z, t). The transverse motion of the single particle wave function is then determined
by

ih̄
∂u(x, y, t)

∂t
= − h̄

2∇⊥
2

2m
u(x, y, t) − h̄|Ω(x, y)|2

4|∆(t)| u(x, y, t). (9)

It contains a potential term which depends on the transverse laser profile Ω(x, y) and decreases with
increasing detuning. For an appropriate profile, which may for example be a Gaussian, one can realize
for the transverse wave function bounded energy eigenmodes u0(x, y, t). We assume the atomic ensemble
to be in one of these eigenmodes. Due to the adiabatic theorem it will stay in this eigenmode collecting
only an additional dynamical phase factor which will not be relevant as long as ǫT ≫ h̄ is fullfilled
whereby ǫ is the energy difference to the next energy eigenstate and T is the typical time scale for the
time dependence of the single particle potential introduced above. Turning to the particular case of an
external force acting, it is worth to note that if the force ma is not collinear to the laser momentum then
respective components in x or y direction result only in a displacement of the atomic center of mass in
these directions, which can be compensated by an appropriate shape of the laser profile.

In addition to this transversal confinement it is the longitudinal behaviour which is of central impor-
tance for the shaping of ultracold atomic solitons and their stability in external force fields. We then
finally obtain the following nonlinear Schrödinger equation in the co-moving accelerated frame

ih̄
∂ϕ

∂t
+
h̄2

2m

∂2ϕ

∂z2
+ h̄κ(t)N |ϕ|2ϕ = 0 (10)

where

κ(t) =
γVc

2∆(t)2

∫
dx

∫
dy |u0(x, y, t)|4|Ω(x, y)|2 (11)

is the nonlinearity coefficient which has become time dependent because of the influence of the force
field. It corresponds to the Kerr-type nonlinear susceptibility in nonlinear optics. The coefficient demon-
strates how with increasing effective detuning |∆(t)| the dipole-dipole interaction is switched off and the
nonlinearity in (10) disappears.

The important consequence of acceleration or chirping is that the nonlinearity coefficient κ is now time
dependent. An adiabatic treatment is a priori not justified in a nonlinear equation. Therefore it is very
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useful to make the following transformation to separate the time dependence from the nonlinearity

ϕ =

(
2mκ(t)N

h̄

)−1/2

ϕ̃. (12)

We obtain

i
2m

h̄

∂ϕ̃

∂t
+
∂2ϕ̃

∂z2
+ |ϕ̃|2ϕ̃+ i

m

h̄
Γ(t)ϕ̃ = 0. (13)

This reveals the underlying physics: The time dependence of κ gives rise to an additional damping
coefficient

Γ(t) = −
˙κ(t)

κ(t)
(14)

which is of the order T−1. An increasing nonlinearity coefficient κ(t) reflects according to (10) a growing
longitudinal confinement due to the laser induced nonlinearity, and leads to antidamping. This is the
case for the red detuned laser field propagating in reverse direction of the force field (a < 0). If both
directions agree (a > 0) damping occurs.

For times t with |Γ|t≪ 1 that is for t≪ T the damping term in (13) may be treated perturbationally
[17]. Returning to the longitudinal part of the wave packet envelope we get (for a 6= 0 still with reference
to the co-moving accelerated frame) a normalized soliton solutions of the following form:

ϕs(z, t) =

√
mκ(t)N

4h̄
sech[

mκ(t)N

2h̄
z] exp

[
−imκ

2
0N

2

4h̄

∫ t

0

dt′
(

κ0

κ(t′)

)4
]
, (15)

with κ0 = κ(t = 0). This is the intended result. Under the influence of a homogeneous force field
acting on the atoms or for a linearly chirped laser, the soliton changes its shape adiabatically in time
due to the time dependence of the nonlinearity coefficient κ(t). This opens the possibility of a coherent
control of the shape of the soliton. The relative change of the width W (t) =

√
2h̄/mκ(t)N is constant

Ẇ/W = −2T−1sign(a∆0). The related relative change of the height of the soliton is given by the inverse
expression. The damping and antidamping mentioned above can be read off directly. If in the case of
acceleration we go back to the inertial reference frame we see that the pulse maximum is also accelerated
due to the homogeneous force.

Let us now turn to the experimental realization and estimate the influence of the earth gravitational
field. We consider the [3S1/2 → 3P1/2] transition of sodium atoms with wavelength 589nm (kl = 107m−1)
and a natural linewidth of γ/2π = 10MHz. We assume a red detuning ∆0 of 100GHz and for the Rabi
frequency Ω0 ∼ ∆0/10 so that the adiabatic elemination of the excited atom state is justified. To keep
the relative change of the detuning small and to justify our approximations, we have to restrict to times
t smaller than T = |∆/kla| ∼ 103s. In fact, with γν = 20MHz as the linewidth of molecular bound
states and δν ≃ 10GHz [15], the cold collisions mentioned above can only be avoided during a smaller
time up to approximately Tν = |δν/kla| ∼ 100s since γν/δν ≪ 1, which is still a rather long travelling
time for the atomic sample. To discuss the transversal confinement, we assume a Gaussian laser profile
Ω(x, y) = Ω0 exp[−(x2 + y2)/2b2l ] with a width bl of the laser beam much larger than the width of the
atomic beam. Accordingly we obtain approximately harmonic oscillator eigenfunctions for the transverse
atomic mode u0(x, y, t) with a width ba of the fundamental eigenmode. It can then be shown that
the condition ǫT ≫ h̄ necessary for the adiabatic treatment of the transversal modes amounts to the
condition |kla/Ω

2
0| ≪ (ba/bl)

2 ≪ 1 which can always be fulfilled. For the experimental specification given
above all approximations are therefore justified and our result (15) may be applied. To demonstrate how
effective the confining nonlinearity still is, let us assume that the influence of the gravitational force field
maintains for Tν = 100s. The width and the height of the soliton is then changed only by 20%. This
is compared with the spreading of an ordinary Schrödinger wave packet with inital width W 0 under
the same conditions: W (t) = (1 + (ωrt)

2(klW 0)
−4)1/2. For W 0kl ∼ 100, which is consistent with the

initial width for the soliton in our case (N ∼ 105), the width of the Gaussian increases by about 40% in
4 ∗ 10−7s. In the time Tν = 100s the width has increased by a factor of 108.

We turn to the positive aspect of an active manipulation of the soliton shape. For this the effective
detuning may be changed by chirping of the laser frequency. If the resulting time dependence is linear,
it can be described by an effective acceleration ã. Then, to obtain a change of the soliton width of 20%
in already 1s of chirping, an effective acceleration of ã = 100g is necessary.
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