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Abstract. We address the problem of finite size errors on the energy computed in quantum Monte 
Carlo simulations. We introduce a scheme based on the random phase approximation that, within a 
single calculation, allows to retrieve the leading order correction and produces practically converged 
results for modest numbers of particles. Applications to the electron gas and silicon are presented. 

Keywords: Long range interaction Many-body simulation, Finite size error 
PACS: 71.15.Nc,02.70.Ss 

In the simulation of bulk systems via quantum Monte Carlo methods[l] the main 
source of systematic error is related to the relatively small number of particles that can 
be practically handled. The aim of this paper is to show that such a finite size error on the 
energy can be corrected using the information collected in a single simulation performed 
using a small number of particles. 

In order to simulate an infinitely extended system, one defines a superlattice with basis 
vectors {La}a=i,2,3 and explicitly considers only a finite number of particles N = Q/« 
where Q = |Li • (L2 x L3) and n is the desired average density. The (infinitely many) 
remaining particles are periodic images of these N so that the potential energy is periodic 
and given by 

p^ OTTPT » 1 

Ve-e = X £ JZ 7 T T T + background = - ^ - £ 73 (PkP-k " N) (1) 
i<j L \ri-rj + ^\ l l k / O ^ 

where pk = ^exp^'ki^) and k, the reciprocal lattice vectors, satisfy exp(;kLa) = 1. In 
practice, none of the forms in Eq.l is used in simulations: the Coulomb interaction is 
split in a divergent short range part treated in real space and a smooth long range part 
handled in reciprocal space[2]. For the purpose of this paper however, it is most conve
nient to focus on the reciprocal space form. Because of the periodicity of the Hamilto-
nian,the boundary conditions on the wave function can be chosen as ^ ( . . r , + L a . . ) = 
exp(;0a)

xP(..r!-..) where 9a is the "twist" of the phase in the a t h direction and lies in the 
interval [—n, n)[3, 4]. When using a single twist the expectation value of the potential 
energy is determined by the static structure factor S e ^ k ) = (pkP-k) O,N/N. As the sys
tem size increases, the mesh of k vectors gets finer and the series eventually converges to 
an integral corresponding to the exact thermodynamic limit. At finite N, the only effect 
of averaging over 9 is to replace S$j? with %(k) = (2;r)~3 fdOSejffe). This does not 
change the reciprocal lattice mesh and twist-averaging is therefore expected to have a 
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FIGURE 1. Left: Static structure factor for the electron gas at rs = 10(lower panel) and A5 = Sn{k) — 
S^{k). The difference is computed using a spline function interpolation of 566. Right: Energies per particle 
of the electron gas at rs = 10 in Rydberg as a function of the inverse particle number. Circles are the Monte 
Carlo energies averaged over twist angles. Squares are the energies after the additional Jtcop/2N correction 
(see text). 

minor effect on the error in the potential energy. 
The error using a simulation box with N particles is therefore given by 

AV: 
An2 

M k ) ~ l 
k2 dk-

2m2 ^ %(k) 1 
Q k^O k2 (2) 

After the Madelung constant has been taken into account[5] the remaining part of the 
error is determined by i) the substitution of S'oo(k) by the computed %(k) and ii) the 
discretization of the integral of e2S(k) (An2k2) ~1. In the small k region the random-phase 
approximation suggests ^ ( k ) ~ 5V(k) and implies that the leading order contribution 
to the error comes from point ii) above: it is an integration error that originates from 
the omission of the k = 0 volume element from the energy sum. Thanks to the validity 
of the random-phase approximation one also knows ^(k) ~ k2 with a prefactor that can 
be determined either analytically or from a knowledge of the 5V(k) computed in the 
simulation. Once the prefactor is known, one can accurately compute the correction. 

We looked at jellium as a test case to judge to what extent the ansatz S^k) = 5V(k) is 
verified. Results for SN{K) computed in variational Monte Carlo simulations at rs = 10 
for 12, 24 and 54 particles are shown in Fig.l. As we increase the number of particles, 
the grid of k points for which SV is denned shifts, but the values of SV fall on a smooth 
curve, independent of TV. 

Let us now consider the kinetic energy. When using a twisted boundary condition 6 
in a cubic supercell, the kinetic energy is given in terms of the momentum distribution 
«e,jv(k) = (4ck)e,jvby 

T=^-J,ne!N(k+e/L)\k+0/L\-
2m 

(3) 
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At variance with the potential energy case, the reciprocal lattice over which the summa
tion is performed is shifted by 6/L so that when the average over twist is performed one 
gets 

T = ^—^fd6^ne,N(k+6/L)(k+e/L)2. (4) 

This is the exact thermodynamic limit if the condition HQ N = nM is satisfied at those re
ciprocal vectors where n$)N is defined. In practice, the error in the twist angle integration 
can be made arbitrarily small by increasing the density of twist angles. 

The assumption HQIN = ««, is however not satisfied in a many body system. The 
average over twist is important and must be performed. However, as we shall show, 
it does not go all the way to eliminate the finite size error on T. To understand why, we 
first need to remember some known features of the exact ground state wave function. In 
charged systems the interaction causes the wave function to have a long range charge-
charge correlation factor: the Jastrow potential. Within the random phase approximation 
the ground state of the system is described by a collection of dressed particles interacting 
via short range forces and quantized coherent modes, the plasmons. Accordingly, the 
many-body wave function factorizes as[6] 

¥ = ¥ s , . exp( / )=¥ , r . exp 
1 v t 

Z " k/0 
(5) 

where F̂s.r. only contains short range correlations and u^ decays quickly to 0 as A: 
increases and diverges as k~2 at small k. 

We now focus on one twist and consider the Fourier transform of «eiAr(k): the one 
body density matrix y(r) = jjXkne,iv(k)exp(;kr). This quantity can be directly ex
pressed in terms of the wave function as 

l | / y ( r i , , , , a + r , . . . ) \ 

and determines the kinetic energy per particle as T = — 2^V27(r) | r = 0- The correct 
prescription to compute y(r) consists in displacing particle a by r keeping all the 
remaining ones fixed. However, due to the periodic setup of the system, Eq.6 describes a 
global shift of a and all its images. Such an error cannot be addressed by averaging over 
boundary conditions since the violation of the "correct prescription" happens regardless 
of the value of the twist. All of this is fairly irrelevant for the short range part of the 
wave function since the ratio xPs.r.(i'i,i'2-..ra + r,...)/vPs.r.(ri,r2...) is sensitive only to 
particles lying close to a (within some characteristic short range correlation length) and 
the images fall quickly out of this region upon increasing the supercell size. Matters 
are different for the long range Jastrow potential so that, as pointed out by Magro and 
Ceperley[7], it is necessary to retain the leading order contribution to the difference 
between the periodic Jastrow potential and the fixed-image one. This is given by 

1 1 f 
A/( r) = 2Q S «k(l -exp(;k-r)) - jn^i J dkuk(l-exp(ik-r)) •Mo 2 W 

(7) 
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FIGURE 2. Left: Structure factor (left panel) and Jastrow potential (right panel) for diamond silicon at 
ambient pressure. The continuous lines are fit to the data (see text). The Jastrow potential shows a k~2 

divergence at small k that was not explicitly imposed but obtained through energy variance minimization. 
Right: Diffusion Monte Carlo energies per electron in diamond Silicon at rs = 2.0. Energies and the 
S(k) and u(k) used to compute the correction are all obtained in simulations with the same number of 
particles. The smallest cell is the conventional FCC cubic cell of diamond. The two intermediate ones are, 
respectively, 2 x 2 x 2 and 3 x 3 x 3 supercells of the primitive cell. The largest one is a 2 x 2 x 2 supercell 
of the conventional cubic cell. 

so that the corrected density matrix becomes ycorr = yexp(AT). Since A/(0) = 0, 

Vy|r=o = 0 and y(0) = n the kinetic error is given by AT 
by using Eq.7, can be explicitly written as 

.A 
2m 

AT. 
Am{2n) I d\£ Uk-

AmQ. 
X^/t-

V2A/(r) I n and, 

(8) 
k / 0 

This is again an integration error provided Uk does not depend on the system size. As 
before such an error originates primarily from the omission of the k = 0 contribution. 
That Uk is independent of TV is strongly suggested by the fact that a difference in ui would 
necessarily imply a difference in S'(k) contrary to the random phase approximation. 
Within this approxiation ui ~ 1 /k2 so that, once again, we need to determine a prefactor 
to estimate the error . 

We first apply these corrections to the electron gas for which the small k limits of S(k) 
and u(k) are known from the random phase approximation as, respectively, hk2/2moop 

and Ane1 /h(£)pk
2 where a>p is the plasma frequency. In our tests, the wave function 

had a backfiow-Jastrow form[8] and simulations were performed in the grand-canonical 
ensemble. Symmetries can be used to drastically reduce the number of needed twist 
angles to between 20 — 200 for an unpolarized system with N ~ 10—100. The leading 
order correction due to long range correlations to kinetic and potential energy are equal 
and sum up to a total error AN = Ti«)p{2N)~l. Corrected and uncorrected variational 
energies are shown in Fig.l for rs = 10. Diffusion Monte Carlo values are uniformly 
shifted to lower energy by 0.6 mRyd/electron and show similar behavior. One can see 
that the bias due to the small size of the simulation cell is tremendously reduced, so that 
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the N = 12 case is already satisfactory. 
As a second example we considered the diamond structure of silicon at ambient 

pressure (rs = 2.0). Most of the computational details can be found elsewhere[5]. Here, 
it is only worth stressing that the correct analytical behavior of the Jastrow potential at 
low k is automatically retrieved by variance minimization^]. This is crucial for more 
complicated systems where there is no explicit form for the prefactors. Structure factor 
and Jastrow potential for different system size are presented in Fig.2. 

We fit the parametric form S(k) = 1 — exp(—ak2) and u(k) = 4na[k~2 — (k2 + 
a_1)_1][10] to extract the sought prefactors. It is particularly remarkable that a 1-
parameter form is capturing so well the behavior of a Jastrow potential which was opti
mized using more than 10 parameters. When k is expressed in atomic units, the optimal 
value of a and a were found to be 0.72 and 1.0 respectively, leading to corrections of 
0.13/7V and 0.092/7V Hartree per electron for potential and kinetic energy. Results after 
the two corrections were applied are shown in Fig.2. Even for the smallest cell (cubic, 
with 8 Si atoms), the error in the energy is of the order of 1 mHartree/electron (0.1 
eV/atom) when compared to the value extrapolated for the infinite size. 

To summarize, we introduced a scheme to compute the correction to finite size error 
in the kinetic and potential energy in quantum Monte Carlo simulations. Madelung 
constant, Brillouin zone integration and the two 1 /L contributions to the error addressed 
in this paper fall all out naturally from a reciprocal space approach as integration errors. 
The scheme is based on the determination of the low-k behavior of the structure factor 
and the Jastrow potential and greatly benefits of the random phase approximation that 
prescribes the power law behavior of such quantities. 

This material was based upon work supported in part by the U.S Army Research Of
fice under DAAD19-02-1-0176. Computational support was provided by the Materials 
Computational Center (NSF DMR-03 25939 ITR), the National Center for Supercom-
puting Applications at the University of Illinois at Urbana-Champaign and by CNRS-
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