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Abstract

The 1/r Coulomb potential is calculated for a two dimensional system with periodic boundary conditions. Using

polynomial splines in real space and a summation in reciprocal space we obtain numerically optimized potentials which

allow us efficient calculations of any periodic (long-ranged) potential up to high precision. We discuss the parameter

space of the optimized potential for the periodic Coulomb potential. Compared to the analytic Ewald potential, the

optimized potentials can reach higher precisions by up to several orders of magnitude at comparable computational

cost. We explicitly give simple expressions for fast calculations of the periodic Coulomb potential where the summation

in reciprocal space is reduced to a few terms.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Most of classical or quantum simulations are using periodic boundary conditions to extrapolate the re-
sults to the thermodynamic limit of the bulk. Typically, boundary conditions are implemented by including

replicas of the original system; the potentials are then calculated by considering the additional interactions

between the particles in the box with all the periodic images of the replicas. Whereas for short-range poten-

tials the nearest image convention can often be applied, long-range potentials require an additional summa-

tion over the Fourier components in reciprocal space due to the slow convergence of the contributions of

images in real space (see [1] for a recent review of how to compute long-range potentials within periodic

boundary conditions).
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Following [2], we introduce an optimized periodic potential, represented by two summations, one over

Fourier and one over real-space components, which can be obtained numerically for any potential. In this

article, we extend the analysis to treat two dimensional (2D) systems and concentrate particularly on the 2D

periodic Coulomb potential.

For an arbitrary potential v(r), the periodic image potential vpp(r) is defined by summing over the inter-
actions between one particle in a box of dimensions Lx, Ly and the replicas of the other particles in periodic

space,
vppðrÞ ¼
X
l

vðrþ lÞ ¼
X
k

~vkeik�r: ð1Þ
Here, l are the Bravais lattice vectors (nxLx, nyLy) with nx, ny integers, ~vk are the Fourier components of the

potential summed over all reciprocal lattice vectors k = 2p(nx/Lx, ny/Ly) of the periodic system.
For a charge q, the Coulomb potential is given by
vðrÞ ¼ q
r
�
Z
V
dr0

q
jr� r0j ; ð2Þ
with Fourier components
~vk ¼
1
V

2pq
k ; k 6¼ 0;

0; k ¼ 0

(
ð3Þ
in two dimensions, where V = LxLy is the volume of the box. A uniform background of opposite charge is

subtracted to enforce charge-neutrality. Since both summations in real space and in reciprocal space of the
periodic potential converge slowly, the standard method is to split the periodic potentials into two

summations,
vopðrÞ ¼
X
l

wðrþ lÞ þ
X
jkj6Kc

~yke
ik�r; ð4Þ
with
wðrÞ � 0 for r > Rc: ð5Þ

By definition both summations are converged. In [2] it has been proposed to use a set of basis functions for

w(r) and determine numerically their coefficients together with ~yk, such that the difference between the
optimized periodic potential vop(r) and the periodic image potential vpp(r) is minimized.

An analytical form for the Coulomb potential was provided long time ago by Ewald using a Gaussian

charge distribution [3]. It gives
waðrÞ ¼ q
erfcðarÞ

r
; ð6Þ

~yak ¼ q
2p
V

erfcðk=2aÞ
k ; k 6¼ 0;

� 2
ffiffi
p

p

aV ; k ¼ 0;

(
ð7Þ
with limr!0waðrÞ � q=r ¼ �q2a=
ffiffiffi
p

p
and a is an open parameter which determines the speed of convergence

in both summations. Due to the exponential convergence of both summations, they can be truncated, and

Rc and Kc can be determined to ensure any desired precision [4]. Choosing a ¼
ffiffiffiffiffiffiffiffiffi
p=V

p
, both summations

roughly converge equally fast, and (RcKc) is the only parameter determining the precision of the truncated

Ewald potential. In practice, one typically restricts Rc < L/2 with L = min{Lx, Ly} in order to apply the

nearest image convention in real space; the precision of the potential then relies on {a,Kc}.
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In [2,5] it has been shown that a numerical fit of the three dimensional (3D) Coulomb potential reduces

considerably the number of terms in k-space with respect to the analytical Ewald summation in order to

obtain a comparable precisions. This leads to an important speedup of simulations of charged systems. Fur-

ther, in contrast to other known methods for calculating the periodic 1/r-potential up to high precision [6],

this method is not limited to the Coulomb potential, but can easily be applied to any functional form. This
is important in ground state quantum Monte Carlo calculations, since analytical forms for the potentials

have been shown to provide an accurate description of the ground state wavefunction of electronic systems

[7,8]; however, they typically involve more complicated (long-ranged) functions where no easy analytical

break-up can be done. The optimized potential of [2] has the big advantage to be applicable to all type

of function; here, we extend this method to include 2D systems.

In the following section, we shortly remind the basic steps necessary to derive the equations of the opti-

mized potential which have to be solved numerically, and give the explicit formulas for the 2D case. The

precise numerical evaluation of Bessel functions and their integrals are discussed. In Section 3 are presented
the results of the optimized potential. Explicit simple formulas are given for the 2D periodic Coulomb

potential up to a few percents.
2. Method and formulas for 2D

2.1. General method

The optimized potential, vop, is determined by minimizing the absolute error with respect to the true peri-

odic potential, vpp,
v2 ¼ 1

L2

Z
L2
dr vppðrÞ � vopðrÞ
� �2

: ð8Þ
Denoting ~wk the Fourier transform of w(r) in the optimized potential, Eq. (4) reads
vopðrÞ ¼
X
k

eik�r~wk þ
X
jkj6Kc

eik�r~yk; ð9Þ
and Eq. (8) is split in two sums:
v2 ¼
X
jkj6Kc

~vk � ~yk � ~wkð Þ2 þ
X
jkj>Kc

~vk � ~wkð Þ2: ð10Þ
The first term on the r.h.s. of this equation can be exactly set to zero determining ~yk,
~yk ¼ ~vk � ~wk for jkj 6 Kc: ð11Þ

Expanding wðrÞ ¼

P
iticiðrÞ using a set of basis functions ci(r) with Fourier components ~cik, Eq. (11) relates

the optimal Fourier coefficients yk to the optimal coefficients ti in real space
~yk ¼ ~vk �
X
i

ti~cik for jkj 6 Kc: ð12Þ
The optimal coefficients ti can be determined by minimizing the second term of the r.h.s. of Eq. (10) leading

to the following linear equations
X
n

X
jkj>Kc

~cik~cnktn ¼
X
jkj>Kc

~vk~cik: ð13Þ
Solving Eqs. (12) and (13) uniquely determines the optimized potential for any given Rc and Kc.
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2.2. Polynomial basis set

Here, we use polynomial splines sitting on a linear grid with m continuous derivatives as basis set

(assuming a spherical symmetry of the potential). Following [2], the splines are defined on intervals (ri,

ri + 1) with Nspline + 1 equally spaced knots starting at the origin and ending at Rc, ri = iD with interval
D = Rc/Nspline. The basis functions are cia(r) with 0 6 a 6 m are defined by imposing
dbciaðrÞ
drb

����
r¼rj

¼ dabdij: ð14Þ
The divergence of the potential at the origin is explicitly taken into account as follows:
wðrÞ ¼
XN spline

i¼0

Xm
a¼0

tia
ciaðrÞ
rC

ð15Þ
where C = 1 for the Coulomb potential and C = 0 for a regular potential at the origin. Thus, the basis func-

tions cia(r) are piecewise polynomial of order 2m + 1
ciaðrÞ ¼
Da P2mþ1

n¼0

San
r�ri
D

� �n
; ri < r 6 riþ1;

�Dð Þa
P2mþ1

n¼0

San
ri�r
D

� �n
; ri�1 < r 6 ri

8>>><
>>>:

ð16Þ
and zero for |r � ri| > D. The constraints at r = ri determine half of the S-elements
San ¼
1

n!
da;n; for 0 6 a; n 6 m: ð17Þ
The constraints at r = ri±1 give
Sa;nþmþ1 ¼ �
Xa

k¼0

M�1
� �

kn

1

ða� kÞ! for 0 6 a; n 6 m; ð18Þ
where M�1 is the inverse of the quadratic matrix
Mak ¼
ðmþ 1þ aÞ!

ðmþ 1þ a� kÞ! for 0 6 a; k 6 m: ð19Þ
The required Fourier coefficients ~ciak are given by
~ciak ¼ Da
X2mþ1

n¼0

San Dþ
ikn þ ð�1ÞaþnD�

ikn

� �
; ð20Þ
where
D�
ikn ¼� 1

V

Z ri�1

ri

dr e�ik�rr�C r � ri
D

� �n
; ð21Þ

¼ � 1

V Dn

Xn

j¼0

n
j

	 

ð�riÞn�j

Z ri�1

ri

dr rj�Ce�ik�r; ð22Þ

¼ � 2p
V Dn

Xn

j¼0

n
j

	 

ð�riÞn�j

Z ri�1

ri

dr rjþ1�CJ 0ðkrÞ; ð23Þ
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with J0(x) is the Bessel function of zero order and n
j

� �
denotes the binomial coefficients. The moments of J0

can be obtained from its first two moments and a recurrence relation:
Z
dx J 0ðxÞ ¼ xJ 0ðxÞ þ

p
2

H 0ðxÞJ 1ðxÞ � H 1ðxÞJ 0ðxÞð Þ; ð24Þ

Z
dx xJ 0ðxÞ ¼ xJ 1ðxÞ; ð25Þ

Z
dx xnJ 0ðxÞ ¼ xnJ 1ðxÞ þ ðn� 1Þxn�1J 0ðxÞ � ðn� 1Þ2

Z
dxxn�2J 0ðxÞ: ð26Þ
Here, J1 is the Bessel function of first order and H1 (H2) is Struve�s function of first (second) order. How-

ever, contrary to the 3D case, we have not found any ‘‘machine precision’’ routine to compute the Struve�s
function or the integral of J0 due to the oscillatory behavior of the integrand. In Appendix A, we briefly
describe how to evaluate ‘‘precisely’’ the integral of J0.
3. Results for the 2D periodic Coulomb potential

In this section, we present the results of the optimized potential for the Coulomb 1/r potential in two

dimensions, Eqs. (2) and (3) in a square box of length L = Lx = Ly. Hermite splines of fifth order represent

the real space part of the optimized potential insuring two continuous derivatives (m = 2 in Eq. (16)). The
1/r divergence at the origin is accounted for by setting C = 1 with the constraint ti = 0,a = 0 = q; symmetry

further imposes the absence of any linear term linear: ti = 0,a = 2 = 0. Both constraints can be easily included,

by solving the linear equations
X
ðj;bÞ6¼fð0;0Þ;ð0;2Þg

Aia;jbtjb ¼ bia; 0 6 a 6 mnderv; 0 6 i 6 N spline ð27Þ
for (i,a) 6¼ {(0,0),(0,2)} with
Aia;jb ¼
XKm

k¼Kc

~ciak~cjbk; bia ¼
XKm

k¼Kc

~vk � ~c00kt00ð Þ~ciak ð28Þ
instead of Eq. (13). Appendix B describes how to impose the Madelung constant of the lattice through the

constant term t01.

The number of spline intervals, Nspline, and the cut-off Kc in the reciprocal space are the open parameters

of the model. In Eq. (28), Km has to be large enough to insure that each sum is converged. Since it is an
important parameter which determines the conditioning of the linear equation we first discuss its influence

on the stability of the solution.

The results of the optimized potential are compared with the ‘‘exact’’ periodic Coulomb potential

obtained from the Ewald formula including a summation over many images in real space. Thus machine

precision is easily reached for this reference potential. Values of the potential are given in units of q/L, they

are independent of the size of the box.
3.1. Extrapolation of Km

Results are very sensitive to Km which determines the convergence of the matrix elements of A and b, Eq.

(28). From Eqs. (20) and (23), one finds the dominant behavior in the limit of k ! 1: t00~c00k � ~vk � Oðk�7=2Þ
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and~ciak � Oðk�7=2Þ for (i,a) 6¼ (0,0). Thus thematrix elements inA and b, Eq. (28), are of order k�7. In the large

k limit, the truncation therefore introduces an error of order K�5
m .

Considering the asymptotic expansions of ciak for large k, one might be able to extend the summation

analytically to infinity using the leading order terms. However, in 2D, the difference between the discrete

summation over reciprocal lattice vectors and the continuous integration is comparable to the correction
of the continuous integral. Therefore, we find no improvement by adding those corrections. Thus, contrary

to the 3D case, no analytical continuations are used here.

Next, we consider the stability of the solution with respect to variations of Km. Since the short wave-

length cut-off destroys the information on small distance behavior of the potential, we expect that there

is a maximum number of splines Nmax
spline, after which the solution of the linear equation will become unstable.

Roughly, the resolution in real space is limited by DKm/(2m + 2) J 2p, and we get a maximum number of

spline knots Nmax
spline þ 1 with
Fig. 1.

splines

simula
Nmax
spline K

KmRc

4pðmþ 1Þ : ð29Þ
Using less terms in the summation in reciprocal space, the matrix Aiajb in Eq. (28) becomes ill conditioned.

The conditioning of the linear system can be estimated by comparing the norm of the obtained solution ti,
iti1 = max{|ti|,i} with ksk1 ¼ maxfj

P
jAijtj � bij; ig. If isi1/iti1 is of order one, the system is dominated

by numerical round-off errors. This indicates that either the value of Km is too small or the number of

splines is too large so that no improvement can be reached by increasing Nspline further.

3.2. Accuracy of the optimized potential

We now study the accuracy of the optimized potential in the Nspline–K
2
c-plane for fixed Rc/L = 0.5 (near-

est image convention). The
ffiffiffiffiffi
v2

p
in units of q/L corresponds to the average error and is shown in Fig. 1. We

see that there is an optimum line in the range of parameters considered. We also note that there is a diffi-
Contour plot of the mean error of the optimized potential versus the number of shells N 2
c (Nc = KcL/2p) and the number of

Nsplines (see definition of Eq. (4)). The maximum distance in r-space is chosen to satisfy the nearest image convention in

tions, Rc/L = 0.5.
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Fig. 2. Comparison of the precision between the standard Ewald method (with a ¼
ffiffiffiffiffiffiffiffiffiffiffi
Kc=L

p
) (triangle) and the optimized potential

versus Nc = KcL/2p (square). The average error v is given in units of q/L. The maximum distance in r-space is chosen to satisfy the

nearest image convention, Rc/L = 0.5.
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culty to decrease the precision below 10�10, mainly because the linear system, Eq. (28) becomes more and

more ill-conditioned as Nspline and K2
c increase.

Fig. 2 shows the difference to the true periodic potential for Nspline = 30 varying K2
c and compares it with

the values of the best nearest image potential using the analytic Ewald expressions,1 Eq. (7), with
a ¼

ffiffiffiffiffiffiffiffiffiffiffi
Kc=L

p
. For the range of interest in order to speed up simulations, the optimized potential is always

better by at least one order of magnitude. However, if very high precision is needed, better than 10�10,

the Ewald method is preferable to the present optimized procedure, even if it is much more cpu-time con-

suming, since it has no stability problems.

The number of splines increases the precision of the potential inside the circle of radius Rc. Around the

corner of the box, only the number of k-shells can improve the optimized potential. At fixed number of

shells, one reaches rapidly an optimum number of splines after which increasing the number of splines

has no more effect. This is seen in Fig. 1 by the straight vertical lines. At fixed number of splines, increasing
the number of k-shells first improves strongly the optimized potential, but later the improvement almost

saturates. Thus the optimum choice is to take the parameters roughly along the diagonal in Fig. 1.

Using an integral approximation for evaluating the summations in Eq. (13) suggests that v2 is a function

of the single variable RcKc. We have numerically checked that in the region of 0.1 [ Rc/L [ 1 the main

error indeed depends only on the combination RcKc.

Note that an intermediate precision of 10�3 to 10�6 is reached with very few potential parameters. There-

fore simple analytical expressions allow us fast evaluations of the periodic Coulomb potential with inter-

mediate precisions.

3.3. Simple expressions for intermediate precision

If we include only the first five wavevectors with |k|6Kc = 2p/L and use Nspline = 2, the minimum to ob-

tain a smooth curve going to zero at half of the box size, a mean precision of 1% is obtained. and a max-

imum error of around 2% (see Table 1). Increasing the number of splines improves slightly the precision.
1 The optimal parameters a according to the chosen values of Kc differ only by a few percents from a = (Kc/L)
1/2 and lead to

improvements of less than 10% for the values of
ffiffiffiffiffi
v2

p
.



Table 1

Optimized potential parameters, Eqs. (30) and (31)

i 0 1 2 3 4 5

a<i 1 �0.819506 0 0.169304 �0.146967 0.0777952

a>i 0.280626 �0.510485 0.404063 �0.955541 1.3377 �0.556365

n2 0 1

~yn2 �1.11863 0.124098

Top: short-range real-space parameters for Nspline = 2. Bottom: reciprocal space parameters, where n = kL/2p. The mean precision is

about 2%.
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However, extending for Nspline = 2 the reciprocal summation using Kc = 4p/L, the precision decreases to

0.1%, with a maximum error of 0.4% (see Table 2). The short-range part of the optimized Coulomb poten-

tial writes
Fig. 3.

stands

of the

Table

Same

i

a<i
a>i

n2

~yn2

The m
wðrÞ ¼ q
r

P5
i¼0

a<i
4r
L

� �i
; 0 6 r < L=4;

P5
i¼0

a>i
4r
L � 1

� �i
; L=4 6 r < L=2;

8>>><
>>>:

ð30Þ
whereas the long-range part is given by
yðrÞ ¼ q
L

~y0 þ 2~y1 cosðx̂Þ þ cosðŷÞ½ � þ 4~y2 cosðx̂Þ cosðŷÞ þ 2~y4 cosð2x̂Þ þ cosð2ŷÞ½ �f g; ð31Þ
O A B O

-0.04

-0.02

0

0.02

v o
p-

v p
p

N2
c=2

N2
c=4

Difference between the simple expression of the optimized potential, vop, with the exact Coulomb potential, vpp; dotted lined

for vop using Kc = 4p/L, full line for Kc = 8p/L. O stands for the origin, A for the middle of the square side and B for the corner

square.

2

as Table 1

0 1 2 3 4 5

1 �1.09583 0 0.30778 �0.0359887 �0.0266302

0.149336 �0.449592 0.441105 �0.119121 �0.0333851 0.0116568

0 1 2 4

�0.870938 0.262177 0.0715766 0.00474028

ean precision of this potential is about 0.1%.
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where x̂ ¼ 2px=L, ŷ ¼ 2py=L. See Fig. 3 for a comparison of these simple expressions with the ‘‘exact’’ peri-

odic potential.

Both explicit expressions are roughly one order of magnitude better than the corresponding Ewald

potentials. Even if not extremely precise, the expressions should extrapolate much better to the thermody-

namic limit than any truncated potential using only nearest image convention in real space. Further the real
space part of the optimized potential vanishes at Rc = L/2 by construction without introducing any discon-

tinuity in the potential and the derivatives at this point.
4. Conclusion

We have shown that for the 2D Coulomb potential, the numerically optimized potential can obtain a

much higher precision compared to the analytical Ewald potential summing over the same number of terms
in reciprocal space. Therefore, the computational effort for many-body simulations involving long-range

potentials can be significantly reduced using an optimized potential.

For a pair potential the computational cost to evaluate the real-space contribution to the total potential

is �NNc/2, where N is the total number of particle, N c ¼ pR2
cq is the ‘‘number of close neighbors’’ and

q = N/V the mean particle density. Since the number of k-vectors increases as the volume in reciprocal

space, the cost of the Fourier summation is roughly � NpK2
cV =4p

2, and there is an optimum value for each

system size, which scales as Rc � K�1
c � N 1=4 � L1=2 in the limit of a large particle number, so that the com-

putational cost in reciprocal space �N3/2 roughly equals that in real space. We see, that, in the limit of a
large system, the total cost for evaluating the Coulomb potential using real and reciprocal space summa-

tions is always favorable compared to any truncated potential with minimum image convention, which

scales as �N2 [9].

Apart from a potential speed-up of simulations involving charged particles, the big advantage of the

optimized potential is its flexibility to split-up any (long-ranged) function into a real-space and a recipro-

cal-space contribution. For example, the independance of the method from the functional form does allow

us to treat the more realistic case of a quasi 2D quantum system, periodic in two dimension and tightly

confined in the third direction, z. Integrating over the known ground state wavefunction in the confined
direction, w0(z) one obtains an effective 2D interaction, vquasi 2D(r), which has a simple form in reciprocal

space,
~vquasi 2DðkÞ ¼
X
kz

~v3D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2z

q	 

~w0ðkzÞ~w0ð�kzÞ; ð32Þ
where
~v3D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2z

q	 

is the original 3D (Coulomb) potential in reciprocal space. It is straightforward to calculate the optimized

potentials in this quasi 2D situation. However, the extension of the method to efficiently calculate the clas-
sical electrostatic energy in a 2D slab geometry is still open.
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Appendix A

In this Appendix, we describe how to evaluate precisely the integral of the Bessel function J0(x). Begin-

ning with the evaluation of the Bessel function J0, three domains are defined. Around the origin, 0 6 x 6 x1
the Bessel function is accurately evaluated form the absolutely convergent series representation [10]
J 0ðxÞ ¼
X1
k¼0

� x
2k!

� �2k
; 0 6 x 6 x1: ðA:1Þ
With standard double precision, a precision of 10�14 is obtained up to x1 = 10 by summing all terms whose

absolute value is larger than 10�18. For large arguments, x2 6 x < 1, the asymptotic expansion is used [10]
J 0ðxÞ ¼
ffiffiffiffiffi
2

px

r
P ðxÞ cosðx� p=4Þ þ QðxÞ sinðx� p=4Þ½ �; x2 6 x < 1 ðA:2Þ
with
P ðxÞ ¼ 1þ
X
k¼1

ð�1Þk

ð8xÞ2k
Y2k�1

m¼0

ð2mþ 1Þ2

ðmþ 1Þ ; QðxÞ ¼
X
k¼0

ð�1Þk

ð8xÞ2kþ1

Y2k
m¼0

ð2mþ 1Þ2

ðmþ 1Þ : ðA:3Þ
As usual, the summation is stopped when the absolute value of the running term of the series starts to in-

crease. With the asked precision of 10�14, one finds x2 = 16. In the intermediate region x1 < x < x2, the

Chebyshev-pade approximant are calculated using Maple. This strategy can be extended to any desired

precision by cutting this interval in pieces.

The series expressions for J0(x) are then analytically integrated to calculate �dx J0(x). Unfortunately, the
asymptotic expression is less converging, giving x2 = 30 for a precision of 10�14. The Chebyshev-pade

approximant in the interval [10,30] is calculated at order 36, thanks to Maple: with(orthopoly): with(num-

approx): Digits: = 20; IJ: = int(BesselJ(0,x),x); IJCh: = eval(chebpade(IJ, x = 10, . . .30,36)): con-

vert(subs(x = 10 * (X + 2),IJCh),horner); where X = (x � 20)/10. The gsl routines have been used for J0
and J1 [11].
Appendix B

It is also possible to fix the constant term at the origin in the optimized Coulomb potential, t01 in Eq.

(15), by imposing the Madelung constant of the underlying lattice, vMad = limr ! 0(vpp(r) � q/r). Using

the Ewald expressions, Eq. (7), the Madelung constant writes
vMad ¼
X
l 6¼ð0;0Þ

waðlÞ þ
X
k

~yak � 2

ffiffiffi
a
p

r
; ðB:1Þ
which can be calculated with high precision choosing a ¼
ffiffiffi
p

p
=L; for the square lattice vMad =

�3.90026492000195 q/L. For the optimized potential, imposing the 1/r divergency with C = 1, the

Madelung verifies vMad ¼ t01 þ
P

k6Kc
~yk. Since ~yk is coupled to all tia by Eq. (12), this constraint leads to

modifications of Eq. (28),
X
ðj;bÞ6¼fð0;0Þ;ð0;1Þ;ð0;2Þg

Aia;jbtjb ¼ bia; 0 6 a 6 m; 0 6 i 6 N spline; ðB:2Þ
for (i,a) 6¼ {(0,0),(0,1),(0,2)} with
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Aia;jb ¼
XKm

k¼Kc

~~ciak~~cibk; ðB:3Þ

bia ¼
XKm

k¼Kc

~~vk � ~c00kt00 � ~c10k
vMad

1�
P
q6Kc

~c10q
�

X
jb6¼ð0;1Þ

tjbð~~cjbq � ~cjbqÞ

0
B@

1
CA~~ciak; ðB:4Þ

~~X k ¼ ~Xk þ ~c10k

P
q6Kc

~Xq

1�
P
q6Kc

~c10q
; ðB:5Þ
instead of Eq. (13). Here X denotes either cia or v. Including the Madelung term as a constraint improves

slightly the solution.
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