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Abstract
We study the Bose–Einstein condensation phase transition in a weakly
interacting gas through a perturbative analysis of finite systems. In both the
grand canonical and the canonical ensembles, perturbation theory suffers from
infrared divergences and cannot directly determine the transition temperature
in the thermodynamic limit. However, in conjunction with finite-size scaling,
perturbation theory provides a powerful calculation tool. Here we use
this combination of perturbation theory and scaling to estimate a shift in
the transition temperature in the canonical ensemble consistent with grand
canonical calculations.

1. Introduction

Wilkens et al [1] derive a surprising and extremely interesting result, namely that as a function
of interaction strength the transition temperature of a dilute Bose gas behaves differently in
the canonical and grand canonical ensembles. They conclude that in the canonical ensemble,
the transition temperature decreases with increasing interaction strength, whereas the opposite
behaviour has been established in calculations in the grand canonical ensemble [2, 3]. The
latter agree with numerical calculations in the canonical ensemble [4, 5] and on the lattice
[6, 7].

In this paper we reformulate the ideas of Wilkens et al [1] to provide a more explicit
comparison with its grand canonical counterparts and with numerical calculations. The
calculation is perturbative in nature; we show that such a perturbative scheme fails in the
thermodynamic limit due to the presence of infrared divergences. These divergences are
common to calculations in both canonical and grand canonical ensembles, and result from
long-wavelength fluctuations which dominate all second-order phase transitions. We present
a scheme, based upon the finite-size scaling used in numerical calculations of the phase
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transition [4, 5], which avoids such singularities. In our approach, the phase transition
temperature is inferred from the scaling properties of small systems for which perturbation
theory converges. Using this novel technique we analytically derive a shift in the transition
temperature which agrees with conventional results [2–5].

This paper is structured as follows. First, to lowest order in the interaction strength, we
derive, in the spirit of [1], a perturbative expression for the transition temperature. Next,
by considering higher-order terms, we show that the perturbation series diverges in the
thermodynamic limit. Finally, we use finite-size scaling in conjunction with the perturbation
series to correctly derive the shift in the transition temperature.

2. Perturbation theory near Tc

We consider a system of bosons interacting through a short-range potential described by the
Hamiltonian

H =
∑

q

h̄2q2

2m
b†

qbq + Hint (1)

where

Hint = 2πh̄2a

mV

∑
pkq

b†
pb

†
qbq−kbp+k (2)

and a is the scattering length, bq is the annihilation operator for particles with momentum q,
m is the particle mass and V ≡ L3 is the volume of the system. The free energy to first order
in a is

F(a) = F0 + 〈Hint〉 (3)

where the expectation value is in the free ensemble, and F0 ≡ F(a = 0) is the free energy of
the non-interacting system. The basic technical difference between the canonical and grand
canonical ensembles arises in factoring the four-point expectation value in equation (3); in the
grand canonical ensemble∑
pqk

〈b†
pb

†
qbq−k bp+k 〉GC =

∑
pqk

(〈b†
pbq−k 〉〈b†

qbp+k 〉 + 〈b†
pbp+k 〉〈b†

qbq−k 〉) (4)

= 2〈N〉2 (5)

where 〈N〉 = ∑
k〈b†

kbk〉 is the mean number of particles. A contribution proportional to N2

cannot affect the critical temperature, since this term just adds a constant to the free energy,
and is compensated by a shift in the chemical potential. In the canonical ensemble, however,∑

pqk

〈b†
pb

†
qbq−k bp+k 〉C = 2N2 −

∑
p

〈Np(Np + 1)〉 (6)

where Np = b†
pbp. The second tem cannot be compensated by a shift of the chemical potential

and does change the transition temperature. The first-order shift in free energy differs in the
two ensembles by the term

〈Hint〉C − 〈Hint〉GC = −2πh̄2a

mV

∑
p

〈Np(Np + 1)〉. (7)

Although the coefficient of this sum is of order 1/V , the sum itself diverges as V 4/3 at the
Bose condensation transition. This term of order V 1/3 is the source of the shift in the critical
temperature described in [1]. We now restrict ourselves to the canonical ensemble to determine
the role of the term (7). In all subsequent manipulations both the number of particles N and
the system size V are held fixed.
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2.1. Characterization of condensation

Bose–Einstein condensation occurs when N0, the number of condensed particles, becomes
macroscopic. To explore the transition we study the probability of having N0 particles in the
condensate. This distribution function, P(N0), is

P(N0) = 1

ZN

Tr
N,N0 fixed

e−βH = 1

ZN

e−βF(N,N0) (8)

where the trace is taken at fixed N and N0, and β is the inverse temperature. This equation
defines the free energy F(N,N0); the partition function, ZN = ∑

N0
e−βF(N,N0), normalizes

the probability distribution.
The high-temperature normal phase of the system is characterized by a monotonically

decreasing P(N0), while the low-temperature condensed phase has P(N0) peaked at N0 �= 0.
The extremes of these regimes are readily quantified. At sufficiently high temperatures, N0 is
Gibbs distributed, P(N0) ∝ eβµN0 , where µ = ∂F/∂N < 0 is the chemical potential. At zero
temperature in the non-interacting gas all the particles are condensed and P(N0) = δN0,N . At
some intermediate temperature the distribution becomes flat at N0 = 0. Wilkens et al define
Tc by extrapolating this crossover temperature to the thermodynamic limit.

In terms of F(N,N0), Wilkens et al’s criterion for Tc gives an implicit equation for the
critical temperature of the interacting system T

(a)
c ,

∂F (N,N0)

∂N0

∣∣∣∣
N0=0,T=T

(a)
c

= 0. (9)

As in Fermi liquid theory, ∂F/∂N0 is the energy of a k = 0 quasiparticle measured from the
chemical potential [8], and can therefore be expressed as

∂F

∂N0
= �(k = 0, ω = 0) − µ (10)

where �(k, ω) is the self-energy at momentum k and energy ω. Thus this criterion for the
critical temperature is essentially that used by Baym et al [3] in the grand canonical ensemble.
An important difference between the two approaches is that in the present calculation only
quantities at N0 = 0 are involved. In the canonical ensemble the fluctuations in N0 are very
large at the critical temperature, 〈N2

0 〉 − 〈N0〉2 ∼ N4/3 [9]; as we shall see, the criterion (9)
yields a qualitatively different shift in the transition temperature if the derivative is evaluated
at the expectation value of N0 rather than at N0 = 0.

2.2. Perturbative expansion

Following [1], we now attempt to calculate the transition temperature, T (a)
c , by perturbatively

expanding (9) in powers of a. Since ∂F/∂N0 is evaluated at T = T
(a)

c , we must consider not
only the explicit variation of F with a, but also the implicit contribution due to the dependence
of T on a. We use the decomposition F(a) = F0 +�F(a), where F0 is the free energy of the
non-interacting gas and �F(a) is the correction due to interactions. In the free system, the
condensate only contributes to the free energy by reducing the occupation of other modes, i.e.

∂F0(N,N0)

∂N0
= −∂F0(N,N0)

∂N
≡ −µ0 (11)

which defines the free chemical potentialµ0, a function ofN ,N0 and T . By construction, when
N0 = 0 this chemical potential vanishes at the transition temperature of the non-interacting
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gas, T (0)
c , and to first order in the interaction,

∂F0

∂N0

∣∣∣∣
N0=0,T=T

(a)
c

= −µ0(N0 = 0, T = T (a)
c ) (12)

= −�Tc
∂µ0

∂T

∣∣∣∣
N0=0,T=T

(0)
c

+ O(a2). (13)

The derivative is taken at fixed N and N0 and �Tc = T
(a)

c − T
(0)

c is the shift in the transition
temperature for scattering length a. Thus, to first order in a, the left-hand side of equation (9)
becomes ∂(�F)/∂N0 − �Tc ∂µ0/∂T , evaluated at T = T

(0)
c and N0 = 0. Solving for �Tc,

we have

�Tc = (∂(�F)/∂N0)

(∂µ0/∂T )

∣∣∣∣
N0=0,T=T

(0)
c

. (14)

Aside from the use of continuous derivatives in place of Wilkens et al’s discrete derivatives,
this is the result of [1]. Correctly evaluating these functions for a finite-sized system is
challenging. We estimate their magnitude by replacing the canonical expectation values
in (6) by the grand canonical result 〈Nk(Nk + 1)〉 = 2〈Nk〉(〈Nk〉 + 1), and approximately
writing 〈Nk〉 ≈ (eβ(εk−µ0) − 1)−1. This assumption provides a simple relationship between
N = N0 +

∑
k〈Nk〉 and µ0. Introducing the number of excited particles Nex = N − N0, we

may write

∂(�F)

∂N0
= −∂(�F)

∂Nex
= −

(
∂(�F)

∂µ0

)(
∂µ0

∂Nex

)
(15)

=
(
∂(�F)

∂µ0

)(
∂µ0

∂T

)
Nex

(
∂T

∂Nex

)
µ0

. (16)

Since all quantities are evaluated in the free ensemble, the derivatives are straightforwardly
evaluated, leading to

�Tc

Tc
≈ − 8πh̄2a

3mNV kbT

∑
k �=0

〈Nk〉3 (17)

where 〈Nk〉 is evaluated at µ0 = 0. The sum is infrared divergent, scaling as V 2, and
yielding a finite-temperature shift proportional to −an1/3, where n = N/V . The constant
of proportionality is of the same order of magnitude as the one calculated in [1] using a
sophisticated series of asymptotic expansions; its exact numerical value is unimportant here.
The key observation is that contrary to the expected behaviour, the temperature shift predicted
by this argument is negative.

This negative temperature shift depends crucially upon the constraint N0 = 0. At finite
N0, the numerator of (14) has an additional contribution due to the derivative of the p = 0 term
of the sum in (7). This contribution has the opposite sign, and dominates when N0 ∼ N2/3,
yielding a positive temperature shift. As already emphasized, at the critical temperature, the
expectation value of N0 is of order N2/3.

2.3. Breakdown of perturbation theory

We now explore the validity of this perturbation expansion, demonstrating that it breaks
down in the thermodynamic limit. Higher-order terms in the expansion of the free energy
(3) involve higher powers of the interaction Hint. As in first order, the most divergent
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terms occur when all of the momenta are equal and, at Tc, these terms are of relative size
〈(βHint)

m〉/〈(βHint)
m−1〉 ∼ aL/λ2, where L = V 1/3 is the length of the system, and

λ = (2πh̄2/mkbT )
1/2 ∼ n−1/3 is the thermal wavelength, of the order of the interparticle

spacing. Thus we see that the perturbation expansion is valid only for sufficiently small
η ≡ aL/λ2.

In any finite system the transition temperature calculated above corresponds to a crossover
of finite width δT . One can estimate the width of the crossover from the fluctuations in the
number of condensed particles; since the latter scale as [9],

δT /T ∼ δN0/N ∼ N−1/3. (18)

As long as δT 
 �Tc, the shift is well defined. Since �T ∝ −an1/3, the ratio �T/δT is of
order aL/λ2 = η, and the shift is only well defined for η � 1. Thus in the limit of small η,
where the expansion of the free energy converges, the calculated change in Tc is smaller than
the width of the transition and cannot be physically significant. In the other limit η � 1 the
expansion of the free energy breaks down. Hence this calculation, as it stands, cannot tell us
anything about the transition temperature of a weakly interacting Bose gas.

3. Scaling behaviour

Although perturbation theory breaks down in the thermodynamic limit, it can be used to
learn the properties of small systems where L 
 λ2/a. We now discuss how finite-size
scaling enables one to learn about the L = ∞ phase transition by investigating how physical
quantities scale with L in these small systems. This technique is commonly used in numerical
simulations where it is not feasible to simulate an infinite system. The central assumption of
finite-size scaling is that sufficiently close to the critical point all physical quantities scale as
functions of the ratio of the correlation length ξ to the system size L. For example, the order
parameter scales as

〈N0〉
V

∼ L−y$(L/ξ) (19)

where y = β/ν = 1 is the ratio of the critical exponents for N0/V and the correlation length,
and $ is a scaling function. As L/ξ → ∞, this function must diverge as $(L/ξ) ∼ (L/ξ)y ,
while as L/ξ → 0, $ approaches a constant. The latter limit gives a systematic method for
finding the critical point (ξ → ∞) by looking solely at the properties of a finite system. In
numerical calculations [4, 5] one plots Ly〈N0〉/V , or a related quantity such as the superfluid
density, as a function of temperature for different system sizes. According to the scaling
hypothesis all of these curves should intersect at the critical temperature.

Relations similar to equation (19) also hold for higher moments of the order parameter
and imply that at Tc the probability distribution function can be written as

P(N0) = λ2

L2
ψ(N0λ

2/L2) (20)

with some scaling function ψ . We calculate the critical temperature of the interacting system
by finding the temperature at which P(N0) has this scaling form.

3.1. Scaling in the canonical ideal gas

Before using this procedure to calculate�Tc, we verify that the scaling relations, (20) and (19),
hold in the non-interacting gas. We first derive equation (19) in the grand canonical ensemble
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Figure 1. The function F(x), defined as the solution to equation (24), which relates the chemical
potential and density of a non-interacting ideal Bose gas via (25).

where the argument is particularly simple. The general strategy is to fix the average density
n = N/V and the temperature T , and look at how the order parameter N0 varies with the
system size L. To carry out this approach we need an expression for the chemical potential µ
as a function of n, T and L, which requires inverting the relationship,

n = 1

V

∑
k

1

eβ(εk−µ) − 1
(21)

≈ 1

λ3
g3/2(e

βµ) + N0/V (22)

where g3/2(z) = ∑
j z

j /j 3/2 is a polylogarithm function. The inversion is performed by
expanding (22) in powers of βµ, noting that N0 ≈ −1/βµ. One finds

n = 1

λ3

[
ζ
(

3
2

)
+
λ

L

(
− 1

βµL2/λ2
− 2

√
−πβµL2/λ2

)
+ · · ·

]
. (23)

For βµ ∼ λ2/L2 ∼ 1, the neglected terms are of relative order λ/L. The terms proportional to
1/βµ and

√−βµ are, respectively, the contributions from the condensed and non-condensed
particles. Finding βµ as a function of n, T andL, requires solving a cubic equation. We define
the function F(x), plotted in figure 1, as the solution to

1

F(x)
− 2

√
πF(x) − x = 0 (24)

so that the chemical potential can be expressed as

βµ = − λ2

L2
F

(
L

λ

(
λ3n − ζ

(
3
2

)))
. (25)

The positive, monotonic F(x) has the properties

F(0) = (4π)−1/3 (26)

F(x) −→
x→−∞ x2/4π (27)

F(x) −→
x→+∞ 1/x. (28)
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Thus, as L → ∞, the order parameter N0 ≈ −1/βµ, has three distinct behaviours,
corresponding to non-condensed, critical, and condensed regimes, depending on whether n is
less than, equal to, or greater than ζ

(
3
2

)
/λ3. In the non-condensed regime, N0 is microscopic,

in the condensed regime, N0 is extensive, and at the critical point, N0 scales as (19), with the
predicted exponent y = 1, i.e.,

n < ζ
(

3
2

)
/λ3 N0 ∼ L0 (29)

n = ζ
(

3
2

)
/λ3 N0 ∼ L2 (30)

n > ζ
(

3
2

)
/λ3 N0 ∼ L3. (31)

The scaling at Tc, equation (30), is consistent with (18), since at the critical point the mean
value of N0 is of the same order as the fluctuations δN0.

3.2. Scaling in the canonical ideal gas

We now perform the equivalent calculation in the canonical ensemble. Starting from the
expression N = N0 +

∑
k〈Nk〉, and approximating 〈Nk〉 = (eβ(εk−µ0(N0)) − 1)−1, we solve

for µ0 as a function of N0. Integrating µ0(N0) with respect to N0 yields F(N,N0) and
P(N0) ∝ e−βF(N,N0). As P(N0) is peaked about the point where µ0 = 0, we can expand∑

k〈Nk〉 in powers of µ0. Standard asymptotics [10] yields a series which converges for
|βµ0| < πλ2/L2,

Nex =
∑
k

〈Nk〉 =
(
L

λ

)3

ζ
(

3
2

)
+

(
L

λ

)2

f

(
βµL2

λ2

)
+ O(L/λ) (32)

f (x) =
∞∑
k=0

xk

k!
C3(k + 1) (33)

where the coefficients Cd(k) are sums of the form

Cd(k) = 0(k)

πk

∑′

n1,n2,...,nd

1(
n2

1 + n2
2 + · · · + n2

d

)k . (34)

The prime denotes that the term n1 = n2 = · · · = nd = 0 is omitted. These constants are
tabulated in table 1. Inversion of the series gives

βµ = λ2

L2

(
− 1

C3(2)
M − C3(3)

2(C3(2))2
M2 + · · ·

)
(35)

M = N0
λ2

L2
+ C3(1) − λ2

L2

(
N − L3

λ3
ζ
(

3
2

))
(36)

from which the free energy is

βF0(N,N0) = −
∫

dN0 (βµ0) (37)

= βF̄0(N) +
1

2C3(2)
M2 +

C3(3)

6(C3(2))2
M3 + · · · (38)

≡ βF̄0(N) + g(M) (39)

Table 1. Values of the lattice sum C3(k), defined in equation (34).

k = 1 2 3 4 5 6

−2.8374 1.6752 0.5419 0.4278 0.5039 0.7741
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Figure 2. Probability distribution P(N0) for the number of condensed particles at the critical
temperature in a non-interacting Bose gas within the canonical ensemble. The broken curve is a
Gaussian approximation. At the critical point, P has the scaling form (20).

where F̄0(N) is an extensive function which is independent of N0 and g(M) is defined by
equations (38) and (39). If n = N/V = ζ

(
3
2

)
/λ3, then M depends on L only through the

variable N0λ
2/L2, implying that P(N0) is of the form (20). For any other value of the density,

M has an additional L dependence, and P(N0) does not have the desired form, implying that
the scaling (20) holds only at Tc. In figure 2 we plot P(N0) at the critical point. The Gaussian
approximation, where only the term proportional to M2 is kept, is also plotted, and agrees
quite well with the full result.

3.3. Calculation of �Tc

Having verified the scaling relationships for P(N0) in the non-interacting gas, we now search
for the critical temperature of the interacting gas by perturbatively calculating P(N0) and
finding the temperature at which scaling holds. We continue to use the approximations that
〈Nk(Nk+1)〉 = 2〈Nk〉(〈Nk〉+1) and 〈Nk〉 ≈ (eβ(εk−µ0)−1)−1. To first order in a, at temperature
T = T

(0)
c + �T , the free energy is

βF [N,N0] = βF̄0 + g(M0) − �T

T

λ2

L2
N0g

′(M0)

+
3

2

�T

T

L

λ
ζ
(

3
2

)
g′(M0) − 2πh̄2a

mV T

(
N2

0 + 2
∑
k �=0

Nk(Nk + 1)

)
(40)

where the argument M0 = N0(λ
2/L2) + C3(1) is the scaled condensate number measured

from the peak of the distribution. The first two terms are the free energy of the non-interacting
gas at T (0)

c , while the remaining terms give the first-order corrections in �T and a. These
corrections are only small if η = aL/λ2 
 1. The sum

∑
k �=0 Nk(Nk + 1) can be identified

with ∂Nex/∂(βµ0), and can be expressed as a series in βµ0L
2/λ2 via equation (32). Using



Finite-size scaling and the Bose condensation transition temperature 4569

(35) to eliminate µ, the corrections are

F(T ) = F0(T
(0)

c ) − �T

T

λ2

L2
N0g

′(M0) +
L

λ

[
3ζ
(

3
2

)
2

�T

T

(
1

C3(2)
M0 +

C3(3)

2C3(2)2
M2

0 + · · ·
)

−2πh̄2a

mλ3T

(
C3(1)

2 + 2C3(2) − 2

(
C3(1) +

C3(3)

C3(2)

)
M0

+

(
1 +

C3(2)C3(4) − C3(3)2

C3(2)3

)
M2

0 + · · ·
)]

. (41)

Comparing with (20), we see that scaling holds if and only if the factor multiplied by L/λ

vanishes. Eliminating the coefficient of the first power of M0 enforces scaling near the peak
of P(N0), in which case

�T

T
= − 8πh̄2a

3mλ3T ζ
(

3
2

) (C3(1)C3(2) + C3(3)) (42)

≈ 1.6an1/3. (43)

The coefficient 1.6 should be compared with the numerical value of 2.3 calculated by Holzmann
and Krauth [5]. The discrepancy lies within the accuracy expected of our approximations. The
important point to note is that the coefficient is positive and of order unity.

The neglect of terms of higher order in a during the calculation is based on the assumption
that they do not change the structure of the scaling function. (We note that recent calculations
of φ4 theory on a lattice [6,7], may indicate that this assumption is not valid.) A more involved
study, where these higher-order terms are explicitly calculated, would help verify whether
perturbation theory is valid within finite-size scaling.

At this point it would be appealing to repeat the above calculation in the grand canonical
ensemble and explicitly verify that the two ensembles yield the same shift in the transition
temperature. In the grand canonical ensemble, first-order perturbation theory changes the
energy of each momentum state by the same amount. This shift can therefore be absorbed into
the chemical potential, leaving the transition temperature unchanged. The first effects start at
higher order; exploring how higher-order perturbation theory in conjunction with finite-size
scaling can be used to calculate the shift of Tc in the grand canonical ensemble will be discussed
in a future publication.

In summary, we demonstrate that infrared divergences prevent the direct application of
perturbation theory to calculating the transition temperature of a dilute Bose gas in the canonical
ensemble. We use scaling arguments to circumvent this problem and to evaluate �Tc within
the canonical ensemble, finding results which are consistent with numerical calculations, and
with analytic results based on the grand canonical ensemble.
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