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Precision Monte Carlo test of the Hartree-Fock approximation for a trapped Bose gas
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We compare the semiclassical Hartree-Fock approximation for a trapped Bose gas to a direct path-integral
quantum Monte Carlo simulation. The chosen parameters correspond to current87Rb experiments. We observe
corrections to the mean-field density profile: the path-integral calculation reveals an increase of the number of
condensed particles, which is of the same order as a previously computed result for a homogeneous system. We
discuss the experimental observability of the effect and propose a method to analyze data ofin situ experi-
ments.@S1050-2947~99!02404-X#
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The experimental realization of Bose-Einstein conden
tion ~BEC! in dilute atomic vapors@1–3# has generated ex
traordinary experimental and theoretical interest. From
viewpoint of quantum many-body physics, the trapp
atomic vapors are peculiar. Well above the critical point,
gases are extremely dilute, and their description as nonin
acting bosons is very accurate. As the condensation set
the trapped atoms are strongly compressed in real sp
Then, interactions become much more important and e
the simplest thermodynamic quantities~spatial distribution,
condensate fraction, etc.! have to be obtained by the appr
priate quantum many-body technique. At zero temperat
the Bogoliubov approach of weakly interacting Bose gase
well established@4#. There, the macroscopic condensa
wave function is given by the Gross-Pitaevskii equation@5#.
The effects of noncondensed particles at finite temperat
can be included via the Hartree-Fock-Bogoliubov equatio
which have been solved in the Popov approximation@6# and
in various simplified forms@7#.

The equilibrium properties of Bose gases can also be
rectly computed by path integral quantum Monte Ca
~QMC! simulation@8#. Very importantly, the QMC calcula
tion is free of systematic errors: apart from purely statisti
fluctuations, it gives an exact numerical solution of BEC. F
simulations corresponding to dilute atomic vapors, the QM
calculation can be performed directly for the large parti
numbers (;104–105) and the temperatures of experimen
interest@9#.

A subject of considerable interest in these systems is
detailed study of the critical region of the phase transiti
The QMC approach was already used to show@9# that the
trapped Bose gas with repulsive interactions has a lo
critical temperatureTc and a smaller numberN0 of con-
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densed particles belowTc than the free Bose gas, one of th
predictions of mean-field theories@10,11#. This effect is in-
trinsic to the inhomogeneous trap potential, where the d
sity is not fixed: The mean interaction of a given partic
with the other particles, as well as with the external potent
changes the density profile with respect to the ideal Bose

Although this leads to a shift of the critical temperatu
~even within mean-field theory!, condensation sets in as soo
as the phase-space density reaches~locally! the ideal gas
limit: As for the ideal gas, mean-field theory predicts t
occurrence of BEC for a degeneracy parameter in the ce
of the trapr(0)lT

352.61 . . . ,wherer(0) denotes the den
sity in the center of the trap andlT5\A2p/mkBT is the
thermal wavelength.

Up to now, the deviation of the degeneracy parame
from the ideal gas value due to interactions has not b
determined. Only the homogeneous system has been stu
and has given contradictory results for the order of mag
tude and even the sign of the critical temperature shift@12#.
Relevant recent works are a QMC@13# and a renormalization
group calculation@14# in the homogeneous case. Both pr
dict a decreasing degeneracy parameter, which is equiva
to an increased critical temperature. The two calculatio
differ considerably in the amount of this shift.

The main point of this paper is to calculate corrections
mean-field theory of the trapped Bose gas directly in an
perimental setting. It was proposed earlier to measure
local degeneracy parameter in the center of the trap,r(0)lT

3 ,
precisely at the onset of condensation and to check whe
it was smaller or bigger than the ideal gas value@15#. How-
ever, the total number of particles close to the center of
trap is necessarily small and large fluctuations in this num
are inevitable. These large fluctuations prevent a pre
measurement of the central density. A second obstructio
the direct measurement comes from the finite-size effe
which are far from negligible for current experimental se
ups. For finite systems, the critical point lacks a unique d
nition and finite-size scaling has to be performed. To circu
vent these difficulties, we propose another scheme
detecting effects beyond mean-field theory: We compare
results of the exact QMC calculation with the Hartree-Fo
2956 ©1999 The American Physical Society
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~HF! mean-field approximation. Since both computations c
be done for the same finite number of atoms, deviations l
to an estimate of the critical temperature shift, which will
largely independent of finite-size effects. The use of sca
arguments is thus avoided.

Besides extracting the effect of interactions on the criti
temperature, we concentrate in this paper on a precision
of the HF calculation at finite temperatures. In this appro
mation, the local density is determined by the local trap
tential and the mean interaction energy of the atoms i
self-consistent way. We have chosen this theory for sev
reasons: First, it is the simplest approach for an interac
Bose gas at finite temperature. Although collective mo
and anomalous averages are neglected, we will show th
already gives a rather accurate description for static pro
ties of the gas. Further, it provides an ideal reference sys
since it corresponds to alocally homogeneousBose gas.
Thus the corrections to HF should be comparable to prev
calculations in a homogeneous system, which predict an
creased critical temperature@13,14#. One could therefore ex
pect that the full QMC solution should give a higher conde
sate fraction than HF at identical temperatures close to
transition point. Since this effect also lies beyond the Bo
liubov and Popov description, there is no need to comp
with these theories in this temperature regime. We prefer
HF approximation as a reference, since it is qualitativ
easier to understand.

For a system closely corresponding to many experime
with 87Rb, we find deviations from the HF density which a
concentrated in the overlap region between the excited at
and the condensate. The number of condensed particlesN0 is
increased around the critical temperature by about 5%.
the quantitative analysis, we use a one-parameter fit to de
mine the condensate fraction. Our data analysis is base
reasonable physical assumptions and can also be used
precision determination of the experimental temperature.

The QMC calculation is beset with statistical fluctuation
In fact, the noise of independent Monte Carlo configuratio
reproduces the sample-to-sample variations of repeated
perimental measurements at the same temperatureT and par-
ticle numberN ~or chemical potential!. This allows us to
discuss the experimental observability of these correction
mean-field theory.

The Hamiltonian ofN interacting particles in anisotropic
harmonic trap with frequencyv is given by

H5(
i 51

N F pi
2

2m
1

1

2
mv2r i

2G1
1

2 (
i , j 51

N

V~r i j !, ~1!

whereV is the interatomic~pseudo! potential between two
particles. Since we want to identify corrections beyond me
field we are very careful to assure the compatibility of QM
and HF on the level of the interparticle potential. In HF, t
interaction is described by a single parameter, thes-wave
scattering lengtha. In QMC, we have adopted a hard-co
potential of diametera. In HF, the interaction is described b
the same parametera, the s-wave scattering length. Notic
that thes-wave scattering length of a hard-sphere poten
coincides with its diameter, so that the low-energy collisio
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of both potentials are identical. Up to now there is no e
dence that a more complex pseudopotential has to be
for 87Rb.

The partition functionZ of the system with inverse tem
peratureb5(kBT)21 is given by the trace of the symme
trized density matrixr5e2bH over all states.Z satisfies the
usual convolution equation:

Z5
1

N! (
P

E dRr~R,RP,b!

5
1

N! (
P

E dRE dR2•••E dRMr~R,R2 ,t!•••

3r~RM ,RP,t!. ~2!

Heret5b/M ,R is the 3N-dimensional vector of the partic
coordinatesR5(r 1 ,r 2 , . . . ,r N), andRP denotes the vecto
with permuted labels:RP5(r P(1) ,r P(2) , . . . ,r P(N)) @16#. As
explained elsewhere@8#, the QMC calculation relies on vir-
tually exact formulas for the density matricesr(R,R8,t) at
the higher temperature 1/t and performs the integral ove
R,R2 , . . . ,RM as well as the sum over all permutationsP in
Eq. ~2! by Monte Carlo sampling. Special data-handlin
techniques allow us to cope with very large atom numbersN.

As in @9# we consider a model system of 10 000 particle
corresponding to a critical temperature of the ideal gas
kBTc

0.20.25\v and a hard-core potential with diametera
50.0043a0@a05(\/mv)1/2#. These values are typical fo
most 87Rb experiments which are now in operation. We ge
erally perform computations at different values oft, and
extrapolate tot→0, the limit in which the QMC formulas
for the density matrices in Eq.~2! become manifestly exact
Notice that the convolution formula Eq.~2! is satisfied only
for the full density matrixr(R,R8,t) but not for the s-wave
contribution tor(R,R8,t). As t becomes smaller, the regio
of applicability of thes-wave approximation forr(R,R8,t)
shrinks, as higher angular momenta have to be taken
account. This is a ‘‘lifetime’’ effect, which stems from a
increased collision rate with other particles. We can n
understand that the corrections of the full QMC calculatio
with respect to the HF approximation can logically have tw
distinct origins:~i! the inapplicability of thes-wave approxi-
mation, ~ii ! the contribution of graphs~in the sense of a
complete quantum many-body calculation!, which are not
contained in HF, but which are completely summed up
the Monte Carlo procedure.

Within our QMC simulation, we have explicitly studie
the contributions of higher angular momenta (l>1) to
r(R,R8,t) and find them negligible. This allows us to affirm
that the essential contributions from these graphs dep
only on the low-energy scattering properties. Only the abo
point ~ii ! is realized.

In BEC, a single quantum state is occupied by a ve
large number of bosons. In the presence of interactions
state is a complicated many-body wave function. As far
one-particle properties are concerned it can, however, be
scribed by a single-particle wave functionc0(r ) which de-
scribes the condensate. In HF theory,c0(r ) is determined by
the modified Gross-Pitaevskii equation
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S 2
\2¹2

2m
1

mv2

2
r 21U@n0~r !12nT~r !#2m0Dc0~r !50,

~3!

where the densities of condensed particlesn0(r )
5N0uc0(r )u2 and of thermally excited particlesnT(r ) ac-
count for interactions between these particles. The inte
tion strength is given byU54p\2a/m, wherea denotes the
s-wave scattering length, which coincides with the hard-c
diameter. The factor of 2 in front ofnT accounts for the
quantum-statistical exchange energy. In the semiclassica
approximation, the thermal density is given by@10,11#

nT~r !5
1

lT
3

g3/2~e2[mv2r 2/212Un~r !2mT]/kBT!. ~4!

Here, the thermal wavelengthlT5\A2p/mkBT and the
Bose functiong3/2(z)5( j 51

` zj / j 3/2 have been used. In orde
to obtain the density distributions of the condensate and
the thermal component, Eqs.~3! and ~4! have to be solved
conjointly at the same chemical potentialm5m05mT with
the constraint of the fixed particle numberN ~different nota-
tions for the chemical potential appear for later convenien
cf. below!. HF neglects the collective excitations of a mo
fundamental Bogoliubov theory. However, it was observ
that these excitations do not contribute significantly to th
modynamic properties at temperatures well above the che
cal potential@17#. On the other hand, collective excitation
are fully included in our QMC calculation, as recently co
firmed by a comparison of two-particle correlation functio
at low temperatures@19#.

The precise solution of the HF equation is quite difficu
We have obtained identical results both with an iterative p
cedure@17# and an interpolation-minimization routine cf.@9#.
In a small window around the transition temperature, the
equations have no solution. In fact, on approaching this w
dow from below, the effective chemical potentialmeff(r )5
2mv2r 2/222Un(r )1mT in Eq. ~4! approaches zero a
shown in Fig. 1. Since the Bose functiong3/2(z) diverges for
z.1, this causes a discontinuity of the HF solution. Th
problem is a finite-size effect which is related to the non

FIG. 1. Absolute value of the effective chemical potent
umeff(r )u vs r /a0 of the Hartree-Fock solution for different temper
tures below the transition point (meff andT are in units of\v). As
the effective chemical potential approaches zero, the HF solu
becomes instable.
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nishing kinetic energy of the condensate wave function, a
falls within the region of critical fluctuations@10,18,17#.

The raw output of our Monte Carlo simulations consis
of histograms of the number densityN(r ), whereN(r )dr
describes the number of particles in aspherical shellbe-
tween r and r 1dr. The density r(r ) is given by r(r )
5N(r )/4pr 2. Notice that the number densityN(r ) is small
near the center of the~isotropic! trap simply because the
volume of the spherical shell goes to zero asr→0. A small
value of N(r ) for r;0 implies, however, that the fluctua
tions of this quantity;AN(r ) are necessarily large. As dis
cussed above, this makes thedirect measurement of the de
generacy parameter impractical. Of course, experime
measure neitherN(r ), nor r(r ), but most oftencuts of the
total density profiles(z)5*dx*dyN8(x,y,z) or s̃(x,y)
5*dzN8(x,y,z), whereN8(x,y,z)dxdydzis the number of
particles in the volume element atrW5(x,y,z). This quantity
is straightforward to calculate with the knowledge of t
number densityN(r ). However, the averaging process whic
obtainss or s̃ from N(r ) convolutes both the data and th
noise, and it is therefore preferable to analyze the num
densityN(r ) directly.

In Fig. 2, we compare the QMC results forN(r ) with the
HF solution far below the critical temperature,T.0.7Tc

0 .
We notice an excellent agreement between the two
proaches. For comparison we also show the correspon
result for 10 000 noninteracting bosons at the same temp
ture. The cutss(z) of the respective density profiles ar
shown in the inset. Both plots exhibit the two compone
which make up the particle distribution: one component
the region of the trap center, which belongs to the conden
atoms, and the second component of the thermal atoms
a much larger width. The cuts exhibit the customary peaks
BEC at z50. In the plots of the number densityN(r ), the
condensate distribution is given by the profile of the inn
peak. One can directly see that the peak height of the in
acting solution~both for HF and QMC! is reduced with re-
spect to the noninteracting case, whereas their distributio
widened. The last point corresponds to a shift of the posit
of the first peak to larger values inN(r ). The area underly-
ing the first peak determines the condensate fraction, and
can deduce that the number of condensed particles is

l

n

FIG. 2. Number densityN(r )/N from HF and the exact QMC
calculations compared to the noninteracting Bose gas, both foN
510 000 particles in an isotropic trap withb50.07/\v(T
.0.7 Tc

0). The inset shows the corresponding cutss(z)/N of the
total density profile@20#.
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creased by the interaction. The second component of the
tribution profile is built up by thermal atoms. Notice th
even far away from the center of the trap the distribution
the interacting gas is quantitatively different from the ide
gas. Therefore a precise temperature determination wi
the ideal gas model is not feasible. We have attempted t
the distribution of the wings to the semiclassical therm
density of the ideal gas, Eq.~4! with U5mT50. A tempera-
ture determination within this model fails by up to 5%. A
the very edge of the wings this error disappears, but
number of bosons found goes to zero, giving rise to the sa
measurement problem as discussed above. The determin
of the temperature is much more successful if we fit the t
of the distribution with Eq.~4!, where we replace the tota
densityn(r ) with the density of thermal atomsnT(r ) @21#.

In Fig. 3, we show the data for the number densityN(r )
for a temperature closer to the critical point,T.0.88Tc

0 .
Here, the thermal component clearly dominates over the c
densate contribution, as the majority of the atoms is therm
The difference between QMC and HF becomes visible: T
number of condensed particles in the exact numerical ca
lation is increasedwith respect to the mean field solution, a
can be seen from the first peak. Qualitatively, this po
agrees nicely with recent QMC@13# and renormalization
group calculations@14# for the homogeneous case. These c
culations indicate that the degeneracy parameter is cha
by interaction effects beyond mean-field and that for a dil
gas the critical temperature is increased linearly ina/lT .
The increased number of condensed particles is also refle
in the cutss(z) which are not shown. However, the cuts a
less sensitive and the peak atz50 is raised by less than 1%
as compared to HF.

It might be suspected that this increase is a mere co
quence of quasiparticle excitations. However, it has b
shown within the Popov approximation that quasipartic
lead rather to a minute decrease of the critical tempera
@17#.

To analyze the data we extract the number of conden
particles as well as their distribution function from the QM
calculation. In Ref. @9# both were obtained from the

FIG. 3. N(r )/N from HF and the exact QMC calculations fo
the same system as in Fig. 1, but at a higher temperatureb
50.056/\v (T.0.88Tc

0). The inset shows the two curves in th
overlap region@20#.
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permutation-cycle lengths~cf. also@22#!. Strictly, the deter-
mination of the condensate fraction requires the computa
of the off-diagonal elements of the one-particle density m
trix. These elements are not obtained in the calculation
Eq. ~2! samples the diagonal terms only. The largest eig
value of the one-particle density matrixdefinesthe number
of condensed atoms, and the corresponding eigenvecto
ground state wave function. At a difference with the case
4He, where the nondiagonal density matrix can be probed
neutron scattering~in the homogeneous sample!, these ele-
ments seem to be experimentally inaccessible in the trap
the present case, however, it is perfectly adequate to ‘‘
the QMC-generated histograms ofN(r ) from a very large
number of samples to smooth curvesn0(r ) andnT(r ), as has
been done to analyze experimentalin situ measurements. We
have found an excellent way of analyzing the data by us
functional forms forn0(r ) andnT(r ) as given in Eqs.~3! and
~4! with unrestricted ‘‘chemical potentials’’m0 and mT .
Equations~3! and~4! are used, but the data analysis isnot a
HF approximation in disguise: In the HF calculation, th
single parameterm allows us to satisfy the constraint on th
total number of particles, but it also determines the cond
sate fraction. The HF solution, whenever it exists, usually
unique. With bothm0 andmT , we have an additional param
eter which allows us to vary the ratio between condensed
thermal atoms. This new parameter is fixed by the condit
of minimizing the mean-square displacement between
data points and the interpolating function. Physically, this
procedure corresponds to the assumption that the correc
to mean-field theory will not change the shape of the wa
functions but rather their statistical weight, corresponding
the unrestricted ‘‘chemical potentials’’m0 andmT in our fit.
This assumption is also confirmed by a numerical diagon
ization of the one-particle density matrix, obtained by
QMC calculation of trapped, interacting bosons including t
nondiagonal elements@22#. Therefore, our data analysis is i
the spirit of the common applications of the variational pr
ciple @16#: We take the best available functional form for th
distribution function with one open parameter to minimi
the deviations to the QMC results. This explains the e
tremely small value of the obtainedx2 of the fit, which was
compatible with purely statistical deviations for histogram
containing more than 107 data points. We note in passin
that the densityr(r )5N(r )/4pr 2 and the component dens
ties are obtained with very good precisionafter performing
the fit of the raw-data histogram rather than from a dir
rescaling of the data.

This fit could also provide a scheme for the accurate
termination ofT within experimentalin situ measurements
In current experiments the temperature is mostly determi
by a time-of-flight method. Due to collisions during the e
pansion and the noninstantaneous switch off of the trap
method limits the temperature determination to 5%, so th
more accurate determination of the critical temperature
the condensate fraction has not yet been possible@23,24#.

The use of the fit allows us to computeN0 vs temperature
for the set of parameters chosen. The results, extrapolate
t→0, are plotted in Fig. 4 together with the HF result. T
QMC calculation gives a consistently larger value ofN0 than
HF at the same temperatures. It should be noticed that
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HF equations, as mentioned above, have no solution fo
range of temperatures close toTc .

The correction to mean-field theory shown in Fig. 4 pr
vides definite support for the scenario found in the spatia
homogeneous Bose gas: Interaction effects beyond m
field lead to an increased tendency towards Bose conde
tion @13,14#. There is, however, an important difference
context: in a homogeneous system the density at each p
is fixed and unchanged by interactions, so that the shift inTc
corresponds directly to corrections to the homogeneous
calculation. As we have seen in the present case, the tra
much more complicated since the finite-size effects,
mean field itself, and finally the corrections to mean field
influence the density profile and the condensate fract
However, the finite-size effects and the mean field itself
already included in HF. Therefore the difference betwe
QMC and HF becomes directly comparable to the corr
tions calculated for the homogeneous system. In Ref.@13#,
the following behavior is proposed:dTc /Tc

05(Tc2Tc
0)/Tc

0

.0.34ar0.34.0.46a/lT
c
0, whereTc

0 is the critical tempera-

ture of a homogeneous Bose gas. In our case we would

FIG. 4. Extrapolated condensate fractionN0 /N from HF ~lower!
and from QMC~upper! vs T in units of \v. The gray line interpo-
lates the QMC data. The inset illustrates the instability of the
solution as the effective chemical potentialumeff(r )u approaches
zero.
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pect a change of the critical temperaturedTc;0.065\v.
This corresponds roughly to the apparently constant offse
T of the two lines in Fig. 4.

It has been suggested@15# that a direct measurement o
the density in the center of the trapr(r 50) would be useful
to determine the deviation of the degeneracy parameter f
the mean-field result,r(0)lTc

3 52.61. Even though we are

able to extractr(0) from QMC or from experimental data
very precisely, the onset of condensation is not very sh
and the finite-size effects prevent a precise determinatio
the critical degeneracy parameter@25#. We repeat that a di-
rect comparison between HF~which is available for finite
systems! and the data is much more promising.

It is evident from an experimental point of view that th
observation of these corrections necessitates a high res
tion for T and forN(r ). Naturally, a single observation of
condensate will not result in a smooth curve for the his
grams: even for ideal experiments there are intrin
quantum-statistical fluctuations which may prevent the p
cision measurement ofN(r ), necessary to determine the d
viations from mean-field theory. Within QMC, we have d
termined these fluctuations from repeated measuremen
the completedistribution of one whole sample. We find tha
an average of at least 50 independent samples has to be
in order to detect that there is a difference between HF
the exact result in the sense of a Kolmogorov-Smirnov t
@26#. For a precise evaluation~as in Fig. 3! a much larger
data pool is necessary. Experimentally this seems to req
a nondestructive measurement scheme, where the ne
configuration averages must be accumulated by a time a
age over many thermal relaxation times. A detailed qua
tative prescription for this effect is beyond the scope of t
paper.

In conclusion, we have shown that the Hartree-Fock
proximation succeeds in giving an accurate description
static properties in current BEC experiments. Moreover,
have computed thecorrectionsto this mean-field theory by
using numerically exact quantum Monte Carlo methods. E
perimental access to the mean-field corrections will be
fundamental theoretical interest@27#. Comparison between
theory and experiment on the level treated in this pape
very difficult but, we hope, conceivable.
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