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Precision Monte Carlo test of the Hartree-Fock approximation for a trapped Bose gas
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We compare the semiclassical Hartree-Fock approximation for a trapped Bose gas to a direct path-integral
quantum Monte Carlo simulation. The chosen parameters correspond to &iRbrexperiments. We observe
corrections to the mean-field density profile: the path-integral calculation reveals an increase of the number of
condensed particles, which is of the same order as a previously computed result for a homogeneous system. We
discuss the experimental observability of the effect and propose a method to analyze idasiwéxperi-
ments.[S1050-29479)02404-X]

PACS numbefs): 03.75.Fi, 02.70.Lg, 05.30.Jp

The experimental realization of Bose-Einstein condensadensed particles beloWw, than the free Bose gas, one of the
tion (BEC) in dilute atomic vapor$1—3] has generated ex- predictions of mean-field theori¢40,11. This effect is in-
traordinary experimental and theoretical interest. From thdrinsic to the inhomogeneous trap potential, where the den-
viewpoint of quantum many-body physics, the trappedsity is not fixed: The mean interaction of a given particle
atomic vapors are peculiar. Well above the critical point, thewith the other particles, as well as with the external potential,
gases are extremely dilute, and their description as noninteghanges the density profile with respect to the ideal Bose gas.
acting bosons is very accurate. As the condensation sets in, Although this leads to a shift of the critical temperature
the trapped atoms are strongly compressed in real spaceven within mean-field theojycondensation sets in as soon
Then, interactions become much more important and eve@s the phase-space density reactiesally) the ideal gas
the simplest thermodynamic quantitiéspatial distribution, limit: As for the ideal gas, mean-field theory predicts the
condensate fraction, ejchave to be obtained by the appro- occurrence of BEC for a degeneracy parameter in the center
priate quantum many-body technique. At zero temperaturenf the trapp(0)A3=2.61...,wherep(0) denotes the den-
the Bogoliubov approach of weakly interacting Bose gases isity in the center of the trap andr=%+27/mkgT is the
well established[4]. There, the macroscopic condensatethermal wavelength.
wave function is given by the Gross-Pitaevskii equafidh Up to now, the deviation of the degeneracy parameter
The effects of noncondensed particles at finite temperaturegom the ideal gas value due to interactions has not been
can be included via the Hartree-Fock-Bogoliubov equationsgdetermined. Only the homogeneous system has been studied,
which have been solved in the Popov approximafi®hand and has given contradictory results for the order of magni-
in various simplified form$7]. tude and even the sign of the critical temperature $hi.

The equilibrium properties of Bose gases can also be diRelevant recent works are a QM€3] and a renormalization
rectly computed by path integral quantum Monte Carlogroup calculatior{14] in the homogeneous case. Both pre-
(QMC) simulation[8]. Very importantly, the QMC calcula- dict a decreasing degeneracy parameter, which is equivalent
tion is free of systematic errors: apart from purely statisticato an increased critical temperature. The two calculations
fluctuations, it gives an exact numerical solution of BEC. Fordiffer considerably in the amount of this shift.
simulations corresponding to dilute atomic vapors, the QMC The main point of this paper is to calculate corrections to
calculation can be performed directly for the large particlemean-field theory of the trapped Bose gas directly in an ex-
numbers ¢ 10°~1C°) and the temperatures of experimental perimental setting. It was proposed earlier to measure the
interest[9]. local degeneracy parameter in the center of the pép)A3,

A subject of considerable interest in these systems is thgrecisely at the onset of condensation and to check whether
detailed study of the critical region of the phase transitionit was smaller or bigger than the ideal gas vallis]. How-

The QMC approach was already used to sh@ythat the ever, the total number of particles close to the center of the
trapped Bose gas with repulsive interactions has a lowefrap is necessarily small and large fluctuations in this number
critical temperatureT, and a smaller numbeN, of con-  are inevitable. These large fluctuations prevent a precise
measurement of the central density. A second obstruction to
the direct measurement comes from the finite-size effects,

*Electronic address: holzmann@physique.ens.fr which are far from negligible for current experimental set-
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(HF) mean-field approximation. Since both computations carof both potentials are identical. Up to now there is no evi-

be done for the same finite number of atoms, deviations leadence that a more complex pseudopotential has to be used

to an estimate of the critical temperature shift, which will befor &'Rb.

largely independent of finite-size effects. The use of scaling The partition functionZ of the system with inverse tem-

arguments is thus avoided. peratureB=(kgT) ! is given by the trace of the symme-
Besides extracting the effect of interactions on the criticakrized density matrixp=e~#" over all statesZ satisfies the

temperature, we concentrate in this paper on a precision teasual convolution equation:

of the HF calculation at finite temperatures. In this approxi-

mation, the local density is determined by the local trap po- 1

tential and the mean interaction energy of the atoms ina z=_—_ dep(R,RP,,B)

self-consistent way. We have chosen this theory for several N “F

reasons: First, it is the simplest approach for an interacting 1

Bose gas at finite temperature. Although collective modes = def dR,- - - f dRyp(R,Ry,7)- - -

and anomalous averages are neglected, we will show that it N! “F

already gives a rather accurate description for static proper-

ties of the gas. Further, it provides an ideal reference system,

since it corresponds to kcally homogeneou8ose gas.

Thus the corrections to HF should be comparable to previouslere 7= 8/M,R is the 3N-dimensional vector of the particle

calculations in a homogeneous system, which predict an ineoordinatesR=(r,,r,, ... ry), andRP denotes the vector

creased critical temperatuf&3,14. One could therefore ex-  with permuted IabeIsRP=(rp(l) ey, -« - Fpy) [16]. As

pect that the full QMC solution should give a higher conden-explained elsewhergs], the QMC calculation relies on vir-

sate fraction than HF at identical temperatures close to thgally exact formulas for the density matriceéR,R’,7) at

transition point. Since this effect also lies beyond the Bogothe higher temperature 4/and performs the integral over

liubov and Popov description, there is no need to compar® R,, ... Ry, as well as the sum over all permutatiddsn

with these theories in this temperature regime. We prefer thgq. (2) by Monte Carlo sampling. Special data-handling

HF approximation as a reference, since it is qualitativelytechniques allow us to cope with very large atom numbers

easier to understand. As in[9] we consider a model system of 10 000 particles,

For a system closely corresponding to many experimentgorresponding to a critical temperature of the ideal gas of
with ®'Rb, we find deviations from the HF density which are k,T9~20.25,» and a hard-core potential with diameter

concentrated in the overlap region between the excited atoms g 004a,[a,= (A/mw)Y?]. These values are typical for

and the condensate. The number of condensed pamigles o5t 87Rb experiments which are now in operation. We gen-
increased around the critical temperature by about 5%. FQgra|ly perform computations at different values af and
the quantitative analysis, we use a one-parameter fit to dEteé'xtrapoIate tor—0, the limit in which the QMC formulas
mine the conden_sate fract|on_. Our data analysis is based gg; the density matrices in Eq2) become manifestly exact.
reasonable physical assumptions and can also be used fol\gtice that the convolution formula E€Q) is satisfied only
precision determlnatlpn pf the expganmen_tall temperature.  for the fyll density matrixo(R,R’,7) but not for the swave
The QMC calculation is beset with statistical fluctuations. -qntribution top(R,R’, 7). As = becomes smaller, the region
In fact, the noise of independent Monte Carlo configurationg, applicability of thes-wave approximation fop(R,R’,7)
reproduces the sample-to-sample variations of repeated eXpinks, as higher angular momenta have to be taken into
perimental measurements at the same temperatargl par-  gecount. This is a “lifetime” effect, which stems from an
ticle numberN (or chemical potential This allows us 10 ihcreased collision rate with other particles. We can now

discuss the experimental observability of these corrections tQ,qerstand that the corrections of the full QMC calculations

X p(Ry ,R", 7). (2

mean-field theory. _ _ o _ with respect to the HF approximation can logically have two
The Hamiltonian o interacting particles in aisotropic  gjstinct origins:(i) the inapplicability of theswave approxi-
harmonic trap with frequency is given by mation, (ii) the contribution of graphsgin the sense of a
complete quantum many-body calculafipmvhich are not
p2 LN contained in HF, but which are completely summed up by
- Moo 22 T the Monte Carlo procedure.
H_.Zl [Zm omeTity i,,zzl V(ry), @ Within our QMC simulation, we have explicitly studied

the contributions of higher angular momenta=() to
p(R,R’,7) and find them negligible. This allows us to affirm
whereV is the interatomigpseud® potential between two that the essential contributions from these graphs depend
particles. Since we want to identify corrections beyond meamnly on the low-energy scattering properties. Only the above
field we are very careful to assure the compatibility of QMC point (ii) is realized.
and HF on the level of the interparticle potential. In HF, the In BEC, a single quantum state is occupied by a very
interaction is described by a single parameter, stveave large number of bosons. In the presence of interactions this
scattering lengtha. In QMC, we have adopted a hard-core state is a complicated many-body wave function. As far as
potential of diametea. In HF, the interaction is described by one-particle properties are concerned it can, however, be de-
the same parametey, the sswave scattering length. Notice scribed by a single-particle wave functiary(r) which de-
that thes-wave scattering length of a hard-sphere potentiakcribes the condensate. In HF theapy(r) is determined by
coincides with its diameter, so that the low-energy collisionsthe modified Gross-Pitaevskii equation
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FIG. 1. Absolute value of the effective chemical potential
| eit(r)| Vs r/ag of the Hartree-Fock solution for different tempera-
tures below the transition poinjuty andT are in units ofh w). As
the effective chemical potential approaches zero, the HF solutio
becomes instable.

nishing kinetic energy of the condensate wave function, and
£2V2  mw? falls within the region of critical fluctuationigl0,18,17.

- + Tf2+ ULno(r)+2n¢(r)] = wo| $ho(r) =0, The raw output of our Monte Carlo simulations consists

3) of histograms of the number densiN(r), whereN(r)dr

describes the number of particles inspherical shellbe-

where the densities of condensed particleg(r) tweenr and r+dr. The density p(r) is given by p(r)
=No| #o(r)|? and of thermally excited particles(r) ac- =N(r)/4mr2. Notice that the number densily(r) is small
count for interactions between these particles. The interadi€ar the center of thésotropig trap simply because the
tion strength is given by = 47#2a/m, wherea denotes the volume of the spherical shell goes to zeroras0. A small
s-wave scattering length, which coincides with the hard-corevalue of N(r) for r~0 implies, however, that the fluctua-
diameter. The factor of 2 in front ofiy accounts for the tions of this quantity~yN(r) are necessarily large. As dis-
guantum-statistical exchange energy. In the semiclassical HEussed above, this makes ttieect measurement of the de-
approximation, the thermal density is given [i0,11] generacy parameter impractical. Of course, experiments
measure neithel(r), nor p(r), but most oftencuts of the
total density profile o(z)=[dx/dyN'(x,y,z) or o(x,y)
=[dzN'(x,y,z), whereN’(x,y,z)dxdydzis the number of
particles in the volume element é#(x,y,z). This quantity
Here, the thermal wavelengthr=727/mksT and the IS Straightforward to calculate with the knowledge of the
Bose functiongs(z) ==7_,2/j%2 have been used. In order number densityN(r). However, the averaging process which
to obtain the density distributions of the condensate and ofbtainso or o from N(r) convolutes both the data and the
the thermal component, Eqé3) and (4) have to be solved noise, and it is therefore preferable to analyze the number
conjointly at the same chemical potentjak uo=wr with  densityN(r) directly.
the constraint of the fixed particle number(different nota- In Fig. 2, we compare the QMC results f(r) with the
tions for the chemical potential appear for later convenienceHF solution far below the critical temperaturTé,zOJTg.
cf. below). HF neglects the collective excitations of a more We notice an excellent agreement between the two ap-
fundamental Bogoliubov theory. However, it was observedproaches. For comparison we also show the corresponding
that these excitations do not contribute significantly to therresult for 10 000 noninteracting bosons at the same tempera-
modynamic properties at temperatures well above the chemiure. The cutso(z) of the respective density profiles are
cal potential[17]. On the other hand, collective excitations shown in the inset. Both plots exhibit the two components
are fully included in our QMC calculation, as recently con- which make up the particle distribution: one component in
firmed by a comparison of two-particle correlation functionsthe region of the trap center, which belongs to the condensed
at low temperaturegl9]. atoms, and the second component of the thermal atoms with

The precise solution of the HF equation is quite difficult. a much larger width. The cuts exhibit the customary peaks of
We have obtained identical results both with an iterative proBEC atz=0. In the plots of the number densily(r), the
cedurg17] and an interpolation-minimization routine ¢8].  condensate distribution is given by the profile of the inner
In a small window around the transition temperature, the Hfpeak. One can directly see that the peak height of the inter-
equations have no solution. In fact, on approaching this winacting solution(both for HF and QM is reduced with re-
dow from below, the effective chemical potentj@lu(r)= spect to the noninteracting case, whereas their distribution is
—mw?r?/2—2Un(r)+ ur in Eq. (4) approaches zero as widened. The last point corresponds to a shift of the position
shown in Fig. 1. Since the Bose functigg,(z) diverges for  of the first peak to larger values M(r). The area underly-
z>1, this causes a discontinuity of the HF solution. Thising the first peak determines the condensate fraction, and one
problem is a finite-size effect which is related to the nonva-can deduce that the number of condensed particles is de-

2m

1 _ 2.2 _
nT(r): —393/2(8 [mw“r4/2+2Un(r) ,u-r]/kBT)_ (4)
I
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— permutation-cycle length&f. also[22]). Strictly, the deter-
i ng; /f mination of the condensate fraction requires the computation
\ A‘ of the off-diagonal elements of the one-particle density ma-
“"Mq’" trix. These elements are not obtained in the calculation, as
Eqg. (2) samples the diagonal terms only. The largest eigen-
i value of the one-particle density matridefinesthe number
i of condensed atoms, and the corresponding eigenvector the
Is 20 25 30 33 ground state wave function. At a difference with the case of
. “He, where the nondiagonal density matrix can be probed by
. neutron scatteringin the homogeneous sample¢hese ele-
. ments seem to be experimentally inaccessible in the trap. In
7 the present case, however, it is perfectly adequate to “fit”
B / 7 the QMC-generated histograms Nfr) from a very large
o.0C- ¢ I number of samples to smooth curvegr) andn(r), as has
0.0 5.0 10.0 15.0 r[ad been done to analyze experimeritakitu measurements. We
FIG. 3. N(r)/N from HF and the exact QMC calculations for have_found an excellent way of analyz_ing t_he data by using
the same system as in Fig. 1, but at a higher temperagaire, functional forms fome(r) andn+(r) as given in Eqst3) and
=0.056hw (T=0.88T%). The inset shows the two curves in the (4) with unrestricted “chemical potentials’uo and sr.
Equations(3) and(4) are used, but the data analysiqis a
HF approximation in disguise: In the HF calculation, the

creased by the interaction. The second component of the di§ingle parametep. allows us to satisfy the constraint on the
tribution profile is built up by thermal atoms. Notice that total number of particles, but it also determines the conden-
even far away from the center of the trap the distribution ofsate fraction. The HF solution, whenever it exists, usually is
the interacting gas is quantitatively different from the idealunique. With bothu, and w1, we have an additional param-
gas. Therefore a precise temperature determination withigter which allows us to vary the ratio between condensed and
the ideal gas model is not feasible. We have attempted to fthermal atoms. This new parameter is fixed by the condition
the distribution of the wings to the semiclassical thermalof minimizing the mean-square displacement between the
density of the ideal gas, E¢) with U= u1=0. A tempera- data points and the interpolating function. Physically, this fit
ture determination within this model fails by up to 5%. At procedure corresponds to the assumption that the corrections
the very edge of the wings this error disappears, but théo mean-field theory will not change the shape of the wave
number of bosons found goes to zero, giving rise to the saminctions but rather their statistical weight, corresponding to
measurement problem as discussed above. The determinatithite unrestricted “chemical potentialsiiy and w in our fit.
of the temperature is much more successful if we fit the tailSThis assumption is also confirmed by a numerical diagonal-
of the distribution with Eq.(4), where we replace the total ization of the one-particle density matrix, obtained by a
densityn(r) with the density of thermal atonms;(r) [21]. QMC calculation of trapped, interacting bosons including the
In Fig. 3, we show the data for the number dengitr) nondiagonal elemen{®2]. Therefore, our data analysis is in
for a temperature closer to the critical poifit=0.88T2. the spirit of the common applications of the variational prin-
Here, the thermal component clearly dominates over the corgiple [16]: We take the best available functional form for the
densate contribution, as the majority of the atoms is thermaMistribution function with one open parameter to minimize
The difference between QMC and HF becomes visible: Théhe deviations to the QMC results. This explains the ex-
number of condensed particles in the exact numerical calcuremely small value of the obtaineg’ of the fit, which was
lation isincreasedwith respect to the mean field solution, as compatible with purely statistical deviations for histograms
can be seen from the first peak. Qualitatively, this pointcontaining more than fOdata points. We note in passing
agrees nicely with recent QME13] and renormalization that the density(r)=N(r)/4=r? and the component densi-
group calculation§14] for the homogeneous case. These cal-ties are obtained with very good precisiafter performing
culations indicate that the degeneracy parameter is changéide fit of the raw-data histogram rather than from a direct
by interaction effects beyond mean-field and that for a diluterescaling of the data.
gas the critical temperature is increased linearlyaii ;. This fit could also provide a scheme for the accurate de-
The increased number of condensed patrticles is also reflectéermination of T within experimentain situ measurements.
in the cutsa(z) which are not shown. However, the cuts are In current experiments the temperature is mostly determined
less sensitive and the peakzat 0 is raised by less than 1% by a time-of-flight method. Due to collisions during the ex-
as compared to HF. pansion and the noninstantaneous switch off of the trap this
It might be suspected that this increase is a mere consenethod limits the temperature determination to 5%, so that a
guence of quasiparticle excitations. However, it has beemore accurate determination of the critical temperature and
shown within the Popov approximation that quasiparticleshe condensate fraction has not yet been pos§i8e?4].
lead rather to a minute decrease of the critical temperature The use of the fit allows us to computg vs temperature
[17]. for the set of parameters chosen. The results, extrapolated to
To analyze the data we extract the number of condensed— 0, are plotted in Fig. 4 together with the HF result. The
particles as well as their distribution function from the QMC QMC calculation gives a consistently larger value\gfthan
calculation. In Ref.[9] both were obtained from the HF at the same temperatures. It should be noticed that the
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Ng/N| - ' pect a change of the critical temperatusé . ~0.065; w.
' 7 This corresponds roughly to the apparently constant offset in
i T of the two lines in Fig. 4.
It has been suggestdd5] that a direct measurement of
the density in the center of the trafr =0) would be useful
7 to determine the deviation of the degeneracy parameter from
| the mean-field resultp(O)A$C:2.61. Even though we are

able to extracip(0) from QMC or from experimental data
very precisely, the onset of condensation is not very sharp
and the finite-size effects prevent a precise determination of
- the critical degeneracy paramef@5]. We repeat that a di-
rect comparison between H@vhich is available for finite
systemg and the data is much more promising.

It is evident from an experimental point of view that the
: observation of these corrections necessitates a high resolu-
tion for T and forN(r). Naturally, a single observation of a
condensate will not result in a smooth curve for the histo-
grams: even for ideal experiments there are intrinsic

FIG. 4. Extrapolated condensate fractig/N from HF (lower)  quantum-statistical fluctuations which may prevent the pre-
and from QMC(upped vs T in units of 4. The gray line interpo- ~ Cision measurement M(r), necessary to determine the de-
lates the QMC data. The inset illustrates the instability of the HFViations from mean-field theory. Within QMC, we have de-
solution as the effective chemical potentialeq(r)| approaches termined these fluctuations from repeated measurements of
zero. the completedistribution of one whole sample. We find that

an average of at least 50 independent samples has to be taken
in order to detect that there is a difference between HF and

HF equations, as mentioned above, have no solution for H€ exact result in the sense of a Kolmogorov-Smirnov test
range of temperatures close To. 26]. For a precise evaluauo(:_as in Fig. 3.a much larger _

The correction to mean-field theory shown in Fig. 4 pro_data pool is necessary. Experimentally this seems to require
vides definite support for the scenario found in the spatiall)f;l nondestructive measurement scheme, where the needed

homogeneous Bose gas: Interaction effects beyond meaconﬂguraﬂon averages must be accumulated by a time aver-

field lead to an increased tendency towards Bose condensgge over many thermal relaxation times. A detailed quanti-

tion [13,14). There is, however, an important difference of thtive prescription for this effect is beyond the scope of this

context: in a homogeneous system the density at each pOiﬁta?r?réonclusion, we have shown that the Hartree-Fock ap-
is fixed and unchanged by interactions, so that the shifiin  yroximation succeeds in giving an accurate description of
corresponds directly to corrections to the homogeneous Hktatic properties in current BEC experiments. Moreover, we
calculation. As we have seen in the present case, the trap ffave computed theorrectionsto this mean-field theory by
much more complicated since the finite-size effects, thaising numerically exact quantum Monte Carlo methods. Ex-
mean field itself, and finally the corrections to mean field allperimental access to the mean-field corrections will be of
influence the density profile and the condensate fractionfundamental theoretical interef27]. Comparison between
However, the finite-size effects and the mean field itself areaheory and experiment on the level treated in this paper is
already included in HF. Therefore the difference betweervery difficult but, we hope, conceivable.

QMC and HF becomes directly comparable to the correc-
tions calculated for the homogeneous system. In RE],
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