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We present an efficient new Monte Carlo method which couples path integrals for finite temperature
protons with quantum Monte Carlo calculations for ground state electrons, and we apply it to metallic
hydrogen for pressures beyond molecular dissociation. We report data for the equation of state for
temperatures across the melting of the proton crystal. Our data exhibit more structure and higher
melting temperatures of the proton crystal than do Car-Parrinello molecular dynamics results. This
method fills the gap between high temperature electron-proton path integral and ground state diffusion
Monte Carlo methods and should have wide applicability.
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The knowledge of the physical properties of hydrogen
in a wide range of thermodynamic conditions is a key
problem in planetary and high pressure physics [1,2]. In
the search for the metallization transition, three different
insulating molecular crystal phases have been clearly
observed in diamond anvil cell experiments up to
3.2 Mbar [3] at room temperature and below.
Metallization has been obtained in shock wave experi-
ments for a warm dense molecular liquid [4], but proper-
ties at finite temperature and/or at higher pressure are
largely unknown because experiments are difficult.

A large body of theoretical investigations of high
pressure hydrogen [S5] has helped the understanding of
the experimental observations and hold out the prospect
of predicting the room temperature metallization pres-
sure and the phase diagram at higher pressure. However,
the present understanding of high pressure hydrogen is
unsatisfactory because energy differences among differ-
ent crystalline phases are small requiring accurate total
energy method to locate transition lines, size effects are
large in metallic systems requiring Brillouin zone sam-
pling, and proton quantum effects are important and can
influence the energetic ordering of crystal phases. An
accurate theoretical prediction of metallization may re-
quire accuracy beyond that of the (local-density approxi-
mation) LDA + GGA (generalized gradient approxi-
mation) density functional theory [6,7].

In this Letter, we describe a new quantum Monte Carlo
(QMC) method. Previous QMC studies of hydrogen at
T = 0 have treated electrons and protons at the same level
of description and become inefficient in following the
evolution of particles of very dissimilar mass (m,, /m, =
1836). Nonetheless, they have established that pressure
dissociation of hydrogen molecules at 7 = 0 K occurs at
ry =[3/(4mn,)]'/? = 1.31 (P ~ 3 Mbars) [8], where n, is
the electronic number density. Upon dissociation the mo-
lecular crystal transforms to a proton lattice of diamond
structure and later to a lattice of cubic symmetry (bcc) at
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P = 8 Mbars [9]. Obviously, the interesting effects of
temperature are absent in this procedure. At finite tem-
perature, restricted path integral Monte Carlo (RPIMC)
simulations [10] have been used to predict the equation of
state (EOS) and to investigate the occurrence of the
plasma phase transition [11]. In RPIMC simulations,
both electrons and protons are at finite temperature, but
it is efficient only for temperatures above 1/20 of the
electronic Fermi temperature (roughly 3 X 10* K at r, =
1). The new method described here, called coupled
electronic-ionic Monte Carlo (CEIMC) method [12,13],
is able to fill the gap between the RPIMC simulations and
the ground state QMC methods. We study metallic hydro-
gen in a range of densities and temperatures where mole-
cules are absent and where protons undergo a solid-fluid
transition. We report results for the EOS and give a
qualitative location of the transition line.

In the CEIMC method, in contrast to previous QMC
methods, the electrons and protons are not treated at the
same level but within the Born-Oppenheimer approxima-
tion. The proton degrees of freedom are advanced by a
Metropolis algorithm in which the energy difference
between a proton state S and a trial state S’ is computed
by a zero temperature QMC calculation [either varia-
tional (VMC) or reptation (RQMC) [14]] for the elec-
trons. Unbiased sampling of the proton configurations is
achieved using the penalty method [15] to take account of
the statistical noise in the energy difference.

We sample the electronic degrees of freedom according
to the sum of the electronic distribution functions (e.g.,
the square of the trial wave function in VMC method) for
the S and S’ states, and we compute the energies for the
two states as correlated sampling averages [12,13],
thereby reducing the noise. Analytic trial wave functions,
including backflow and three-body correlation [16], have
been used. These functions are particularly appropriate
since they are quite accurate without adjustable parame-
ters requiring optimization and their computational cost
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is much less than using orbitals expanded in a plane wave
basis as was done in previous QMC calculations [9].

To go beyond VMC level, we implemented a RQMC
algorithm [14] to calculate, more accurately, the elec-
tronic ground state energy and other properties. Similar
to diffusion Monte Carlo (DMC) method, in RQMC
method the thermal density matrix projects out the
ground state wave function from the trial function within
the fixed-node approximation. This projection is accom-
plished by a Metropolis walk in path space. Because one
has an explicit sampled distribution, it is easier to com-
pute energy differences. Other quantities are computed
without the mixed-estimator bias [14] of DMC calcula-
tions. The high quality of our trial wave functions makes
it possible to relax to the ground state with a very limited
number, P, of time slices. The electronic path space is
sampled by a reptation algorithm in which, at each step, a
new link is added to one end of the path and an existing
link is deleted from the other end, subject to an accep-
tance/rejection test. In previous RQMC implementations,
the growth direction was chosen at random. To speed up
convergence we have introduced the “bounce’ algorithm
in which the growth direction is reversed only when a
move is rejected [17]. The bounce algorithm can be shown
to sample the correct probability distribution of the path
and to explore phase space much more rapidly because the
rejection probability is so low, typically less than 5%.

To reduce finite size effects in metallic systems, we
used twist averaged boundary conditions (TABC) when
computing electronic energies (i.e., we integrate over the
Brillouin zone of the super cell) [13,18]. Using periodic
boundary conditions (PBC) would require a system with
more than 5000 electrons to reach the thermodynamic
limit to the same accuracy. For a given protonic displace-
ment, we compute the energy difference using only 100
electronic steps, but at 1000 different k points. After
averaging over k points, the noise level is small enough
to simulate temperatures as low as 100 K [13] for classical
nuclei. This is an important feature of the CEIMC
method: averaging over the boundary conditions does
not make the calculation run much slower.

Quantum effects for protons are relevant at high pres-
sure. We represent protons by imaginary time path inte-
grals without considering the statistics of the protons.
Those effects are negligible in this temperature-density
range. For efficiency, it is important to minimize the
number of protonic time slices. We have used the pair
action [19] of an effective proton-proton potential and
treated the difference between the true Born-
Oppenheimer energy and the effective potential with
the primitive approximation. With this action, we find
that a proton imaginary time step 7, = 0.3 X 1073 K™!
is appropriate for r; = 1. We randomly assign a subset of k
points (from the TABC) to each protonic slice. This does
not cause a bias. The strategy allows one to simulate
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quantum protons at essentially the same computational
cost as classical protons, except for the slower relaxation
of the protonic paths. This is in contrast to a deterministic
method such as ab initio path integral molecular dynam-
ics [20] where the execution time per step would be multi-
plied by the number of protonic time slices and by the
number of sampled k points.

In order to assess the accuracy of the CEIMC method,
we first consider a system of N, = N, = 16 at ry = 1 and
T =5000 K and compare with RPIMC calculations.
CEIMC-RQMC calculations, performed with 7, =
0.0125H !, B, = 0.5 H™!, lowers the VMC total energy
by 4(2) mH/atom = 1260(630) K/atom. The VMC and
RQMC pressures agree within error bars. Comparison
between VMC and RQMC pair correlation functions is
also very good (see Fig. 1). The g,,(r) RQMC curve is
slightly more structured than the VMC one. RPIMC data,
obtained with free particle nodes [10,13] and 1000 time
slices, agree well with CEIMC ones. (Small differences in
the g,,(r) are attributed to the more accurate nodal struc-
ture of CEIMC data compared to RPIMC data.)

Next we compare our results with Car-Parrinello mo-
lecular dynamics (CPMD) simulation [21] which uses the
LDA computed forces. Figure 2 shows that CEIMC-VMC
g,p(r)’s exhibit considerably more structure than does
LDA. CPMD simulations considered systems of classical
protons at the I" point only. We compare with two differ-
ent CEIMC calculations for classical protons, namely, an
open shell system (N, = 32) with the TABC, and a closed
shell system (N, = 54) with the I' point only. For the
latter case, we find that the g ,,(r) from VMC and RQMC
calculations (not shown) agree; but they exhibit more
structure than CPMD. The TABC one is in the liquid
state, while the simulation using only the I' point, ini-
tially prepared in a liquid state from temperature quench-
ing, exhibits the onset of spontaneous crystallization. The

r(a.u.)

FIG. 1 (color online). CEIMC-RPIMC comparison for
electron-proton and proton-proton correlation function at r;, =
1,T=5000K, N, =N, = 16.
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FIG. 2 (color online). Pair correlation functionat ry = 1,7 =
1000 K. Comparison between CEIMC-VMC TABC with N, =
32, CEIMC-VMC PBC N, = 54, and CPMD LDA N, = 162
(simulation with N, = 54 is identical). Data from CEIMC-
VMC TABC at T = 2000 K (<) are also reported.

larger correlation in CEIMC results with respect to
CPMD is compatible with our early estimate of the melt-
ing temperature of the fcc crystal of classical proton
between 1000 and 1500 K [13] at variance with the
LDA of 350 K (for the bcc crystal) [21]. The observed
discrepancy between the CEIMC method and CPMD is
surprising since LDA is generally believed to be accurate

TABLE L

at high density. However, a previous study of hydrogen at
rg = 1.31 [9] reported that differences in energy among
several crystal structures obtained within LDA are
smaller than energy differences from DMC calculations
by roughly a factor of 2. Also zero point energies in QMC
calculations were roughly twice the LDA estimates (from
the harmonic approximation). A study of liquid molecu-
lar hydrogen configurations [12] also found that DMC
ground state energies fluctuate 40% more than the LDA
energies do. This suggests that the Born-Oppenheimer
surface from LDA is flatter than the more accurate one
from QMC calculations. We have no comparisons with
other density-functional theory (DFT) functionals. In
addition, there is a known issue in computing the ionic
temperature in CPMD simulations; the simple estimate
based on the ionic kinetic energy provides only a lower
bound of the true temperature [22]. Tracing the origin of
the observed discrepancy between CEIMC and CPMD
results would deserve an independent study. Here we just
note that better agreement is observed between CPMD
results at temperature 7 and CEIMC results at tempera-
ture 27 for 300 = T = 3000; see for instance Fig. 2.

We have compared VMC results with the RQMC re-
sults at r; = 1.2 and T = 5000 K. We find that the VMC
energy is systematically higher by roughly 7.6(2) mH/
atom = 2400(60) K/atom, while the VMC pressure is
systematically lower by 0.03(1) Mbars. The error on the
energy is expected to be independent of the temperature

Total energy, kinetic and potential energies, pressure, Lindemann ratio for bce crystal, y;, and proton kinetic energy,

K, for a system of N, = 54 protons with VMC TABC. K, can be compared to 3KzT/2 (last column). Units of energy are hartrees
per proton. M, is the number of protonic time slices (M, = 1 means classical protons).

7y T(KK) M, E Ein Epot P(Mbars) v K, X 10? K¢ X 107
0.8 0.5 16 —0.0594(2) 1.8419(1) —1.9033(1) 81.07(3) 0.169(1) 1.57(3) 0.2375
1.0 16 —0.0586(4) 1.8428(4) —1.9034(1) 81.16(3) 0.183(1) 1.53(4) 0.475
2.0 8 —0.0522(4) 1.8338(4) —1.9018(1) 81.69(3) 1.78(3) 0.950
3.0 4 —0.0442(4) 1.8538(6) —1.9000(2) 82.33(6) 2.14(7) 1.425
4.0 4 —0.0382(8) 1.8590(8) —1.8991(1) 82.83(6) 2.57(7) 1.900
6.0 2 —0.0268(8) 1.8688(8) —1.8974(2) 83.80(6) 3.29(4) 2.850
10.0 1 0.016(1) 1.8886(8) —1.8934(4) 85.78(9) 4750 4750
1.0 0.5 8 —0.3512(2) 1.2142(2) —1.5655(1) 20.101(3) 0.177(1) 0.97(2) 0.2375
1.0 4 —0.3480(2) 1.2176(2) —1.5657(1) 19.68(1) 1.07(2) 0.475
2.0 4 —0.3430(2) 1.2260(4) —1.5653(1) 20.65(1) 1.44(2) 0.950
3.0 2 —0.3356(4) 1.2298(4) —1.5655(1) 20.83(1) 1.72(3) 1.425
5.0 1 —0.3262(6) 1.2390(6) —1.5652(1) 21.26(2) 2.375 2.375
10.0 1 —0.2888(6) 1.2740(4) —1.5630(2) 22.95(3) 4.750 4750
1.2 0.3 10 —0.46610(4) 0.8776(1) —1.3437(1) 5.554(1) 0.134(1) 0.59(1) 0.1425
0.5 8 —0.4661(1) 0.8792(1) —1.3439(1) 5.594(3) 0.177(2) 0.67(1) 0.2375
1.0 4 —0.4632(1) 0.8811(2) —1.3443(2) 5.641(3) 0.196(3) 0.77(1) 0.475
1.0 4 —0.4610(2) 0.8858(2) —1.3468(1) 5.735(6) Liquid 0.77(1) 0.475
2.0 4 —0.4552(2) 0.8918(2) —1.3469(1) 5.893(6) 1.19(3) 0.950
3.0 2 —0.4492(4) 0.8996(3) —1.3488(1) 6.08(2) 1.53(3) 1.425
5.0 1 —0.4386(6) 0.9106(4) —1.3492(2) 6.37(2) 2.375 2.375
10.0 1 —0.4036(6) 0.9478(4) —1.3514(1) 7.34(2) 4.750 4.750
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and to decrease with increasing density. Even though the
amount of energy missing in VMC calculations is quite
large on the proton energy scale, we observe only a minor
effect on g,,(r); energy differences are quite accurate
within VMC calculations. On the basis of the above
results, we performed a VMC study of the EOS and report
the results in Table I. (RQMC calculation is roughly an
order of magnitude more expensive than VMC
calculation.)

The zero point proton motion affects not only the
proton kinetic energy but also increases the electronic
kinetic energy and, to a smaller extent, the configura-
tional energy. At r, = 1 and 7 = 500 K, we find a total
energy increase of 14.9(2) mH/atom = 4670(60) K/
atom, of which 2020(30) K/atom comes from the proton
kinetic energy, 2200(20) K/atom the electronic Kinetic
energy, and 450(10) K/atom the configurational energy.
Residual finite size effects have been estimated from
static lattice calculation at r, = 1 to be of the order of
10 mH/atom on the energy, and 0.2 Mbars on the pres-
sure. The transition line, estimated by the dynamical
observation of melting, is located between 1000 and
2000 K at r, = 0.8, between 500 and 1000 K at r; =
1.0, and close to 1000 K at r, = 1.2. Indeed, at the latter
density and at 7 = 1000 K, the system is able to sustain
both liquid and crystal states for the entire length of our
simulations (80 000 protonic steps).

In conclusion, we have developed a new and efficient
QMC method to study low temperature quantum protons
and ground state electrons, which is a major improvement
over previous QMC and DFT-LDA based methods. It
allows for simulations of many-body hydrogen using
QMC calculations for the electronic energies. We have
developed efficient procedures to include protonic path
integrals and k-point sampling. We have applied it to
metallic hydrogen and investigated the solid-fluid transi-
tion of the protons. The present methodology can be
extended in several ways. Constant pressure algorithm
would be useful to study structural phase transitions. The
method can be easily extended to the insulating molecular
phase by replacing the metallic trial functions with lo-
calized molecular orbitals [12,13]. A study of the melting
line of molecular hydrogen is in progress. Consideration
of the metal-insulator transition requires a trial function
that goes smoothly from metallic to localized orbitals. We
are investigating an accurate and efficient form for this.
Extension of the present method to more complex ele-
ments is straightforward, provided we have efficient trial
functions.

Early aspects of the CEIMC algorithm were developed
in collaboration with M. Dewing. We have the pleasure to
thank R.M. Martin, S. Scandolo, J. P Hansen, and J.
Kohanoff for useful discussions and for providing their
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