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Universal correlations and coherence in quasi-two-dimensional trapped Bose gases
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We study the quasi-two-dimensional Bose gas in harmonic traps at temperatures above the Kosterlitz-Thouless
transition, where the gas is in the normal phase. We show that mean-field theory takes into account the
dominant interaction effects for experimentally relevant trap geometries. Comparing with quantum Monte Carlo
calculations, we quantify the onset of the fluctuation regime, where correlations beyond mean-field become
important. Although the density profile depends on the microscopic parameters of the system, we show that the
correlation density (the difference between the exact and the mean-field density) is accurately described by a
universal expression, obtained from classical-field calculations of the homogeneous strictly two-dimensional gas.
Deviations from universality, due to the finite value of the interaction or to the trap geometry, are shown to be small
for current experiments. We further study coherence and pair correlations on a microscopic scale. Finite-size
effects in the off-diagonal density matrix allow us to characterize the crossover from Kosterlitz-Thouless to
Bose-Einstein behavior for small particle numbers. Bose-Einstein condensation occurs below a characteristic
number of particles which rapidly diverges with vanishing interactions.
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I. INTRODUCTION

In recent years, several experiments [1,2] studied two-
dimensional ultracold atomic gases from the normal phase
down in temperature to the Kosterlitz-Thouless transition [3]
and into the low-temperature superfluid phase. The interfer-
ence of two simultaneously prepared two-dimensional gases
provided evidence of the presence of vortices [1]. Related
experiments investigated interaction and correlation effects
[2,4] in the density profile and in coherence patterns. For a
quantitative description of the Kosterlitz-Thouless transition
and of the interaction effects, it proved necessary to account
for the quasi-two-dimensional nature of the gas, that is, to
include thermal excitations in the strongly confined z axis in
addition to the weak trapping potential in the x-y plane [5,6].

In weakly interacting two-dimensional Bose gases, the
Kosterlitz-Thouless phase transition occurs at relatively
high phase-space density (number of atoms per phase-
space cell λ2

T = 2πh̄2/mT ). This density is ncλ
2
T � ln(ξn/g̃)

[7–9], where g̃ characterizes the two-dimensional interaction
strength, T is the temperature, m the mass of the atoms,
and n the density. The coefficient ξn = 380 ± 3 was deter-
mined numerically using classical-field simulations [9]. For
the experiment at the Ecole normale supérieure (the “ENS
experiment”) of Hadzibabic et al. [1], the critical phase-space
density is ncλ

2
T ∼ 8 in the center of the trap; whereas in

the NIST experiment of Cladé et al. [2], ncλ
2
T is close to

10. For phase-space densities between unity and the critical
number, the gas is quantum degenerate yet normal. The atoms
within one phase-space cell are indistinguishable. They lose
their particle properties and acquire the characteristics of a
field. The mean-field description of particles interacting with
a local atomic density n(r) may be further modified through
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correlations and fluctuations. Quantum correlations can be
several times larger than the scale λT . This gives rise to
“quasi-condensate” behavior inside the normal phase.

In this paper, we study the quantum-degenerate regime at
high phase-space density in the normal phase. We first discuss
the quasi-two-dimensional thermodynamic limit. In this limit,
the interaction strength and the geometry are scaled with the
number N of particles in such a way that a finite fraction of
all particles are in the excited states of the strongly confined
direction as N → ∞. In the quasi-two-dimensional limit, the
Kosterlitz-Thouless transition takes place at a temperature
comparable to the Bose-Einstein transition temperature in
the noninteracting case, and the local-density approximation
becomes exact. We first clarify the relation between different
recent versions of quasi-two-dimensional mean-field theory
[6,10,11] in the local-density approximation (LDA), and also
determine the finite-size corrections to the LDA. We compare
mean-field theory to a numerically exact solution obtained
by path-integral quantum Monte Carlo (QMC) calculations
with up to N � 105 interacting particles in a harmonic trap
with parameters chosen to fit the experiments. We concentrate
on the correlation density, the difference between the exact
density and the mean-field density at equal chemical potential,
and show that it is essentially a universal function, independent
of microscopic details. Within classical-field theory, the corre-
lation density is obtained from a re-parametrization of known
results for the strictly two-dimensional homogeneous system
[12]. The classical-field results hold for small interaction
parameters g̃ → 0, but our full QMC solution accounts for
corrections. We compute the correlation density by QMC and
show that it is largely independent of the trap geometry, the
temperature, and the interaction strength.

We also study off-diagonal coherence properties, and
the density-density correlation function of the quasi-two-
dimensional gas. It is well known that even at high temperature,
bosonic bunching effects enhance the pair-correlation function
on length scales below λT which for the ideal Bose gas
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approaches the characteristic value 2n2 at vanishing separa-
tion. In our case, interference in the z direction reduces the
in-plane density fluctuations even for an ideal gas and within
mean-field theory, and the reduction of the pair correlations
from 2n2 does not necessarily indicate beyond-mean-field
effects.

We finally discuss finite-size effects in the quasi-two-
dimensional Bose gas. For the density profile, they are rather
small, but they play a great role for off-diagonal correlations.
The latter are responsible for a crossover between the physics
of Bose-Einstein condensation at small particle number and the
Kosterlitz-Thouless physics for larger systems. Both regimes
are of relevance to current experiments. This crossover takes
place at a particle number N ∼ g̃−2 which grows very rapidly
as the interaction in the gas diminishes.

II. SYSTEM PARAMETERS AND MEAN-FIELD
DESCRIPTION

A. Quasi-two-dimensional thermodynamics

We consider N bosons in a three-dimensional (3D)
pancake-shaped harmonic potential with parameters ωx =
ωy = ω and ωz � ω at inverse temperature β = 1/T . The
z variable is separate from x and y, and we denote the three-
dimensional vectors as �r = (r, z), and write two-dimensional
(2D) vectors as r = (x, y), and r = |r|.

The quasi-two-dimensional regime of the Bose gas [6] is
defined through a particular thermodynamic limit N → ∞,
where the temperature is a fixed fraction t ≡ T/T 2D

BEC of
the Bose-Einstein transition temperature of the ideal two-
dimensional Bose gas, T 2D

BEC = √
6Nh̄ω/π . Although the two-

dimensional trapped gas undergoes a Bose-Einstein transition
only for zero interactions, T 2D

BEC still sets the scale for the
Kosterlitz-Thouless transition in the interacting gas [6,8]. In
the quasi-two-dimensional regime, a finite fraction of atoms
remains in excited states in z. The excitation energy is scaled
as h̄ωz ∝ T 2D

BEC, which implies that ωz ∼ (Nω2)1/2 in the
thermodynamic limit.

Interatomic collisions are intrinsically three dimensional.
Here, we consider the experimentally relevant case where the
range of the scattering potential r0 is much smaller than the
typical lateral extension lz = (mωz/h̄)−1/2, and also where r0 is
much smaller than the interparticle distances. The interactions
are then described by the three-dimensional s-wave scattering
length as , and one may characterize the quasi-two-dimensional
gas through a bare effective two-dimensional interaction
strength g̃,

g̃ = mg

h̄2

∫
dz [ψ0(z)]4, (1)

g = 4πh̄2as

m
, (2)

where ψ0(z) is the unperturbed ground state of the confining
potential and g is the usual three-dimensional coupling
constant. For a harmonic confinement, g̃ = √

8πas/ lz, and
as/ lz must be kept constant in the thermodynamic limit to
obtain a fixed two-dimensional interaction strength.

Quasi-two-dimensional scattering amplitudes depend log-
arithmically on energy ε in terms of a universal function of

as/ lz and of ε/h̄ωz ∼ T/ωz, which are both kept constant in the
quasi-two-dimensional thermodynamic limit. The logarithmic
energy dependence yields small corrections of order (as/ lz)2

[13–15] to the bare interaction g̃. They can be neglected in the
following.

The scaling behavior in the quasi-two-dimensional limit
corresponds to the following reduced variables:

r̃ = r/ lT , z̃ = z/lz

t = T/T 2D
BEC, ω̃z = h̄ωz/T 2D

BEC (3)

ñ = nλ2
T , g̃ = mg/(

√
2πlzh̄

2),

where lT = (T/mω2)1/2 is the thermal extension in the plane.
The quasi-two-dimensional limit consists in taking the limit
N → ∞, with t, ω̃z, and g̃ all constant. In this limit, lT /λT =
t
√

3N/π3 � 1, so that macroscopic and microscopic length
scales separate, and the scaling of the three-dimensional
density n3D is at constant

ñ3D = n3Dλ2
T lz. (4)

In reduced variables, the normalization condition N =∫
dr n(r) = (lT /λT )2

∫
d r̃ ñ(r̃) is expressed as∫ ∞

0
dr̃ r̃ñ(r̃) = π2

6t2
. (5)

The local-density approximation becomes exact in the quasi-
two-dimensional limit.

In the ENS experiment, 87Rb atoms are trapped at tem-
peratures T ≈ 50–100 nK. The in-plane trapping frequencies
are ω/(2π ) ≈ 50 Hz, whereas the confinement is of order
ωz/(2π ) ≈ 3 kHz. With N ∼ 2 × 104 atoms trapped inside
one plane, typical parameters are T 2D

BEC ≈ 300 nK (using
h̄/kB � 7.64 × 10−3 nK s), so that ω̃z ≈ 0.44–0.55. The scat-
tering length as = 5.2 nm leads to an effective coupling con-
stant g̃ = 0.13, using h̄/m � 6.3 × 10−8 m2 s−1A−1, where A

is the atomic mass number. In the NIST experiment, sodium
atoms at T ≈ T 2D

BEC ≈ 100 nK are confined by harmonic
trapping potentials with ω/(2π ) ≈ 20 Hz, and ωz/(2π ) ≈
1 kHz. This is described by reduced parameters g̃ = 0.02 and
ω̃z = 0.50. The critical densities are ñc ≈ ln(380/g̃) ≈ 8.2 for
the ENS parameters, somewhat lower than the NIST value
ñc ≈ 9.9. Using the quasi-two-dimensional mean-field esti-
mates of Ref. [6], the Kosterlitz-Thouless temperatures are lo-
cated at tKT ≡ TKT/T 2D

BEC ≈ 0.69 and tKT ≈ 0.74, respectively.
The quasi-two-dimensional limit describes a kinematically

two-dimensional gas whose extension in the z direction is of
the order of the thermal wavelength λT . As ω̃z ≡ λ2

T /(2πtl2
z ) is

decreased, a system at finite N turns three dimensional. This is
already the case for the ideal quasi-two-dimensional gas (with
g̃ = 0), where the Bose-Einstein transition temperature crosses
over from two-dimensional to three-dimensional behavior as
a function of ω̃z, with asymptotic behavior given by

tBEC ∼
⎧⎨
⎩

[
ζ (2)
ζ (3)

]1/3
ω̃

1/3
z − 1

6
ζ (2)
ζ (3) ω̃z for ω̃z � 1,

1 − 1
2ζ (2)3/2 exp(−ω̃z) for ω̃z � 1

(6)

(see [6]). In Eq. (6), the first term for ω̃z � 1 describes three-
dimensional Bose-Einstein condensation in an anisotropic
trapping potential.
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For the interacting Bose gas, the nature of the Kosterlitz-
Thouless transition in two dimensions differs from the
Bose-Einstein transition of the three-dimensional gas. For
large ω̃z, universal features of the Kosterlitz-Thouless tran-
sition are preserved, but the density profiles and the value of
the Kosterlitz-Thouless transition temperature depend on ω̃z

and g̃ [5,6]. For small confinement strength ω̃z, a dimensional
crossover between the two-dimensional Kosterlitz-Thouless
transition and the three-dimensional Bose-Einstein conden-
sation takes place at particle numbers such that the level
spacing in the confined direction is comparable to the (two-
dimensional) correlation energies, tω̃z � g̃ñ/π .

The quasi-two-dimensional limit differs from the “experi-
mentalist’s” thermodynamic limit where the atom number is
increased in a fixed trap geometry and at constant temperature.
In this situation, the ratio between the microscopic and
macroscopic length scales, lT /λT = T/(h̄ω

√
2π ), remains

constant. The number of particles in any region of nearly
constant density remains also finite so that, in contrast to
the quasi-two-dimensional thermodynamic limit, corrections
to the LDA persist.

B. N-body Hamiltonian and quantum Monte Carlo method

The gas specified in Sec. II A is described by the
Hamiltonian

H = H0 + V, (7)

H0 =
N∑

i=1

[
−h̄2∇2

i

2m
+ 1

2
m

[
ω2r2

i + ω2
zz

2
i

]]
, (8)

V =
N∑

i<j=1

v(|�ri − �rj |), (9)

where v is the three-dimensional interaction potential. We
compute the N -body density matrix at finite temperature using
our numerically exact path-integral QMC algorithm [5,16,17].
This algorithm describes trapped bosons in continuum space,
interacting with a pair potential as in Eq. (9). It is free of
systematic errors and runs on conventional work stations for
up to N = 106 particles. We obtain all the thermodynamic
observables including the off-diagonal reduced density matrix,
but dynamic (real-time) quantities are not directly accessible.
QMC calculations have clearly demonstrated the presence of a
Kosterlitz-Thouless transition [5] for parameters correspond-
ing to the ENS experiment.

C. Mean-field Hamiltonians

In the mean-field approximation, one replaces the N -body
interaction between atoms in Eq. (9) by an effective single-
particle potential. The mean-field Hamiltonian writes

Hmf = H0 + Vmf, (10)

where

Vmf =
N∑

i=1

2gn3D(�ri) − g

∫
d�r [n3D(�r)]2 (11)

is the mean-field potential energy. The corresponding partition
function in the canonical or grand-canonical ensemble yields

all the thermodynamic quantities. The three-dimensional den-
sity n3D(�r) inside the mean-field potential must be determined
self-consistently. Throughout this paper, self-consistency is
reached through straightforward iteration.

Mean-field theory corresponds to the following effective
Schrödinger equation for the single-particle wave function,
	j (�r), of energy εj :[

−h̄2∇2
r

2m
+ 1

2
mω2r2 − h̄2∂2

2m∂z2
+ 1

2
mω2

zz
2 + 2gn3D(�r)

]
	j (�r) = εj	j (�r), (12)

with the total density

n3D(�r) =
∑

i

	∗
j (�r)	j (�r)

eβ(µ−εj ) − 1
. (13)

The exact solution of the mean-field equations for finite
systems is extremely difficult to obtain from Eq. (12) (and
we have rather used a stochastic method, see below). The
eigenfunctions and eigenvalues are much easier to obtain in
the local-density approximation.

Within mean-field theory, the Bose-Einstein condensation
temperature vanishes in the thermodynamic limit. How-
ever, sufficiently small systems cross over to Bose-Einstein-
condensate behavior at temperatures ∼ T 2D

BEC [8]. In that
regime, the mean-field solution at finite N noticeably differs
from the local-density approximation, which represents the
N → ∞ limit.

For finite systems, we solve the mean-field equations
through a canonical QMC simulation for N bosons interacting
with a mean-field term proportional to the three-dimensional
density profile, n3D(�r), as in Eqs. (10) and (11). This interaction
potential must be obtained self-consistently (as usual in
mean-field theory). Once self-consistency in the density is
reached, one can compute correlation functions and off-
diagonal elements of the reduced one-body density matrix.
This QMC approach is, on the one hand, much simpler than
the full many-body QMC calculation sketched in Sec. II B. On
the other hand, it is much less involved than the full solution
of the mean-field equations through the explicit calculation of
all single-particle wave functions in Eq. (12).

D. Mean-field: Local-density approximation

Mean-field theory simplifies in the quasi-two-dimensional
thermodynamic limit, as the local-density approximation then
becomes exact. This is because the natural length scale of
the system, λT , separates from the macroscopic scale lT of
variation of the density (λT /lT → 0). The particle number
inside a region of constant density diverges. The decoupling
of length scales implies that the x-y dependence of the
single-particle wave functions in Eq. (12) separates in the
thermodynamic limit. Using scaled variables, Eq. (3), this
yields [

−1

2

d2

dz̃2
+ 1

2
z̃2 + 2g̃t√

2πω̃z

ñmf
3D(r̃ , z̃)

]

φ̃ν(r̃ , z̃) = ε̃ν(r̃)

ω̃z

φ̃ν(r̃ , z̃), (14)
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FIG. 1. QMC density profile for the ENS parameters (g̃ =
0.13, ω̃z = 0.55) at temperature t = T/T 2D

BEC = 0.71 for different
values of the particle number, compared with the LDA mean-field
solution of Sec. II C at the same total number of particles. The inset
shows the density distribution n(z̃) at different values of the radial
distance r̃ .

for the eigenfunctions φ̃ν(r̃ , z̃) and eigenvalues ε̃ν(r̃) in the
confined direction, at a given radial distance r̃ . The reduced
local density ñmf

3D is given by the normalized wave functions
φ̃ν(r̃ , z̃):

ñmf
3D(r̃ , z̃) =

∑
ν

φ̃2
ν (r̃ , z̃)ñmf

ν (r̃),

(15)
ñmf

ν (r̃) = − ln[1 − exp(µ̃(r̃) − ε̃ν(r̃)/t)].

The position dependence in Eqs. (14) and (15) only enters
parametrically through the r̃ dependence of the chemical
potential,

µ̃(r̃) = µ̃ − r̃2

2
, (16)

and the local-density approximation becomes exact in the
quasi-two-dimensional thermodynamic limit. Within the LDA,
density profiles (as in Fig. 1) are directly related to the equation
of state ñ(µ̃) of a quasi-two-dimensional system, which is
homogeneous in the x-y plane.

The Schrödinger equation of Eq. (14) is conveniently writ-
ten in the basis {ψ0, ψ1, . . . , ψn, . . .} of the one-dimensional
harmonic oscillator with ω = m = 1, as it diagonalizes
Eq. (14) for g̃ = 0. Using

φ̃ν(z̃) =
∑

µ

aµνψµ(z̃) (17)

(where we have dropped the index corresponding to r̃ or,
equivalently, to µ̃), we can write it as a matrix equation(

A − ε̃ν

ω̃z

)
aν = 0, (18)

with eigenvalues ε̃ν/ω̃z and eigenvectors aν = {a0ν, . . . , anν},
of the (n + 1) × (n + 1) matrix

Aµν = νδµν + 2g̃t√
2πω̃z

∫
dz̃ ψµ(z̃)ñmf

3D(µ̃, z̃)ψν(z̃), (19)

where 0 � µ, ν � n, and the density ñmf
3D(µ̃, z̃) =

−∑
ν φ̃2

ν (z̃) ln[1 − exp(µ̃ − ε̃ν/t)]. The wave functions

ψν are easily programed (see, e.g., [18] Sec. 3.1), and the
self-consistent mean-field solutions at each value of µ̃ can be
found via iterated matrix diagonalization.

This full solution of the LDA mean-field equations is
analogous to the one in Ref. [10]. The mean-field version
used in [11], however, neglects the off-diagonal couplings
in Aνµ with ν �= µ. In [6], we used a simplified mean-
field potential to reach explicit analytical expressions. These
different mean-field approximations essentially coincide at all
relevant temperatures [11], but ground-state occupations in z

slightly differ. Further replacing the coupling constant g̃ by
g̃ tanh1/2(ω̃z/2t) has allowed us, in Ref. [6], to improve the
agreement with the QMC results close to the transition. This
is because mean-field theory overestimates the effect of the
interactions in the fluctuation regime. In the following, we
always quantify beyond-mean-field corrections with respect
to the full LDA solution of Eq. (19).

III. CORRELATION DENSITY AND UNIVERSALITY

Comparisons between the QMC and the mean-field density
profiles are shown in Fig. 1 for the ENS parameters at reduced
temperature t = 0.71, slightly above the Kosterlitz-Thouless
temperature. Finite-size effects as well as deviations from
mean-field theory are visible for nλ2

T � 5. In this section, we
concentrate on correlation corrections to mean-field theory
in the thermodynamic limit and postpone the discussion of
finite-size effects to Sec. IV. We analyze the QMC density
profiles within the validity of the LDA, Eq. (16), and compare
QMC and mean-field densities at the same local chemical
potential1 which defines the correlation density, �ñ,

�ñ(µ̃) = ñ(µ̃) − ñmf(µ̃). (20)

As in experiments, the chemical potential is not a control
parameter of the QMC calculation, but it can be obtained from
a fit of the wings of the density profile with ñ � 1 to the
mean-field equation of state.

Mean-field effects take into account the dominant in-
teraction effects which, in particular, determine shape and
energies of the ground and excited states in the tightly confined
direction. One expects that correlation effects do not modify
these high-energy modes, but merely affect the low-energy
distribution of x-y modes inside the confining ground state,
φ̃0(z̃). This assumption is supported by a direct comparison
of the normalized density distribution in z̃ between the QMC
solution and the mean-field approximation (inset of Fig. 1)
at different radial distances r̃ . For small r̃ , the ground state
of the confining potential is strongly populated. For larger
r̃ , higher modes of the one-dimensional harmonic oscillator
are thermally occupied, and the density distribution broadens.
However, the normalized density profile in z̃ is everywhere
well described by mean-field theory, and correlation effects
hardly modify the mode structure in the confined direction.

In the homogeneous two-dimensional gas, corrections to
mean-field theory at small g̃ are described by classical-field

1In general, at equal chemical potential, the mean-field density
differs from the exact one, and so does also the total number of
particles in the trap.
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FIG. 2. Mean-field equation of state ñmf, and negative gap −�mf,
as a function of the chemical potential µ̃ for ENS parameters
g̃ = 0.13, ω̃z = 0.55, t = 0.71. The upper two curves compare the
LDA density of the fully quasi-two-dimensional system (“quasi-
2D density”) to the corresponding strictly two-dimensional one
(“2D density”). The two lower curves compare the gap of the
quasi-two-dimensional trap for ENS parameters to a strictly two-
dimensional trap. The LDA gap, �mf = ε̃0/t − µ̃, differs from
the strictly two-dimensional approximation g̃ñ/π − µ̃ only at high
density. The comparisons with the strictly two-dimensional mean-
field results [see Eqs. (22) and (23)] illustrates the dependence of the
equation of state on microscopic parameters.

theory, and correlation effects in the density profile can be
expressed in terms of a universal function of β(µ − 2gnmf)
[8,12]. In a quasi-two-dimensional geometry, the correspond-
ing relevant quantity is given by the local mean-field gap
�mf between the local ground-state energy in the confining
potential, ε̃0, and the local chemical potential, µ̃,

�mf(r̃) = ε̃0(r̃)/t − µ̃(r̃). (21)

Within mean-field theory, �mf measures the distance between
the chemical potential and the lowest single-particle energy in
units of T , and it completely fixes the local x-y density in the
ground state of the confining potential

ñmf
0 (r̃) = − ln(1 − e−�mf (r̃)). (22)

In the strictly two-dimensional limit, we have

�mf → β(2g̃h̄2nmf/m − µ) = g̃ñmf/π − µ̃, (23)

where nmf is the total mean-field density. Deviations are
noticeable for large densities, as illustrated in Fig. 2 [we have
absorbed the zero-point energy ω̃z/(2t) in the chemical poten-
tial]. Within the LDA, we expect that the correlation density
�ñ coincides to leading order in g̃ with the classical-field-
theory results of the homogeneous strictly two-dimensional
system [12], expressed as functions of the mean-field
gap �mf.2

2Similar to the mean-field gap, one may introduce an effective mean-
field coupling constant g̃mf = g̃

∫
dz̃ |φ̃0(z̃)|4/ ∫

dz̃ |φ̃0(z̃)|2 which
accounts for modifications of the in-plane interactions in the ground
state of the confining potential. This leads to small corrections, not
visible for the experimental parameters considered in this paper.

In Ref. [12], the critical density ñc and chemical potential
µ̃c at the Kosterlitz-Thouless transition were determined to be

ñc = ln
ξn

g̃
, ξn = 380 ± 3, (24)

µ̃c = g̃

π
ln

ξµ

g̃
, ξµ = 13.2 ± 0.4, (25)

and the equation of state in the neighborhood of the transition
was written as

ñ − ñc = 2πλ(X), (26)

with X = (µ̃ − µ̃c)/g̃. The function λ(X) was tabulated.
Consistent with the classical-field approximation, we can
expand Eq. (22) to leading order in �mf,

ñmf
0 (�mf) = − ln(�mf), (27)

so that we can express X through �mf:

X(�mf) = ñmf

π
− �mf

g̃
− µ̃c

g̃

= −
[
�mf

g̃
+ 1

π
ln

(
ξµ

�mf

g̃

)]
. (28)

Thus, we obtain the correlation density as a function of �mf:

�ñ = 2πλ[X(�mf)] + ln(ξn�mf/g̃), (29)

and a straightforward inversion of Eq. (28) allows us to obtain
the correlation density as a function of the mean-field gap from
the data of [12]. An interpolation of the numerical data with
�10% error inside the fluctuation regime, �c

mf � �mf � �
f

mf

(�c
mf and �

f

mf are defined below), is given by

�ñ(�mf/g̃) � 1

5

(
−1 + 1

�mf/g̃

)
1

1 + π�2
mf/g̃

2
, (30)

where positivity is imposed since, within classical-field theory,
the correlation density must be positive and of order (�mf/g̃)−2

for �mf/g̃ → ∞.
In Fig. 3, we plot the classical-field results for the

correlation density as a function of the rescaled mean-field gap.
We also indicate the onset of the Kosterlitz-Thouless transition
[µ̃ = µ̃c, X = 0 in Eq. (29)] at �c

mf/g̃ = 0.0623, which yields
�ñc = 3.164. The correlation density in the normal phase is
thus finite for all interactions, whereas the mean-field density
diverges as ñmf = − ln �c

mf ∝ − ln g̃ for small interactions at
TKT. In Fig. 3, we also compare the classical-field data for
the correlation density with the results of QMC simulations of
quasi-two-dimensional trapped Bose gases with different cou-
pling constants g̃ and confinement strengths ω̃z. The QMC data
illustrate that the external trapping and quasi-two-dimensional
geometry preserve universality in the experimental parameter
regime. However, the finite coupling constant g̃ introduces
small deviations due to quantum corrections.

From Fig. 3, we further see that the correlation density is
reduced to roughly 10% of its critical value for mean-field gaps
�

f

mf � g̃/π . Thus, only densities with ñ � ñf ≈ ñmf(�mf ≈
g̃/π ) are significantly affected by correlations, and ñf can
be considered as the boundary of the fluctuation regime. In
fact, perturbation theory fails inside this regime. For a strictly
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ω̃z are compared with the interpolation Eq. (30) of classical-field
results [12].

two-dimensional system, we have

ñf ≈ ln(π/g̃), (31)

and the fluctuation regime is reached for densities ñ � ñf .
Outside the fluctuation regime, ñ � ñf , mean-field theory
is rather accurate and can be improved perturbatively if
necessary.

To understand this criterion, which is important for the
Kosterlitz-Thouless to Bose-Einstein crossover at small N

(see Sec. IV), we briefly analyze the perturbative structure of
the two-dimensional single-particle Green’s function beyond
mean-field theory [8]. Within classical-field theory, second-
order diagrams are ultraviolet convergent. Each additional
higher order brings in a factor h̄2g̃/m for the interaction
vertex, one integration over two-momenta, a factor T , and two
Green’s functions (the internal lines). Dimensional analysis of
the integrals involved shows that each vertex insertion adds a
factor g̃/�mf. This implies that perturbation theory fails for
g̃/�mf � 1.

For lower densities, 1 � ñ � ñf , the gas is quantum
degenerate, yet it is accurately described by mean-field theory.
In contrast to fully three-dimensional gases, the quantum-
degenerate regime can be rather broad in two dimensions for
gases with g̃ � 1. In this regime, the density, yet normal, is
no longer given by a thermal Gaussian distribution. This was
observed in the NIST experiment [2], where ñf � 5. In Fig. 4,
we illustrate this effect by expanding the tails of the distribution
ñ(r̃) with a single Gaussian, or with four Gaussians, using

ñ(r̃) = π2

6t2

kmax∑
k=1

kπk exp

[
−kr̃2

2

]
, (32)

where the πk are determined by the formal expansion of the
logarithm in Eq. (15), but also appear as cycle weights in the
path-integral representation of the bosonic density matrix [21]
where they can be measured (see the inset of Fig. 4). The
successive approximations have no free parameters.

Figure 5 summarizes the density profiles of a strictly
two-dimensional Bose gas in the limit g̃ → 0 where the
classical-field calculations determine the correlation density.
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FIG. 4. QMC density profile for the NIST parameters t =
T/T 2D

BEC = 0.75, g̃ = 0.02, and ω̃z = 0.5, for different N . To illustrate
that the density profile in the normal phase cannot be described well as
a single Gaussian, we compare the data with the expansion of Eq. (32)
as a sum of kmax Gaussians with kmax = 1 and with kmax = 4. The inset
shows the QMC cycle weights πk for N = 100 000 (see [21]).

At the critical temperature TKT, the density in the center of
the trap is critical, ñ(0) = ñc. Correlation effects are important
only in the fluctuation regime r̃ � 1.25

√
g̃, where ñ(r̃) � ñf .

However, the distribution of the correlation density introduces
no further qualitative features to the mean-field component.
The density profile may be integrated using the interpolation
formula for the correlation density, Eq. (30). The critical
temperature of the strictly two-dimensional Bose gas as a
function of the total number of particles is given by

TKT

T 2D
BEC

�
[

1 + 3g̃

π3
ln2 g̃

16
+ 6g̃

16π2

(
15 + ln

g̃

16

)]−1/2

.

This expression includes corrections of order g̃ ln g̃ to the
mean-field estimate of Refs [6,8]. Since corrections beyond

-ln(~g)

-ln(~g)+3

-ln(~g)+6

0  ~g1/2  2 ~g1/2

position ~r 

ideal gas

~n

mean-field gas
~nmf

~nmf+∆~n

0 1

-ln(~g)
~n

exp(-~r2/2)

~r

FIG. 5. Schematic density profile of a strictly two-dimensional
trapped Bose gas at TKT for g̃ → 0. For r̃ � √

g̃, ñ coincides with
the ideal gas at T 2D

BEC (inset, the classical Boltzmann distribution e−r̃2/2

is given for comparison). In the fluctuation regime, for r̃ � 1.25
√

g̃,
mean-field and correlation effects become important. The density
diverges as ∼ ln(1/g̃), yet the correlation contribution �ñ remains
finite.
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classical-field theory are rather small (see Fig. 3),
the Kosterlitz-Thouless temperature of the strictly two-
dimensional trapped Bose gas is accurately described by this
equation even for large coupling constants.

For general quasi-two-dimensional gases, Fig. 5 remains
qualitatively correct, but the LDA mean-field density profile in
the quasi-two-dimensional geometry must be used. Numerical
integration of this g̃ → 0 density profile for the ENS param-
eters with ω̃z = 0.55 and g̃ = 0.13 leads TKT � 0.71T 2D

BEC, in
close agreement with TKT � 0.70T 2D

BEC determined in Ref. [5]
directly from QMC calculations using finite-size extrapola-
tions. The quasi-two-dimensional transition temperature is
smaller than the one of the strictly two-dimensional gas
(T 2d

KT � 0.86T 2D
BEC for g̃ = 0.13). For the NIST parameters (g̃ =

0.02, ω̃z = 0.5), we have TKT � 0.74T 2D
BEC from the integration

of the g̃ → 0 density, and QMC data indicate a transition
slightly below this value.

IV. FINITE-SIZE EFFECTS AND BOSE-EINSTEIN
CROSSOVER

A. Central coherence

In the normal phase, the off-diagonal elements of the single-
particle density matrix remain short-ranged, so they can be
described locally. From the self-consistent eigenfunctions of
the mean-field Schrödinger equation, Eq. (12) and Eq. (13),
we also obtain the off-diagonal reduced single-body density
matrix:

ñ
(1)
mf(�r; �r ′) = λ2lz

∑
j

	∗
j (�r)	̃j (�r ′)

exp(µ̃ − βεj ) − 1
. (33)

In the local-density approximation, we can separate the
contributions of the different transverse modes, and we obtain

ñ
(1)
mf(�r; �r ′) =

∑
ν

ñ
(1)
mf,ν(r; r′)φ̃ν(z̃)φ̃ν(z̃′), (34)

with

ñ
(1)
mf,ν(r; r′) =

∫
d2k

(2π )2

λ2
T eik·(r−r′)

eβh̄2k2/2m+�mf(r)+β(εν−ε0) − 1
. (35)

Here we have used that within the LDA, the density remains
constant on the scale λT , so that the mean-field gaps at r̃ and
r̃ ′ are the same.

At low densities, where the mean-field gap is large, �mf �
1, we can expand the Bose function in Eq. (35) in powers of
exp(−�mf), and off-diagonal matrix elements rapidly vanish
for distances larger than the thermal wavelength λT . At
higher densities, in the quantum-degenerate regime, �mf � 1,
many Gaussians contribute, and coherence is maintained
over larger distances. In the limit �mf → 0, we can expand
the denominator in Eq. (35), exp[βh̄2k2/2m + �mf] − 1 ≈
βh̄2k2/2m + �mf, and the off-diagonal density matrix decays
exponentially. In this regime, the local mean-field coherence
length is given by ξmf = λT /

√
4π�mf.

In Figs. 6 and 7, we compare the normalized off-diagonal
coherence function in the center of the trap

c(r) =
∫

dz n
(1)
3D(r, z; 0, 0)∫

dz n
(1)
3D(0, z; 0, 0)

(36)
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FIG. 6. Off-diagonal coherence c(r) for ENS parameters with t =
0.71 (main graph, ñ > ñf ) and t = 0.769 (inset, ñ < ñf ) compared
with the mean-field prediction cmf(r) and the gap model of Eq. (37). In
the fluctuation regime, finite-size effects for off-diagonal correlations
are more pronounced than for the density (see Fig. 1).

from QMC calculations with the LDA for the ENS and NIST
conditions. We see that for ñ � ñf , as in the case of the
density profile, mean-field theory accurately describes the
single-particle coherence. However, it is evident that at higher
densities, ñ � ñf , where correlation effects for the diagonal
elements of the density matrix are important, mean-field theory
also fails to describe the off-diagonal matrix elements.

To characterize the decay of the off-diagonal density matrix
in the fluctuation regime, ñ � ñf , we consider a simple one-
parameter model which neglects the momentum dependence of
the self-energies in the ground state of the confining potential.
The single parameter of the model, the effective local gap �(r̃),
is chosen such that it reproduces the local density of the QMC
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FIG. 7. Off-diagonal coherence c(r) for NIST parameters with
t = 0.74 (main graph) and t = 0.769 (inset) in comparison with
the mean-field prediction cmf(r) and the gap model c�(r) defined in
Eq. (37). At t = 0.769, the total central density is ñ(0) � 5.1 < ñf ,
and the system is outside the fluctuation regime. At t = 0.74, ñ(0) �
10.5 > ñf , and the system is close to the Kosterlitz-Thouless
transition, �mf/g̃ � 0.08. Strong finite-size effects are evident in the
fluctuation regime.
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data. The density matrix of this “gap” model, ñ
(1)
� (�r; �r ′) =∑

ν ñ
(1)
�,ν(r; r′)φ̃ν(z̃)φ̃ν(z̃′), is a straightforward generalization

of mean-field theory, where in Eq. (35), we replace

�mf =
{
� for ν = 0,

�mf otherwise. (37)

To fix the gap � of this model, we require that the diagonal
elements of the density matrix reproduce the exact density

ñ
(1)
�,0(r; r) = ñmf

0 (r̃) + �ñ(r̃). (38)

Outside the fluctuation regime, the gap model reduces to
the mean-field limit. Inside the fluctuation regime, where a
direct comparison of the coherence with mean-field theory is
not very useful, the gap model provides the basis to quantify
off-diagonal correlations. It cannot describe the buildup of
quasi-long-range order at the Kosterlitz-Thouless transition,
but its correlation length ξ� = λT /

√
4π�(r̃) > ξmf bounds

from below the true correlation length in the normal phase. In
Fig. 6, we show that the gap model accounts for the increase
of the coherence length inside the fluctuation regime, ñ > ñf

for the ENS parameters. For smaller interactions, as in the
NIST experiment, finite-size effects qualitatively change the
off-diagonal elements of the density matrix (see Fig. 7).

B. Density profile

Finite-size effects in the density profile are less dramatic
than for the coherence (see Fig. 1). Within mean-field theory,
we have compared the density profiles of the finite system
directly with those in the thermodynamic limit (LDA), using
the finite N solution obtained by the adapted QMC calculation
described in Sec. II C. The mean-field analysis indicates that
correlation effects are at the origin of the size effects of the full
QMC density profiles in Fig. 1, in particular, at small system
size, N = 1000.

C. Bose-Einstein crossover

The finite-size effects in the coherence reflect the underly-
ing discrete mode structure of level spacing ∼h̄ω. Off-diagonal
properties for ξ� � lr are cut off by the extension of the
unperturbed ground-state wave function, lr = (mω/h̄)−1/2,
and resemble those of a Bose-condensed system with a
significant ground-state occupation. Whereas in the thermo-
dynamic limit, the interacting quasi-two-dimensional trapped
Bose gas undergoes a Kosterlitz-Thouless phase transition,
the crossover to Bose-Einstein condensation sets in when
� ≈ βh̄ω. If this happens outside the fluctuation regime,
�

f

mf � �mf � βh̄ω, the Bose condensation will essentially
have mean-field character. Since the temperature scale is given
by h̄ω/T 2D

BEC = π/
√

6N , the discrete level spacing is important
for small system sizes, N � Nfs, with

Nfs(�mf) ≈ 1

6

π2

�2
mf t

2
= π2

6g̃2t2(�mf/g̃)2
. (39)

For small g̃, close to T 2D
BEC where �mf is of order g̃, these

finite-size effects trigger Bose-Einstein condensation for small
N . In particular, for systems with N � Nfs(�

f

mf) ≈ π4/(6g̃2),

a crossover to a mean-field-like Bose condensation occurs,3

whereas for N � Nfs(�c
mf) ≈ 400g̃−2 Kosterlitz-Thouless-

like behavior sets in (see inset of Fig. 10). We notice
that the finite-size scale Nfs ∝ 1/g2 diverges very rapidly
with vanishing interactions, which could make the crossover
experimentally observable.

For a finite system with N � Nfs(�
f

mf), the condensate
wave function does not develop immediately a Thomas-
Fermi shape, but remains close to the Gaussian ground-
state wave function of the ideal gas with typical extension
lr = (mω/h̄)−1/2. Thus, for small condensate fraction n0,
deviations of the moment of inertia I of the trapped gas from
its classical value, Icl = ∫

d2rr2n(r) ∼ Nl2
T , are negligible,

of order (Icl − I )/Icl ∼ n0l
2
r / l2

T ∼ N−1/2. Only for larger
condensates with g̃N0 � 2π , the self-interaction energy dom-
inates the kinetic energy, and the condensate wave function
approaches the Thomas-Fermi distribution of radius ∼ lT ,
resulting in a nonclassical value of the moment of inertia. In
this low-temperature regime, the system can be described by
a condensate with a temperature-dependent fluctuating phase
[13]. Therefore, for small systems, a nonclassical moment of
inertia only occurs at lower temperatures than condensation,
roughly, at a condensate fraction n0 � g̃.

For N � Nfs(�
f

mf), the ideal-gas excitation energy of the
harmonic oscillator, h̄ω, dominates over the self-interacting
energy in the Gross-Pitaevskii functional; the excitation ener-
gies closely resemble those of the ideal trapped gas, and the
healing length is smaller than the harmonic oscillator length.
As has been discussed in Ref. [19], there is no qualitative
difference for the activation of vortices between interacting and
noninteracting systems of finite size. Therefore, a simple qual-
itative analysis of the activation of vortices cannot distinguish
between Bose-Einstein and Kosterlitz-Thouless behavior.

To illustrate the crossover between the Bose-Einstein
regime at small N and the Kosterlitz-Thouless regime at
large N , we have calculated the condensate fraction and con-
densate wave function for the ENS parameter in Fig. 8. To de-
termine both quantities in inhomogeneous systems, n

(1)
3D(�r, �r ′)

must be explicitly diagonalized, as the eigenfunctions of the
single-particle density matrix are not fixed by symmetry alone.
In quasi-two-dimensional systems, the full resolution of the
off-diagonal density matrix in the tightly confined z direction
is difficult. It is more appropriate to consider the in-plane
density matrix, n(1)(r, r′), where the confined direction is
integrated over. n(1)(r, r′) = ∫

dz
∫

dz′ n
(1)
3D(r, z; r′, z′). Be-

cause of rotational symmetry, n(1)(r, r′) is block diagonal in
angular-momentum Fourier components,

n(1)(r, r′) =
∞∑

n=0

∞∑
l=−∞

Nnlϕ
∗
nl(r

′)ϕnl(r)elα(r,r′), (40)

where α(r, r′) denotes the angle between r and r′, and Nnl is
the occupation number of the normalized eigenmode ϕnl . The
(in-plane) condensate fraction, n0 = N00/N , corresponds to

3In contrast to the infinite mean-field gas, these finite mean-
field systems undergo a Bose-Einstein condensation slightly below
T 2D

BEC [8].
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the largest eigenvalue with l = 0 and condensate wave function
ϕ0(r) = ϕ00(r). Projection onto the Fourier components allows
us to determine the condensate fraction and the condensate
wave function within QMC.

For the ENS parameters in Fig. 8, the central density is
already inside the fluctuation regime, and the condensate
wave function differs from the Gaussian ground state of an
ideal gas. However, for small systems, N � 103, it still has a
Gaussian shape, indicating that the condensate kinetic energy
dominates the potential energy. The condensate fraction
vanishes as n0 ∼ N−1/2.

The QMC calculations of [5] demonstrated that the conden-
sate fraction of the quasi-two-dimensional Bose gas vanishes
in the normal and in the superfluid phase in the thermodynamic
limit, N → ∞. However, in the low-temperature superfluid
phase, the condensate fraction approaches zero very slowly
with increasing system size, so that an extensive condensate
remains for practically all mesoscopic systems.

V. TWO-PARTICLE CORRELATIONS

A. Pair-correlation function

Density-density correlations can be analyzed by consider-
ing the three-dimensional pair-correlation function, n(2)(�r; �r ′).
This quantity factorizes within mean-field theory into terms
described by the one-particle density matrix, n

(1)
mf(�r1; �r2) (see

Sec. IV A):

n
(2)
mf(�r1; �r2) = nmf(�r1)nmf(�r2) + [

n
(1)
mf(�r1; �r2)

]2
. (41)

For vanishing distances, �r1 → �r2, mean-field theory predicts
n

(2)
mf(�r, �r) = 2n2

mf(�r). For Bose-condensed atoms, this bunch-
ing effect is absent.

In two dimensions, deviations from 2n2 of the pair-
correlation function at contact indicate beyond-mean-field
fluctuations [12,19,20]. In Ref. [12], the universal character
of the contact value was used to define the quasi-condensate

density, nqc(r) ≡ [2[n(r)]2 − n(2)(r, r)]1/2. This quantity was
studied in Ref. [22] for a quasi-two-dimensional trapped gas
within classical-field theory.

The pair-correlation function of the quasi-two-dimensional
gas is obtained by integrating both coordinates over the
confined direction

n(2)(r1; r2) =
∫

dz1

∫
dz2 n(2)(r1, z1; r2, z2). (42)

Mean-field expressions for this quantity follow from Eq. (41)
together with Eqs. (34) and (35). Inside the fluctuation regime,
the gap model [using Eq. (37) in the mean-field expressions]
again leads to an improved pair-correlation function n

(2)
� .

Figure 9 illustrates that outside the fluctuation regime,
mean-field theory describes the pair-correlation function well.
In contrast to a strictly two-dimensional gas, the contact
value of the pair correlation function is below 2. Even in
the mean-field regime, the occupation of more than one
mode in the confined direction causes a noticeable reduction
of the pair-correlation function at contact. The above definition
of the quasi-condensate must therefore be modified in this
geometry to maintain its universal character.

At short distances r ∼ r0, the pair-correlation function
depends on the specific form of the interaction. This cannot be
reproduced by the single-particle mean-field approximation.
However, two-particle scattering properties dominate for small
enough distances as, for example, the wave function of hard
spheres must vanish for overlapping particles. This feature
can be included in mean-field theory by multiplying its pair-
correlation functions by a short-range term χ2D(r), which ac-
counts for two-particle scattering [23]. In two dimensions, χ2D

shows a characteristic logarithmic behavior for short distances:

χ2D(r → 0) �
[

1 + g̃

2π
ln

√
πeC

2

r

λT

]2

.
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parameters), together with the prediction of the mean-field gap model,
g�(r) = n

(2)
� (r, 0)/n(r)n(0), and the short-range improved mean-field

model, χ2D(r)g�(r).
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Factorizing out the short-range behavior from the pair-
correlation function, the correlation part of the renormalized
pair-correlation function, ñ

(2)
� − ñ(2)/χ2D, should be domi-

nated by contributions from classical-field theory, its con-
tact value is universal, and it might be used to define a
quasi-condensate density in quasi-two dimensions via ñ2

qc =
limr→0[ñ(2)

� (r, 0) − ñ(2)(r, 0)/χ2D(r)] (see Fig. 10). Similar to
the correlation density, the quasi-condensate density is univer-
sal. At TKT, the classical field result is ñqc � 7.2, whereas it
is around 2.7 at the onset of the fluctuation regime, so that, in
the normal phase, nqc/n vanishes as | ln g̃|−1 for g̃ → 0.

B. Local-density correlator

Due to the three-dimensional nature of the underlying in-
teraction potential, observables which couple directly to local
three-dimensional density fluctuations involve the following
density correlator:

K (2) = lim
δ→0

√
2πlz

∫
dz n(2)(r, z; r + δ, z)

χ3D(δ)
, (43)

where χ3D(r � λT ) � (1 − as/r)2 describes the universal
short-distance behavior of the three-dimensional two-body
wave function in terms of the s-wave scattering length as .

Arguments similar to those in Sec. V A show that the
local-density correlator in general differs from the contact
value of the quasi-two-dimensional pair-correlation function,
Furthermore, the integration over the square of the ground-
state density in z leads to a phase-space-density dependence
which destroys the simple mean-field property K (2) ∝ 2n of
strictly two-dimensional Bose gases.

VI. CONCLUSIONS

In this paper, we have studied the quasi-two-dimensional
trapped Bose gas in the normal phase above the Kosterlitz-
Thouless temperature for small interactions g̃ < 1. We have
discussed the three qualitatively distinct regimes of this gas:
For phase-space densities ñ � 1, it is classical. At higher
density, 1 � ñ � ñf , the gas is in the quantum mean-field
regime, and its coherence can be maintained over distances
much larger than λT . Finally, mean-field theory fails in
the fluctuation regime ñf � ñ � ñc and beyond-mean-field
corrections must be taken into account.

In the fluctuation regime, for small interactions, the devi-
ations of the density profile with respect to the mean-field
profile are universal. Mean-field theory thus accounts for
most microscopic details of the gas (which depend on the
interactions and on the trap geometry). We have shown in detail
how to extract the correlation density (the difference between
the density and the mean-field density at equal chemical
potential) from QMC density profiles and the LDA mean-field
results, and compared it to the universal classical-field results.
Quantum corrections to the equation of state, expected of order
g̃, were demonstrated to be small for current experiments
with g̃ � 0.2. The smooth behavior of quantum corrections,
which has been already noticed in QMC calculations of the
Kosterlitz-Thouless transition temperature in homogeneous
systems [24], strongly differs from the three-dimensional
case [25,26] where quantum corrections to universality are
nonanalytic [27,28], and where the universal description
holds only asymptotically. It would be interesting if these
universal deviations from mean-field theory could be observed
experimentally.

Correlation effects in local observables, e.g., the density
profile, and local-density correlators, converge rather quickly
to their thermodynamic limit value, and correlation effects for
mesoscopic systems are well described by the local-density
approximation. Off-diagonal coherence properties show much
larger finite-size effects, in particular for weak interactions.
This introduces qualitative changes for mesoscopic system
sizes and, in particular, the crossover between Bose-Einstein
physics at small particle number N � const/g̃2 and the
Kosterlitz-Thouless physics for larger systems. Tuning the
interaction strength via a Feshbach resonance might make
it possible to observe the crossover between Bose-Einstein
condensation and Kosterlitz-Thouless physics in current ex-
periments.
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