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Equilibrium state of a trapped two-dimensional Bose gas
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We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional 87Rb
Bose gas and investigate the equation of state of the homogeneous system using the local density approximation.
We find a clear discrepancy between in situ measurements and quantum Monte Carlo simulations, which we
attribute to a nonlinear variation of the optical density of the atomic cloud with its spatial density. However, good
agreement between experiment and theory is recovered for the density profiles measured after time of flight,
taking advantage of their self-similarity in a two-dimensional expansion.

DOI: 10.1103/PhysRevA.82.013609 PACS number(s): 03.75.−b, 05.10.Ln, 42.25.Dd

Low-dimensional atomic gases provide stringent tests of
the many-body description of quantum matter because thermal
or quantum fluctuations play a more important role than for
three-dimensional (3D) fluids [1]. These systems are prepared
by freezing one or two motional degrees of freedom [2]. For
2D Bose gases, recent experiments [3,4] and corresponding
numerical analyses [5,6] gave evidence for a Berezinskii-
Kosterlitz-Thouless transition, with a quasi-long-range order
of the phase of the gas below a critical temperature.

A remarkable feature of the uniform 2D Bose gas is the scale
invariance of its equation of state. For a large domain of param-
eters, the phase-space density D = nλ2 is not an independent
function of the chemical potential µ and the temperature T , but
depends only on the ratio α = µ/kBT . Here n is the 2D spatial
density and λ = (2πh̄2/mkBT )1/2 is the thermal wavelength.
Scale invariance stems from the fact that the interaction
strength in 2D is determined by a dimensionless number that
is approximately energy independent, g̃ = √

8π a3D/�z, where
a3D is the scattering length characterizing low-energy interac-
tions in 3D, and �z is the thickness of the gas along the frozen
direction z [for harmonic confinement with frequency ωz, �z =
(h̄/mωz)1/2] [7]. Since interactions provide no energy scale,
dimensional analysis implies that D has the form D = F (α,g̃).
This holds when �z � a3D and applies for all experiments
so far.

Here we present results from combined experimental and
numerical studies to test this scaling property of the 2D
Bose gas. The experiments are performed with 87Rb atoms
and the results are compared with quantum Monte Carlo
(QMC) simulations. Experimental density distributions are
inferred from the absorption of a resonant probe light beam.
We investigate both the in situ distribution of the gas and
the one obtained after a time of flight (TOF) in the x-y
plane. The numerical results confirm the scale invariance and
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are in excellent agreement with the prediction based on the
equation of state for the uniform 2D gas [8] and on the
local density approximation. The measured in situ distributions
clearly differ from the numerical predictions if we assume a
linear relation between the optical density of the cloud and
its spatial density n. We point out, however, that the usual
single-scattering approximation for the probe beam photons,
which is at the basis of this linear relation, is insufficient in
our situation. Indeed the interparticle distance in the center of
the trap is comparable to k−1

L , where kL is the wave vector
of the probe light. After long TOF durations the densities are
considerably lower, and the single-scattering approximation
holds. We then recover good agreement between theory and
experiment, using a dynamical scaling behavior of the 2D Bose
gas confined in a harmonic potential [9].

In our experiment, we first prepare a Bose-condensed gas
of ∼3 × 105 87Rb atoms in the F = 2, mF = 2 hyperfine
state of the ground level 5 2S1/2. The gas is confined in
a magnetic Time-averaged orbiting potential trap [10] at a
temperature of 160 nK, obtained through evaporative cooling
with a radio-frequency (rf) field. We then add a dipole potential
providing strong confinement in the vertical direction. This
potential is generated by a laser beam at a wavelength of
532 nm and a power of 1.3 W. The beam passes a holographic
plate that imprints a phase of π on its upper half and is
focused onto the atoms [11]. There it creates (together with
the magnetic trap) the potential illustrated in Fig. 1(a). The
vertical and horizontal waists of the beam in the absence of
the holographic plate are 5.0 and 140 µm, respectively. The
trapping frequencies in the combined potential, measured by
exciting the dipole oscillation of the atom cloud, are ωz/2π =
3.6 (3) kHz along the vertical axis, leading to g̃ = 0.146 (6),
and ωx/2π = 21.0 (5) Hz, and ωy/2π = 18.8 (5) Hz in the
horizontal plane. For convenience we define ω = (ωxωy)1/2 =
2π × 19.9 Hz.

The dipole potential is ramped up in 1.5 s and it cuts out
a plane of atoms in the center of the original cloud, while
the remaining atoms reside in the side wells [Fig. 1(b)]. The
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FIG. 1. (Color online) (a) Potential V along the vertical direction
z produced by the magnetic trap and the laser beam. (b,c) Side view
of the cloud before (b) and after (c) depumping atoms in the side
wells. The horizontal stripes are due to diffraction. (d) Top-view in
situ image yielding fit parameters T = 132 nK and α = 0.29 (for
ξ = 0.25).

tunneling between central and side planes is negligible so that
the three planes are independent. We depump the side-plane
atoms to a nondetected state (F = 1) with a 35-ms laser
pulse tuned to the F = 2 ↔ F ′ = 2 transition of the D2 line,
masking the central plane of atoms [Fig. 1(c)]. The atoms are
held in the combined trap during 5 s in the presence of the rf,
which controls the final temperature.

We probe the spatial density distribution in the x-y plane
using absorption imaging of a resonant probe laser beam
propagating along the vertical axis. The measurement provides
a map of the optical density � of the atomic cloud, defined
as the natural logarithm of the ratio between incident and
transmitted light intensities. Neglecting multiple scattering of
photons, one has �(r) = σn(r), where σ is the absorption
cross section. Absorption imaging can be performed in the
presence of the trap magnetic field (in situ measurement) or
after a TOF expansion in the x-y plane. A typical in situ
image is shown in Fig. 1(d). From each image we generate a
radial density profile �(r) by averaging over the azimuthal
angle while accounting for the residual ellipticity in the
x-y plane.

We determine µ and T by fitting to the profile �(r)
the mean-field Hartree-Fock (MFHF) prediction, which for a
strictly 2D gas reads (see, e.g., [12]): D = − ln(1 − eα−g̃D/π ).
Since our highest temperatures (∼150 nK) are comparable
to h̄ωz/kB = 170 nK, the gas is only quasi-2D [13–15] and
we take into account corrections to D(α) due to the residual
excitation of the atom motion in the z direction [5,13,14,16].
We restrict the fitting domain to simultaneously fulfill two
conditions: (i) The phase-space density in the axial ground
state must be lower than 2.5 so that beyond-mean-field
corrections are negligible [13,17]; (ii) the optical density of
the cloud must be lower than 0.2 to exclude distortions due to
multiple scattering of probe photons (see later in this article).
Because the spatial density enters nonlinearly in the relation
between D and α, the fitting procedure can also provide a value
of the detection efficiency ξ , defined as the ratio between the
actual absorption cross section and the ideal one expected
for monochromatic probe light in the absence of stray fields.
For all images corresponding to a given TOF duration, we
extract a single value of ξ from the fit. For in situ images,
we find the small value ξ = 0.25 (4), which accounts for the
strong reduction of the absorption cross section due to the
magnetic field of the trap. With this correction factor, an optical

density of 0.1 corresponds to a density n � 3.0 µm−2. For TOF
durations t � 10 ms, all magnetic fields have vanished and we
find ξ = 0.63 (16), consistent with the measured absorption
linewidth of the probe laser.

Our path-integral QMC simulations are performed in the
canonical ensemble in 3D continuum space for the same
geometry as the experiments. They take into account residual
excitations along the strongly confined direction z; hence
the (small) deformation of the vertical profile [5,18]. Pair
interactions are described by a 3D pseudopotential [19].
All thermodynamic properties of the gas are obtained to
high precision and without systematic errors. The chemical
potential associated to a given atomic distribution is obtained
from a fit of the MFHF prediction to the wings of the
distribution, as for the experimental data.

We now compare our experimental and numerical results,
first confronting the measured in situ optical densities with the-
oretical profiles calculated for the same µ and T . As illustrated
in Figs. 2(a) and 2(b), the wings of the calculated and measured
profiles nearly coincide, but there is a clear discrepancy in the
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FIG. 2. (Color online) (a) Dots, measured in situ optical density
profiles �(r). For ξ = 0.25 the fit with MFHF theory yields T =
126 (6) nK, α = 0.34 (9), where uncertainties represent standard
deviations obtained by fitting individual images. Continuous line,
corresponding QMC simulation with N = 73 900 atoms (inset, same
data in log plot). Upper (dash-dotted) and lower (dashed) lines, QMC
results obtained assuming ξ = 0.21 [fit parameters (T (nK),α,N ) =
(130,0.39,96 300)] and ξ = 0.29 (122,0.29,57 900), respectively. (b)
Set of measured density profiles (dots) and corresponding QMC
results (lines) for other rf evaporation parameters. From bottom
to top: (T (nK),α,N ) = (87,0.49,54 100) (black), (109,0.39,63 800)
(red), (142,0.28,78 400) (blue), (153,0.23,79 900) (magenta). Each
experimental profile in (a) and (b) is an average of nine
images.
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FIG. 3. Measured optical density �meas. as a function of the
calculated optical density �calc., averaged over the data shown in
Figs. 2(a) and 2(b). The dashed line with a slope of 1 is a guide for
the eye. Error bars indicate the standard deviation of the data.

central part of the density distributions. Whereas the central
optical density in the four coldest experimental distributions
is ∼1.0, the QMC simulations systematically predict a central
optical density ∼1.8, that is, a density of ∼55 µm−2. A global
comparison between predicted and measured � is shown in
Fig. 3, where we performed an average over the five profiles
of Figs. 2(a) and 2(b).

We now discuss possible causes for this discrepancy. A first
possible source of error is the uncertainty on the detectivity
factor ξ . To estimate its influence, we have reprocessed the
measured profile shown in Fig. 2(a) by choosing the lower
(ξ = 0.21) and upper (ξ = 0.29) values of the uncertainty
interval for ξ . The QMC results for the modified fit parameters
are shown with dash-dotted and dashed lines in Fig. 2(a).
Clearly, the uncertainty on ξ does not account for the observed
deviation. Other “technical” causes for this discrepancy could
be the imperfect resolution of the imaging system and/or the
atomic motion during the imaging pulse. However, neither of
them can account for the difference between predicted and
measured density profiles [20]. The most probable cause of
the discrepancy is the reduced absorption cross-section for
large 2D atomic densities, due to multiple scattering of the
photons of the probe laser beam. Although our optical densities
(<∼1) do not exceed usual values for absorption imaging, they
correspond in this 2D geometry to a short mean distance d

between scatterers. For the densest clouds, we find that kLd is
on the order of 1 (kL = 8 × 106 m−1), which can significantly
modify the photon scattering rate [21,22].

To relate the trapped gas to a uniform system, we can
employ the local density approximation (LDA). Within the
LDA, the phase-space density D(r) in a trapping potential V (r)
is given by D(r) = F (µ − V (r),T ), where D = F (µ,T ) is the
equation of state of the uniform system. For the quasi-2D Bose
gas, the validity of the LDA has been accurately checked with
QMC simulations in Ref. [18]. To test the scale invariance of
the equation of state, we have plotted in Fig. 4 the phase-space
density D as a function of the ratio αlocal ≡ α(r) between µ −
mω2r2/2 and kBT , using the same data as in Figs. 2(a) and 2(b).
The calculated functions D[α(r)] (continuous lines) nicely
superpose onto each other, confirming the scale invariance
in this low-temperature region, where the excitation of the z

motion does not play an important role. Note that the central
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FIG. 4. (Color online) Continuous lines, QMC results for the
phase-space density D as a function of αlocal = α − mω2r2/kBT

for the data shown in Figs. 2(a) and 2(b) (same color code). Black
dashed line, prediction of [8] for the uniform case; dots, measured
D, averaged over all experimental data shown in Figs. 2(a) and 2(b).
Error bars indicate the standard deviation of the data.

phase-space densities notably exceed the critical value for the
superfluid transition (Dc � 8.0 for g̃ = 0.146 [23]), signaling
the presence of a significant superfluid component. The QMC
results confirm the prediction of [8] for the uniform 2D gas,
which was obtained using a classical-field Monte Carlo method
(dashed line in Fig. 4). The small corrections to the results
of [8] are due to two factors: (i) the presence of residual
excitations along the z axis and (ii) the finite value of the
interaction parameter g̃ [18]. Obviously, the deviation between
experimental and numerical data that was appearing in the
density profiles of Figs. 2(a) and 2(b) also shows up in the
plot of D[α(r)] in Fig. 4, and the experimental values of
D (dots) lie systematically below the predicted ones in the
high-phase-space region.

A simple way to circumvent the problem of imaging
high-density regions is to take advantage of the dynamical
scaling behavior of the 2D Bose gas which manifests itself
in a 2D ballistic expansion after a sudden release of the
confinement in the x-y plane. It follows from a hidden SO(2,1)
symmetry of the 2D Bose gas with contact interactions U (r) =
(h̄2g̃/m)δ(r) when it is confined in an isotropic harmonic
potential of frequency ω [9]. Starting from a radially symmetric
but otherwise arbitrary initial equilibrium profile neq(r), the
density profile after a TOF duration t is obtained by a scaling
transform

n(r,t) = η2
t neq(ηtr), ηt = (1 + ω2t2)−1/2. (1)

This relation was predicted within the Bogoliubov approxima-
tion in [24] and holds exactly for interaction potentials that
satisfy U (λr) = U (r)/λ2 [9].

Experimentally, we initiate the 2D expansion by switching
off the magnetic trap while keeping the optical potential
constant. The atom cloud then expands in the x-y plane for
an adjustable duration t , after which we take an image of the
cloud. We explore TOF durations up to t = 14 ms for which the
central density is reduced by a factor η−2

t = 4, so that artifacts
due to multiple scattering of probe photons should be strongly
reduced (see Fig. 3). We show in Fig. 5 a succession of density
profiles recorded for TOF durations varying from 0 to 14 ms.
Each profile has been rescaled to the initial in situ distribution

013609-3



STEFFEN P. RATH et al. PHYSICAL REVIEW A 82, 013609 (2010)

S
ca

le
d

op
ti

ca
l

de
ns

ity

0

1

2

3

4

r (µm)
0 20 40 60

FIG. 5. (Color online) Optical density profiles obtained for TOF
durations t = 0 ms (black squares), 3 ms (red circles), 6 ms (green
up-pointing triangles), 10 ms (blue down-pointing triangles), 12 ms
(cyan diamonds), and 14 ms (magenta left-pointing triangles). Each
profile has been rescaled to its in situ value according to (1).

according to the law (1), so that ideally all profiles should be
superimposed. In practice, this superposition is poor for short
TOF durations because of (i) the small value of the detection
efficiency ξ and (ii) the further reduction of the absorption
cross-section due to multiple scattering. The superposition
becomes better as the clouds expand and all scaled profiles
obtained for t � 10 ms coincide within their noise, as expected
from (1). The averaged rescaled data for 10 ms � t � 14 ms
are plotted in Fig. 6, and are in good agreement with the QMC
result.

The observation of this dynamical scaling behavior raises
some interesting questions. First, in two dimensions the contact
potential needs to be regularized at short distances to avoid
ultraviolet divergence. The regularization procedure may lead
to deviations with respect to the exact scaling (1) which
remain to be investigated. This issue is connected to the
problem of the breathing mode of a 2D gas in an isotropic
harmonic potential, which should be undamped according to
the SO(2,1) dynamical invariance. However, a more recent

S
ca

le
d

op
ti

ca
l

de
ns

ity

0

1

2

3

4

r (µm)
0 20 40 60

FIG. 6. (Color online) Squares, optical density profile obtained
by averaging the experimental data of Fig. 5 for 10 ms � t �
14 ms, yielding fit parameters T = 94 nK, α = 0.36 for ξ = 0.63.
Lines, QMC results for the same fit parameters (continuous, N =
42 000) and for those deduced assuming ξ = 0.47 [dashed red
(T (nK),α,N ) = (104,0.39,57 600)] and ξ = 0.79 [dash-dotted blue
(87,0.33,32 100)].

investigation has found a slight nonexponential damping of
the breathing mode due to the production of vortex pairs [25].
Second, the experimentally unavoidable anisotropy of the
trapping potential will also cause some deviations from the
scaling (1). For highly degenerate clouds, the Bogoliubov
approach suggests only small corrections, but it remains to be
checked whether this is still true for a cloud with an arbitrary
temperature.

The scaling behavior during a 2D expansion is notably
different from the properties revealed in a 3D expansion of
an initially quasi-2D gas, for which all trapping potentials
are switched off simultaneously. In that case, interactions are
negligible during the TOF, due to the fast expansion along the
initially strongly confined direction. The quasicoherent core
which is present below the Berezinskii-Kosterlitz-Thouless
transition therefore expands much more slowly than the
thermal part of the cloud, leading to multimodal distributions
[3,4,26]. By contrast, in the 2D expansion explored in this
work, the interaction energy is converted in kinetic energy in
the x-y plane and the initial density distribution is entirely
preserved except for the mere scaling of (1). The TOF
provides a powerful zoom function with magnification ηt ,
which in principle allows the study of in situ spatial correlation
functions with an arbitrary resolution.

Two-dimensional and three-dimensional TOF also lead to
different expansion rates for the vortices (phase fluctuations)
that are present in the critical region at the periphery of
the superfluid core. The in situ size of a vortex core is the
healing length ξh = (g̃n)−1/2 ∼ 0.4 µm, corresponding to the
momentum scale h̄/ξh. In a 3D TOF these phase fluctuations
are converted into density fluctuations and they can be revealed
in absorption imaging after a relatively short TOF duration (the
vortex size doubles in a time ∼mξ 2

h /h̄ ∼ 0.2 ms). By contrast
in a 2D TOF, vortices expand at the same rate ηt as the other
characteristic lengths of the cloud. In the present case, we
would need 2D expansions of ∼50 ms in order to reach vortex
sizes compatible with the optical resolution of our detection
system.

In conclusion, we have studied the equilibrium density
profile of a trapped quasi-2D Bose gas. The discrepancy
between in situ absorption images and numerical calculations
suggests that multiple scattering of the probe photons reduces
the absorption cross section in high-density regions [22]. To
reveal the undistorted density distribution of the gas, we have
taken advantage of its self-similarity in a 2D expansion. The
profiles measured after this expansion are in good agreement
with the QMC predictions. Natural extensions of this work are
the measurement of other thermodynamical quantities from
in situ images using the procedure proposed in [27] and the
study of the regime where the scale invariance breaks down
and energy-dependent corrections to g̃ become important
[17,28–31].
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