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Coherence properties of a two-dimensional trapped Bose gas around the superfluid transition
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We measure the momentum distribution of a two-dimensional trapped Bose gas and observe the increase of
the range of coherence around the Berezinskii-Kosterlitz-Thouless (BKT) transition. We quantitatively compare
our observed profiles to both a Hartree-Fock mean-field theory and quantum Monte Carlo simulations. In the
normal phase, the momentum distribution is observed to sharpen well before the phase transition. This behavior
is partially captured in a mean-field approach, in contrast to the physics of the BKT transition.
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The characteristics of a Bose gas in the degenerate regime
are greatly dependent on the dimensionality of the system.
In contrast to its three-dimensional (3D) counterpart, a two-
dimensional (2D) interacting Bose gas does not present
true long-range order at low temperature [1,2]. Instead, it
undergoes a superfluid—to—normal-fluid transition described
by the Berezinskii-Kosterlitz-Thouless (BKT) theory [3,4].
This superfluid transition has been observed in 4He films [5],
Josephson-coupled superconducting arrays [6], and recently
in dilute ultracold atomic gases [7].

In ultracold 2D trapped Bose gases, the appearance of
superfluidity was predicted to be preceded by a reduction of
density fluctuations [8,9] and by an increase of coherence
[10,11]. Experimentally, great efforts have been devoted to the
study of the density distribution n(r) of 2D gases, which gives
direct access to the phase-space density and to the density
fluctuations. It has permitted the study of the scale invariance
[12] and universality in 2D Bose gases [13] as well as their
thermodynamics [14]. The study of the first-order correlation
function g; is possible in real space through interferences
between two clouds of atoms [7,15], which revealed its
expected algebraic decay in the superfluid regime [7]. The
Fourier transform of g; is also naturally embedded in the
momentum distribution [16,17]. For example, the narrow peak
in the density distribution after time of flight is frequently used
as an indicator of the slow algebraic decay of the coherence in
the superfluid regime [15,18,19].

In this paper, we present a detailed analysis of the
experimental momentum distribution of a 2D Bose gas closer
to a genuine 2D gas than in previous studies [19]. In addition,
we fit our profiles using a Hartree-Fock mean-field (HFMF)
model already used in density space [20] but extended here
for the momentum distribution, and compare our results to
quantum Monte Carlo (QMC) simulations [11,20]. As we
increase the phase-space density, we observe a progressive
narrowing of the momentum distribution and a change of shape
from approximately Gaussian to a peaked distribution, which
is not an unambiguous signature of the superfluid phase. In
particular, at the superfluid phase transition, the momentum
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distribution is already peaked and its width reduced by a
factor ~7 compared to a Boltzmann thermal gas. Whereas
this behavior is partially captured in a mean-field approach
where the 2D Bose statistics plays a central role, correlation
effects beyond the mean field are clearly visible in the full
momentum profile.

Experimentally, the 2D Bose gases are prepared as follows.
We prepare a 3D cloud of 8’Rb atoms cooled by all-optical
runaway evaporation in a crossed-dipole trap, as described
in [21]. During the evaporation process, we turn on a
uniform magnetic gradient to select a single hyperfine state
(|F = 1,mp = 0)) [22]. We then transfer the cloud to a 2D trap
[23]. For that, we adiabatically ramp on a blue-detuned laser at
767 nm in a TEMj, -like mode, providing an intensity node in
the horizontal plane of the atoms (see Fig. 1). It induces a strong
confinement in the vertical direction, with an oscillation fre-
quency of w, /2w = 1.5kHz, corresponding to a dimensionless
interaction strength § = gm /h* = V8may/a, = 0.096, where
as = 5.3 nm is the 3D scattering length, a, = /h/mw, is the
harmonic oscillator length in the vertical direction, 7 is the
reduced Planck constant, and m is the atomic mass.

Horizontally, the 2D trap is made of a laser beam at
1565 nm with a waist w = 200 um and tilted by ~30° with
respect to the horizontal plane (see Fig. 1). Its oscillation
frequencies are w,/2m = 8 Hz, w,/2n = 15 Hz. The atom
number N is varied from 2 x 10* to 6 x 10* by changing
the number of atoms initially loaded. The final temperature
remains approximately constant at 7 = 64.5 £ 2.0 nK. The
two-dimensional character of our experiment is given by
ksT /hw, = 0.90 where kg is the Boltzmann constant, which
results in having ~70% of the atoms in the ground state of the
vertical harmonic oscillator.

We let the atoms thermalize for 500 ms in the final trap
before probing the momentum distribution function through
time-of-flight (TOF) imaging. In the first milliseconds of
expansion, the gas expands predominantly in the vertical direc-
tion and the interaction energy is thus quickly released in this
direction. As a result, the horizontal momentum distribution
(in the xy plane) remains unchanged during the expansion.
After an expansion time of tror = 83.5 ms, much longer than
1/wy and 1/w,, the horizontal density distribution reflects
the initial momentum distribution [24]. Finally, two circularly
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FIG. 1. (Color online) Scheme of the experimental setup. The
atom cloud, initially trapped in a harmonic 2D trap with frequencies
8 Hz x 15 Hz x 1.5 kHz, is dropped for 83.5 ms before shining
a fluorescence beam situated 3.4 cm below the initial position.
The fluorescence signal is recorded from above with an electron-
multiplying CCD camera.

Vertical confinement 3.4 cm

Fluorescence Beam

polarized saturating retroreflected laser beams, resonant with
the |5S;,2,F =2) — |5P3;,,F’ = 3) transition and with the
|5S1/2,F = 1) = |5P3,5, F' = 2) transition allow the atoms
to fluoresce for 100 ws. The fluorescence signal is recorded on
an electron-multiplying CCD camera placed along the vertical
axis, thus imaging the horizontal profile.

To analyze the experimental data, we perform an azimuthal
averaging of the single pictures, as described in [12], in order
to extract radial profiles corresponding to the momentum dis-
tributions n(|k|), where k is the atom wave vector. Experimen-
tally, we weight every point of the profile by its experimental
standard deviation (coming from the photon shot noise, the
camera dark noise, and the number of averaging points). Such
profiles are presented in Fig. 2. For a low atom number
[see Fig. 2(e)], the distribution is approximately Gaussian
and relatively broad. For a higher atom number [Figs. 2(c)
and 2(d)], the curve progressively peaks and deviates from
a Gaussian. At high atom number [Figs. 2(a) and 2(b)], a
sharp feature develops at very low momentum and grows with
increasing atom number. Its width tends to a constant and
agrees with our resolution in momentum space (half-width of
~0.3 um~") coming essentially from our imaging resolution
and from the initial size of the cloud. Since the peak at
low momentum develops on top of a distribution that is
not a Gaussian, it is hard to precisely pinpoint when it first
appears.

In order to attribute a temperature to each profile, we have to
rely on a model. More precisely, we fit the Hartree-Fock mean-
field model to the wings of the momentum distribution data.
This model has already been used for in sifu density profiles
[11,12,20] but needs to be extended to get the momentum
distribution. We proceed as follows. The density distribution
in HFMF theory, in the local density approximation, reads

© 2wk dk
n(r) = 2 ’
(2n)2 o Bk [2m+2gn(x)—p(m)] _ |

(D

where B = 1/kgT, and ju(r) = po — mwix*/2 — mwly*/2is
the local chemical potential with 1ty the chemical potential at
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FIG. 2. (Color online) Radial profiles of the momentum distri-
bution for five different atom numbers at constant temperature 7 =
64.5 = 2.0 nK. The atom number N is given in units of the critical
number for the ideal gas Bose-Einstein condensation N, ~ 3 x 10*
and the superfluid phase transition is expected for N/N. ~ 1.26 (see
text). In each plot, we present the experimental data (black dots), the
mean-field profiles (blue dashed line) resulting from the fit in the
wings (i.e., for k > 2 um™"), and the corresponding quantum Monte
Carlo profiles (green continuous line) with the same temperature and
the measured atom number.

the trap center. After integration, this leads to the following
equation relating u(r) and n(r) [25]:

Buu(r) = 2Bgn(r) + In (1 — e *i"®), )

where Agg = /27h? /mkgT is the thermal de Broglie wave-
length. Writing the momentum distribution

dxdy
n(k) = 2
(27.[)2 Bk 2m+2gn(r)—pu(r)] _ |

3)

and making the change of variables from (x,y) to x, we obtain
n(Kk) after integration. By taking into account the thermally
populated vertical levels but neglecting the interaction in these
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levels, which is justified since the densities in the excited levels
are small, we finally calculate the function

1 Ho dM
nk) = 5 35 —
2rmw? J_o B K 2m+2gn()—ul — |

—1 2,2
— In(1 — e P@R2mbvho—m0)) (4
+ Z 2nBmw? n(l-e b @

where n(u) is determined numerically by solving Eq. (2),
and where w? = wyw,. For given values of po and T, we
can calculate n(|k|) and then use this function to fit to the
experimental data.

More precisely, we fit the wings of the data where we
expect beyond-mean-field effects to play little role and we can
extract the temperature and chemical potential. This requires
an accurate calibration of the atom detection efficiency, which
is a rather difficult task. We have performed QMC simula-
tions based on a numerically exact path-integral algorithm
[20,26,27] to calculate the momentum profiles, so that we
can adjust the calibration of the atom detector. Within
the experimental error bars, it agrees with an independent
calibration using the 3D condensation threshold. Moreover, by
fitting a mean-field model to the wings of QMC simulations,
we find the accurate temperature and thus validate our fitting
method.

In Fig. 2, we plot with each profile the fitted mean-field
distribution (blue dashed line). We observe that the mean-field
fit reproduces well the experimental data at low atom number,
while it fails to account for the central part of the profiles when
the number of atoms increases. However, the QMC simulations
for the fitted temperatures and the experimental atom numbers
(green continuous lines in Fig. 2) are in agreement with the
experiment in all regimes. For both the calculated mean-field
and QMC profiles, we take into account the finite resolution
of our imaging system.

In order to quantify the degeneracy of the gas, we calculate
N /N, where

Ne= ) (Bhw)gae™"") (5)

is the critical atom number for a noninteracting Bose gas for
our trap parameters, and g2(x) = > oo, x"/ n?. From classical
field calculations [8,9,28], the BKT transition is expected at a
central density of the lowest vertical level 1n(380.3/ g)/ng
with small quantum corrections of order g /)%B [11,20].
Integration of the dominating classical field corrections to the
mean field [11] yields (N /N¢)pkr & 1.26 as the critical value
of the particle number. Close to this value, the experimental
profiles are already peaked at low momentum [Fig. 2(c)].

In order to analyze our experimental findings further, we
now consider two quantities: the half width at half maximum
(HWHM) and the fraction of atoms in the central pixel
No/N. The advantage of these two quantities is that they
are model independent and quantify the degree of coherence
of the gas. The HWHM gives a measure of the inverse of
the coherence length, whereas the fraction of atoms in the
central pixel is related to the fraction of atoms which are
coherent on a length scale larger than ~5 pum. In Fig. 3, we
plot these two quantities as functions of N/N.. The HWHM
is normalized to the HWHM of a Gaussian distribution:
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FIG. 3. (Color online) (a) Half width at half maximum of the
profiles, normalized to the HWHM of a Gaussian profile for the same
temperature, plotted versus the number of atoms normalized to N..
(b) Fraction of atoms in the central pixel of the image, Ny/N.
Blue dashed line, mean-field prediction for 7' = 64.5 nK. Green
continuous line, Monte Carlo data for T = 64.5 0.3 nK. Red
vertical dot-dashed line, superfluid transition.

2/mIn2)/Ag = 4.0um™!. Already for N/N. ~ 0.5, the
normalized width of the momentum distribution starts to
decrease from 1. In other words, the distribution is not a
Gaussian any more and tends to peak at low momentum. At
the superfluid transition point (N/N, =~ 1.26), the HWHM
has already decreased by a factor of ~7. After the transition,
the HWHM saturates to a value corresponding to the imaging
resolution.

The change of shape in the momentum distribution is also
reflected in the fraction of atoms in the central pixel [Fig. 3(b)].
This value increases rapidly with the number of atoms. For low
atom number, it corresponds to the decrease of the width. For
high atom number, while the HWHM saturates, the fraction
of atoms in the central pixel keeps growing, reflecting the
increasing coherence of the gas with atom number. In our
experiment, we finely tune the degeneracy of the cloud and
thus resolve the increase of coherence close to the BKT phase
transition [19], which does not appear as a sharp feature. This
is in contrast to what is predicted for the superfluid fraction
[10,25].

In addition to the experimental points, we also plot Monte
Carlo simulations and mean-field calculations for our experi-
mental conditions. The Monte Carlo simulations show a good
agreement with our experimental findings. The mean-field
results coincide with the Monte Carlo simulations at low
atom number up to about N/N. =~ 1. For high degeneracy
parameters N/N, > 1, the mean-field model underestimates
the height of the coherence peak, showing that beyond-
mean-field effects become important. It is remarkable that
the mean-field approximation captures the initial increase
of the coherence length. This effect is thus not directly linked
to the physics of the BKT phase transition for which the
theory is inherently beyond mean field. In fact, even in a 2D
noninteracting trapped Bose gas, for which calculations are
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exact, there is also an increase of the coherence length before
the Bose-Einstein phase transition.

The presence of a low-momentum coherence peak cannot
be considered as an unambiguous signature of the BKT
phase transition. An accurate signature, however, is the slow
algebraic decay of the first-order coherence function (as 1/r¢
with @ < 0.25) [7]. This decay can in principle be observed in
the momentum distribution, and indeed our QMC calculations
show a change of slope (to negative) in the function k2 *n(k)
at low momentum, k < )\;Bf for N 2 1.3N,, together with
the onset of superfluidity. Unfortunately, our experimental
resolution is not sufficient for direct observation of this feature.

In conclusion, we have studied the momentum distribution
of a trapped interacting 2D Bose gas. In particular, we show
that the momentum distribution narrows progressively and
well before the BKT phase transition and therefore that a
peak in the momentum distribution is not an evidence of the
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BKT transition. We also performed a quantitative comparison
of the experimental momentum distribution profiles with
mean-field and Monte Carlo calculations, strengthening our
interpretation. Our detailed characterization of the 2D trapped-
Bose-gas momentum distribution will be a useful tool for
further studies of the remarkable properties of 2D gases of
ultracold atoms.
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