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We consider the three-dimensional electron gas confined by a strictly two-dimensional homogeneous posi-
tive charge density at z=0. Within the Hartree-Fock approximation, we study the mode structure in the
confined direction in the metallic regime. We find that for rs�1.3 �rs�2.5� the unpolarized �polarized�
electron gas starts to populate also the first-excited state in the z direction.
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I. INTRODUCTION

The two-dimensional homogeneous electron gas �2DEG�
is one of the most simple and thus widely used model to
study electronic correlations in two dimensions.1–3 Experi-
mentally, two-dimensional electronic systems have been re-
alized using heterostructures, e.g., semiconductor-insulator
interfaces, where layers of electrons are tightly confined in
one spatial dimension �z� by strong surface electric fields and
the discreteness of the quantized energy levels in z becomes
important.4 However since electronic wave functions and
electromagnetic fields spatially extend in the z direction, the-
oretical predictions for the 2DEG must be modified before a
quantitative comparison is possible.5

In order to study general effects due to the interplay of
electron-electron interactions and correlations with the finite
extension of the electronic density in the z direction, we in-
troduce the model of a quasi-2DEG �Q2DEG�. This model
provides a simple and natural extension of the 2DEG which
contains essential features of more sophisticated microscopic
descriptions of heterostructures.4 Frequently, experiments are
modeled with additional parameters to account for the finite
thickness. In general, these parameters should not be consid-
ered as independent of the density due to charge neutrality.

Similar to the electron gas in two and three dimensions
�3D�, we consider a jellium of electrons in a positive charged
background insuring total charge neutrality. Whereas the
electrons are treated fully three dimensional, the background
charges remain strictly two dimensional, described by a ho-
mogeneous charge density, �0, in the plane z=0. For vanish-
ing total charge of the system, the electrons are confined
around the plane z=0. Similar to the 2DEG, we introduce the
dimensionless parameter rs=1 / �aB

���0�, where aB
=�2 / �mee

2� is the Bohr radius, me the mass, and �−e� the
charge of the electron. At zero temperature, the system is
fully described by the value of rs, which characterizes the
effective two-dimensional density of the electrons.

In this paper, we study the Q2DEG in the metallic density
region �0.5�rs�5� in the Hartree-Fock �HF� approxima-
tion. In particular, we determine the spatial density distribu-
tion of the electrons in the z direction and the possible tran-
sition between the occupation of a single confined mode to
the occupation of two or more excited modes or subbands, in
z. We show that for rs→0 the energy per particle can be
written as

Em�ca,rs� =
Kp

rs
2 �

a=1

m

ca
2 +

Em�ca,rs�

rs
4/3 +

Xm�ca,rs�
rs

+ Cm�ca,rs� ,

�1�

where m is the number of occupied modes in the z direction
and Em and Xm are smooth functions of rs, determined within
HF, Kp is a constant for fixed spin polarization, p, and ca are
the concentrations of electrons in each mode. The correlation
energy beyond Hartree-Fock, Cm, is estimated within density-
functional theory. At fixed density �fixed rs�, we determine
the ground state for given concentrations, ca, and, finally,
minimize with respect to the concentrations to obtain
Em�ca,min ,rs�. The main goal of this paper is to determine the
density where the two-mode solution �Sec. V� becomes en-
ergetically favorable compared to the single-mode solution.

The paper is organized as follows: Sec. II introduces the
model Hamiltonian of the Q2DEG and discusses the techni-
cal problems related to the thermodynamic limit and the
long-range behavior of the Coulomb 1 /r potential in the po-
tential energy. In Sec. III, we use the HF approximation to
simplify the many-body problem and discuss the general
structure of the ground-state energy in the high-density limit,
rs→0. In the following sections: Secs. IV and V, we discuss
the single-mode and two-mode solutions of the HF approxi-
mation. For both cases, we first start discussing the Hartree
approximation, where we have found analytical solutions for
the resulting nonlinear Schrödinger equation. These solutions
serve to obtain a first estimate for the Hartree and exchange
contribution to the energy, Em

0 and Xm
0 , respectively. We will

show later that the numerical minimization of the full HF
energy introduces only minor corrections. Finally, we briefly
discuss correlation effects beyond HF within the local-
density approximation �LDA� using density-functional
theory �Sec. VI�.

II. QUASI-TWO-DIMENSIONAL ELECTRON-GAS MODEL

Let us consider N electrons interacting with a homoge-
neous positive charged, strictly two-dimensional plane at z
=0 and area S=L2. Assuming a charge-neutral system, the
background surface density writes �0=N /S. The N-body
Hamiltonian is given by
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HN = �
i=1

N

−
�2

2me
�i + VN, �2�

where VN is the total potential energy of all charges.
It is well known that the Coulomb potential poses diffi-

culties in the definition of the potential energy in the thermo-
dynamic limit due to the nonintegrability at infinity. The lo-
cal singularity of the Coulomb potential near the origin is a
classical problem of self-adjointness and here we only focus
on the definition of the potential with periodic boundary con-
ditions.

Let � denotes the two-dimensional lattice in R3 generated
by the vectors �L ,0 ,0� and �0,L ,0�. For a regular integrable
interaction v, we formally define the total periodic potential
as

VN = Vee + Veb + Vbb, �3�

Vee =
1

2 �
i�j,	��

v�Ri − Rj + 	� +
1

2�
i

�
	��,	�0

v�	� , �4�

Veb = −
N

S
�

i
�

R2
drv�Ri − r� , �5�

Vbb =
N2

2S2�
S
R2

drdr�v�r − r�� , �6�

where the index e holds for the electrons and b holds for the
positive background. The last term in Eq. �4� is the interac-
tion of an electron with all its periodized images. As soon as
the interaction v is regular and integrable, we can rewrite the
potential energy as

VN =
1

2�
i�j

�v̂�Ri − Rj� +
1

S
v1�zi − zj�� − �0�

i
v1�zi� +

N

2
Cv

�7�

with

v̂�R� = �
	��

�v�R + 	� −
1

S
�

S

drv�R + 	 + r�� , �8�

v1�z� = �
R2

drv��r,z�	 − v��r,0�	 , �9�

and Cv is the Madelung energy of electrons on the lattice �
in a homogeneous background,

Cv = �
	��,	�0

�v�	� −
1

S
�

S

drv�r + 	�� −
1

S
�

S

drv�r� .

�10�

Let us notice that the Fourier transform ṽ̂�K� of v̂ is directly
related to the Fourier transform, ṽ�K�, of v. As can be di-
rectly verified, we have ṽ̂�K�= ṽ�K�, except that ṽ̂�K�=0 for
kx=ky =0. With this new definition �Eq. �7�	, we only need
that v̂, v1, and Cv are well defined, i.e.,

�
	��


v�R + 	� −
1

S
�

S

drv�R + 	 + r�
 � + � �11�

�
R2

dr�v��r,z�	 − v��r,0�	� � + � �12�

These conditions are fulfilled by the Coulomb potential
vC�R�=e2 /R, except at R=0 as mentioned above. Further-
more, we have v1�z�=−2�e2�z� and ṽ̂�K�=4�e2 / �kx

2+ky
2

+kz
2� for kx�0 or ky �0 and 0 otherwise, and the periodic

potential energy, Eq. �7�, finally writes

VN =
e2

2 �
i�j

�vq2D�Rij� −
2��zi − zj�

S
� + 2�e2�0�

i

�zi� +
N

2
Cv,

�13�

vq2D�R� =
1

S
�
k�0

� dkz

2�

4�

k2 + kz
2eiK·R �14�

where K= �k ,kz� and eik·	=1 for 	��.

III. HARTREE-FOCK APPROXIMATION

Within the HF approximation we minimize the ground-
state energy per particle, E, with respect to variations in the
many-body wave function, �N=det���i↑�det���i↓�, in the
subspace of single Slater determinants

E =
1

N

��N�HN��N�
��N��N�

�15�

In the following, we assume that ��i� ��= ↑ ,↓� are normal-
ized, orthogonal single-particle wave functions, and we ob-
tain for the total energy per particle

E = −
1

N
�
i�
�

S
R
dR�i�

� �R�
�2

2me
��i��R�

+
1

N

e2

2
�

S
R
dRdR�ne�R�vq2D�R − R��ne�R��

−
1

N

e2

2 �
i,j,�

�
S
R

dRdR��i�
� �R�� j��R�vq2D�R − R��


�i��R��� j�
� �R�� +

1

N
�

S
R
dRne�R�2�e2�0�z�

−
�e2

NS
�

S
R
dRdR�ne�R��z − z��ne�R��

+
�e2

NS
�
i,j,�

�
S
R

dRdR��i�
� �R�� j��R�


�z − z���i��R��� j�
� �R�� +

Cv

2
�16�

where we have defined the total electronic density by

ne�R� = �
i�

��i��R��2 �17�
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In this paper, we are interested in a quasi-two-dimensional
regime, where we expect that the electrons populate a finite
number, m, of discrete modes in the z direction, whereas the
density of states is continuous in the plane at constant z, in
the thermodynamic limit. Each single-body wave function
�i� is then taken as a product of a plane wave k in the
plane z=0 and a wave function �a in the z direction, where a
labels the mode. Let Na be the number of electrons in the
mode a and ca=Na /N, N=�aNa. Accounting for the spin
polarization p of the electrons, we have Na=Na↑+Na↓ and
ca=ca↑+ca↓. In the following, we restrict the discussion to �i�
the fully polarized gas �p=1�, where ca=ca↑ and ca↓=0 and
�ii� the unpolarized electron gas �p=0� with ca↑=ca↓=ca /2
�unpolarized in each mode a�. We further assume that the
wave functions do not depend on spin: �a���a.

In each mode a ,�, all transverse plane waves are occu-
pied up to kFa�=�ca�kF with kFaB=2 /rs, and, in the thermo-
dynamic limit, all summations over transverse states are re-
placed by integrals inside the Fermi surfaces

�
i�

� �
a�

�
�k��kFa�

→ �
a�

N

�kF
2�

�k��kFa�

d2k . �18�

Further, for N→�, the last line of Eq. �16� vanishes.
It is instructive to regroup the different contributions to

the total energy �in Hartree� as follows:

E�ca,�a,rs	 =

Kp�
a

ca
2

rs
2 +

E�ca,�a	

rs
4/3 +

X�ca,�a,rs	
rs

�19�

where the first term is the in plane, strictly two dimensional,
kinetic energy with K0=1 /2 for the unpolarized and K1=1
for the polarized electron gas. In order to separate the ex-
plicit rs dependency in the following two terms, we introduce
u=rs

1/3kFz together with the normalization �Rdu��a��u��2=1
of the confined modes. All contributions independent of the
in-plane modes are contained in E

E�ca,�a	 = − 2�
a

ca�
R

du�a�u��a��u� + �
R

du��u�
�u�
2

+ �
R

du��u�v��u� �20�

where the electrostatic potential, v�, is determined by the
one-dimensional Poisson equation,

v���u� = ��u� − ��u� �21�

from the total electronic density distribution ��u�
=�a�ca���a��2=�aca��a�2 and the positive background
charges at z=0. Using v����=v�����=0, we have

v��u� =
�u�
2

−
1

2
�

R
du���u���u − u�� �22�

The exchange term, X, explicitly mixes transverse and con-
fined states,

X�ca,�a,rs	 = − �
a,b

rs
1/3

4�
�

R
d���̃ab����2Ỹ�ca,cb,rs

1/3Gp��

�23�

where �̃ab���=�Rdu�ab�u�exp�−i�u�, �ab�u�=�a�u��b�u�,
G0=�2 �unpolarized�, and G1=1 �polarized�. The exchange

function Ỹ �see Appendix A� is given by,

Ỹ�ca,cb,�� =
2

�2�
�k�2�ca

d2k�
�k��2�cb

d2k�
1

�k − k��2 + �2 ,

and introduces a smooth variation in X as a function of rs.
The Hartree-Fock ground state is determined by minimiz-

ing the total energy, Eq. �19�, with respect to p, ca, and �a, at
fixed density, rs. We simplify this rather complex optimiza-
tion problem by considering only the completely polarized or
unpolarized electron gas. For fixed concentrations, ca, the
minimum of E with respect to �a is independent from the
in-plane kinetic energy. From the formal variation in the en-
ergy with respect to �a we obtain

dE

d�a
=

4

rs
4/3H0ca�a +

4

rs
�

b

Va,b
exc�u��b, �24�

H0 = − �u
2 + v��u� , �25�

Va,b
exc�u� = −

rs
1/3

4�
�

R
d��̃ab���Ỹ�ca,cb,rs

1/3Gp��ei�u. �26�

In the limit of small rs, the exchange energy is negligible
and the wave functions, �a��a

0, are entirely determined by
minimizing E, or, equivalently by the Hartree equation

H0�a
0 = − �a�a

0, �27�

which leads to

Em
0 =

Kp

rs
2 �

a

ca
2 +

Em
0

rs
4/3 +

Xm
0

rs
, �28�

where, Xm
0 �X�ca ,�a

0 ,rs	 and

Em
0 � E�ca,�a

0	 = − 2�
a

ca�a − v��0� − �
R

du��u�v��u�

�29�

are independent of rs. This provides us with a semianalytical
approximation for the total energy, Em

0 , which appears to be
very close to the full minimization of the energy including
exchange, Em, for the densities considered. Whereas the in-
plane kinetic energy term does not influence the shape of the
distribution in z, it favors multimode occupation in the high-
density limit, rs→0.

IV. SINGLE-MODE SOLUTION

For a single mode, we minimize Eq. �19� with ��u�
=�0

2�u� �c0=1� so that �0 satisfies the nonlinear Schrödinger
equation, Eq. �24�,
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�H0 + rs
1/3V00

exc��0 = − �0�0, �30�

and we obtain

E1 =
Kp

rs
2 +

E1

rs
4/3 +

X1

rs
, �31�

where E1 and X1 are the values of the Hartree and exchange
term using the optimal �0.

For the strictly two-dimensional electron gas, we have
��2D��u�=��u�. Neglecting the zero-point energy of the con-

finement, E1, in this limit, and using �Rd�Ỹ�1,1 ,��=32 /3,
we recover E�2D��p=0�=1 / �2rs

2�−8 / �3�rs
�2� for the unpo-

larized and E�2D��p=1�=1 /rs
2−8 / �3�rs� for the polarized

electron gas.

A. Hartree solution without exchange, E1
0

We determine the one-mode solution of the Hartree-
equation, Eq. �30� with V00

exc�0, which determines the den-
sity distribution of the mode with �0�0 in the high-density
region, rs→0. Assuming �0�u� to be an even function of u,
we restrict the discussion to u�0 in the following. From the
leading-order behavior X0 of the solution at large u, where
v��u� vanishes, we use a series in X0 as ansatz for ��u�,

X0 = �f0e−�u, �32�

�0�u� = �2�
k�0

�− 1�kakX0
2k+1, �33�

where �=��0, f0, and ak are to be determined �a0=1�. The
density is then given by,

��u� = �4�
k�0

�− 1�k�kX0
2k+2 with �k = �

j=0

k

ajak−j , �34�

and the potential is obtained by integrating twice v���u�
=−��u� for u�0 with the conditions v����=0 and v�����
=0,

v��u� = − �2�
k�0

�− 1�kvkX0
2k+2 with vk =

�k

4�k + 1�2 ,

�35�

and

�0��u� = �4�
k

�− 1�kak�2k + 1�2X0
2k+1, �36�

v��u��0�u� = − �4�
k�0

�− 1�kwkX0
2k+3 with wk = �

j=0

k

v jak−j .

�37�

Thus, imposing �0�− �v�+�2��0=0 leads to the equation

0 = �4X0��
k�0

�− 1�kak��2k + 1�2 − 1	X0
2k + �

k�0
�− 1�kwkX0

2k+2� .

�38�

From the definition a0=1, we get �0=1, v0= 1
4 , and w0= 1

4 .
The other terms are obtain by recurrence

ak =
wk−1

4k�k + 1�
. �39�

With these definitions all coefficients ak, �k, vk, and wk are
positive. The two parameters � and f0 are determined by
imposing �0��0�=0 and the normalization

0 = �
k�0

�− 1�k�2k + 1�akf0
k � �0��0� , �40�

1

2
= �3�

k�0

�− 1�k�kf0
k+1

2�k + 1�
= �

0

�

du�0
2�u� . �41�

The numerical results are given in Table I, together with the
values of the different contributions to the Hartree energy.
In particular, from Eqs. �25� and �27�, we have �0=�2

=−��−��+ �v��� and from Eq. �29�, we have E1
0=−2�0

−v��0�− �v�� with �v��=�Rdu��u�v��u�=−�5�k�0

�−1�k	kf0

k+2 / �k+2�, 	k=� j=0
k � jvk−j, and the kinetic energy

writes �−��= ��0�−�u
2��0�=�5�k�0	k��−f0�k+1 / �k+1� with 	k�

=� j=0
k �2j+1�2ajak−j. Notice that E1

0 is independent of the po-
larization.

B. One-mode exchange energy in the Hartree
approximation, X1

0

From the Fourier transform, �̃���, of the ground-state den-
sity, �0=�0

2, obtained from the Hartree equation, we can es-
timate the exchange contribution, Eq. �23�, to the total en-

ergy. Since we have Ỹ �0 and 0��̃����1, the exchange
energy of the quasi-two-dimensional gas is greater than its
strictly two-dimensional value obtained with �̃�2D����=1.

The main contribution of the exchange integral comes
from the logarithmic singularity of the integrand at �=0;
details on the numerical evaluation are given in Appendix B
and the results for the total energy are shown in Fig. 1. For
densities corresponding to 0.5�rs�5, the exchange integral,
X1

0, is well approximated by X1
0�p=1,rs��−0.4356

−0.06127 ln�rs� for the polarized gas.
Within the Hartree approximation, �̃��� is independent of

rs and polarization, p, so that a simple relation between X1
0 of

the polarized and unpolarized electron gas at different rs can
be established,

X1
0�p = 0,rs� =

X1
0�p = 1,2�2rs�

�2
. �42�

TABLE I. Parameters and various quantities of the single-mode
solution of the Hartree equation without exchange term.

f0 15.5610024546998

� 0.465180466326271

�0 0.216392866251527

v�0� −0.674164469749883

�0�0� 0.522553284700250

�v� −0.307947186951202

�−�� 0.0915543206996701

E1
0 0.549325924198031
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Using our approximate expression for X1
0�p=1,rs� to-

gether with Eq. �42� in Eq. �31�, we can estimate that for
rs�4.56 the polarized phase is energetically favorable com-
pared to the unpolarized phase.

C. Full minimization

The full minimization assuming a single mode is done
numerically �see Appendix C for the numerical details�, and
we have

E1 =
Kp

rs
2 +

E1�rs�

rs
4/3 +

X1�rs�
rs

, �43�

where E1 and X1 depend on rs and the polarization, p. Figure
2 illustrates the small improvements due to the full minimi-
zation compared to the Hartree approximation, E1

0.

V. TWO-MODE SOLUTION

In this section, we look for the ground-state energy with
two modes, where the density is given by

��u� = �1 − c��0
2�u� + c�1

2�u� , �44�

and c�c1 is the concentration of the excited mode, �1.
Analogous to the discussion of the single-mode solution, we

first minimize the Hartree energy for given c with respect to
�0 and �1 to obtain E2

0. Then, we evaluated the exchange
term within this solution, X2

0, and, finally, we minimize the
full Hartree-Fock energy including the exchange.

A. Two-mode Hartree solution without exchange, E2
0

Generalizing the single-mode solution of the previous
section, we express the wave functions as series of exponen-
tials. Assuming �0�u� �respectively, �1�u�	 to be an even �re-
spectively, odd� function of u, we restrict �0 and �1 to non-
negative arguments in the following:

X0 = �f0e−�u, �45�

X1 = �f1e−s�u, �46�

�0�u� =
�2

�1 − c
�

k,k��0

ak,k�X0
2k+1X1

2k�, �47�

�1�u� =
s2�2

�c
�

k,k��0

bk,k�X0
2kX1

2k�+1, �48�

where �2=�0, s2�2=�1, and a0,0=b0,0=1. As shown in Ap-
pendix D, the coefficients ak,k� and bk,k� are functions of s
only and can be determined by recurrence relations. Impos-
ing the boundary conditions at u=0: �0��0�=0 and �1�0�=0
provide two equations independent of c and �

0 = �
k,k��0

ak,k��2k + 1 + 2k�s�f0
k f1

k�, �49�

0 = �
k,k��0

bk,k�f0
k f1

k�. �50�

In practice the series are restricted to k+k��n. At large
enough n, for fixed s, this system of the variables �f0 , f1 has
only one converging solution for positive f0 and f1. The con-
vergence with n depends on s. Relative convergence of 1% is
reached at order n�40. This slow convergence is due to the
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FIG. 1. �Color online� Comparison of the energies of the
Q2DEG in the different phases within HF: black for the single-
mode unpolarized �p=0� electron gas, red for the single-mode po-
larized �p=1� electron gas and blue for two occupied excited modes
in z. For each phase we compare the HF energy using the Hartree
density profile in z with the full HF minimization: dashed �respec-
tively, dotted� lines stand for E1 �respectively, E1

0� of the single-
mode solution from Eq. �43� �respectively, Eq. �28�	, filled �respec-
tively, open� symbols stand for the energies including two occupied
modes, E2 �respectively, E2

0� from Eq. �55� �respectively, Eq. �54�	,
with squares �respectively, diamonds� for the unpolarized �respec-
tively, polarized� gas. The red arrows indicate the transition be-
tween the unpolarized gas and the polarized gas at rs�4.45 in the
approximation using the Hartree density profile; minimization of
the full HF energies shifts the transition to slightly higher density,
rs�4.05. Blue arrows indicate the transitions from the single-mode
system to two occupied excited modes increasing the density. The
inset shows the transition region of the unpolarized gas.
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FIG. 2. Importance of the full minimization of all the different
components of the HF energy, from Eqs. �29� and �43� for the
polarized single-mode gas. Shown are the total energy in Hartree
times rs

2, together with the Hartree and exchange contributions in
the same units. The gain in exchange energy is roughly twice the
increase in the Hartree energy.
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difficulty to fulfill the conditions at u=0 as we get close to
the radius of convergence of these series. Machine precision
is obtained using n�120.

Then the normalizations of �0 and �1 lead to two simple
equations determining � and c

1

2
=

�3

1 − c
�

k,k��0

�k,k�
�0� f0

k+1f1
k

2�k + 1 + k�s�
, �51�

1

2
=

s4�3

c
�

k,k��0

�k,k�
�1� f0

k f1
k�+1

2�k + �k� + 1�s	
, �52�

where �k,k�
�a� is defined in Eq. �D2�.

The variations in � are essentially linear and given by �
=0.4608+0.44c excepted at small c, where we add the re-
sidual correction: 10−3�4.26−9.32c� / �1+41.5c�. The varia-
tions in the other parameters are given in Fig. 3: c is essen-
tially proportional to s3, f0, and f1 vary within a factor of 2.

Within the Hartree approximation, E2
0 in Eq. �29� is still

independent of rs and of the polarization, p but depends on
the concentration c. �see Fig. 4 �left�	.

B. Two-mode exchange term with the Hartree
approximation, X2

0

The two-mode exchange term for two modes reads

X2�c,rs� = −
rs

1/3

4�
�

R
d���

a=0

1

��̃aa����2caỸ1� rs
1/3Gp

�ca

��
+ 2��̃01����2Ỹ2�c,rs

1/3Gp��� , �53�

where c0=1−c and c1=c. We refer to Appendix A for the

definition and evaluation of the exchange integrals Ỹ1 and

Ỹ2, which have logarithmic singularities for small �, and to
Appendix B for the evaluation of the exchange term.

Using the Hartree approximation to determine the shape
of the wave functions, the total two-mode energy is approxi-
mated by

E2
0 =

Kp��1 − c�2 + c2	
rs

2 +
E2

0�c�

rs
4/3 +

X2
0�c,rs�

rs
. �54�

At fixed rs, a descent with respect to c allows us to determine
the concentration cmin

0 which minimizes E2
0�c�. At small rs, a

minimum cmin
0 �0 is reached �see Fig. 4 �right�	, and cmin

0

decreases as rs increases. The concentration in the excited
mode vanishes at a critical value rs,c�1.394�1� for the un-
polarized gas. For the polarized gas, as rs increases, c=0
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Fit: s3(1.537 + 2.21s2)/(1 − 1.41s2)
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FIG. 3. �Color online� Graphical representation of the parameters for the two-mode model, see Eqs. �45� and �46�, as functions of s
=��1 /�0 with �i the eigenvalues of H0, Eqs. �27�. �a� Concentration c�c1 in the first-excited mode versus s3. �b� f0 and f1 versus s.
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FIG. 4. �Color online� Two-mode model results. �a� Energy E2
0�c� versus c�c1 the concentration in the first-excited state from Eq. �29�

compared to the one-mode solution with E1
0�E2

0�c=0�. �b� Variations in the concentration cmin, versus rs that minimize E2
0 of Eq. �54� �open

symbols� or E2 of Eq. �55� �full symbol�. Squares �respectively, diamond� stand for the unpolarized �respectively, polarized� gas.
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remains a local minimum. At rs=2.775, the energy of the
two-mode solution with cmin

0 �0.015 crosses the single-mode
energy. Thus, within this approximation, we find a first-order
transition for the polarized gas with a jump in the concentra-
tion �see Fig. 4 �right�	.

C. Full minimization

The complete minimization of the total energy with two
modes containing kinetic, Hartree, and exchange energy, is
done by first finding the ground-state energy at fixed �rs ,c
similar to the single-mode case

E2 =
Kp��1 − c�2 + c2	

rs
2 +

E2�c,rs�

rs
4/3 +

X2�c,rs�
rs

. �55�

Then, at fixed rs, the minimum, cmin�rs�, of the energy is
found from a direct Newton descent on c. The variations in
cmin�rs� are close to cmin

0 �rs�. They only differ significantly
close to the transition. We find a transition at rs,c=1.30�1� for
the unpolarized gas and rs,c=2.50�2� for the polarized gas. In
particular, no first-order transition subsists for the polarized
gas. The variations in the energy E2�cmin� versus rs are close
to E2

0�cmin
0 � �see Fig. 1�.

D. Existence of three-mode solutions

We have further extended the method to study the occu-
pation of three modes. Unfortunately, the series used for the
Hartree approximation do not converge down to u=0. Nev-
ertheless, the solution can be found numerically, and we find
the three-mode solution more stable for rs�0.75 �respec-
tively, rs�1.6� for the unpolarized �respectively, polarized�
gas. Since the exchange contribution becomes less important
for smaller rs, we do not expect significant modifications
from the full HF minimization.

Approaching the high-density limit, rs→0, we expect an
increasing number of occupied modes. For m modes, assum-
ing ci=1 /m, the kinetic energy is Kp / �mrs

2�, and the dimen-
sionless Hartree energy is a function of m only,
Em

0 ��ci=1 /m��F�m�, as can be seen from Eqs. �28� and
�29�. Minimizing the total energy, Em�Kp / �mrs

2�
+F�m� /rs

4/3, we can estimate the number of occupied modes
in the high-density limit

m2F��m� = Kprs
−2/3. �56�

Assuming a linear behavior of F for large m, the number of
occupied modes diverges as rs

−1/3 as rs approaches zero.

VI. CORRELATION ENERGY WITHIN THE
LOCAL-DENSITY APPROXIMATION

Up to now, we have considered the total energy of the
system within the Hartree-Fock approximation which ne-
glects many-body correlation effects. Within density-
functional theory �DFT�, the correlation energy per particle
for m modes, Cm, defined as the difference between the true
total energy and the best Hartree-Fock solution must be a
functional of the electronic density only.6 Using the LDA,7

we can write

Cm = �
R

du��u��c
3D�rs

3D�u�	 , �57�

where �c
3D�rs

3D	 is the correlation energy of the homogenous,
three-dimensional electron gas at the �three-dimensional�
density n3DaB

3 =3 / �4��rs
3D	3� expressed in terms of the three-

dimensional electron-gas parameter rs
3D. Using n3D

=�0��u�du /dz we get rs
3D�u�= �3 /8��u�	1/3rs

8/9. An estima-
tion of the correlation effects is obtained by using the HF
density, ��u�, of the one- and two-mode density distribution,
together with the Perdew-Zunger8 parametrization of
�c

3D�rs
3D	.

Around the transition between one and two excited modes
of the unpolarized gas, rs�1.3, correlations, Eq. �57�, lower
the energy by typically less than 1%. Since the correspond-
ing total density profiles �see Fig. 5� are smoothly varying
with rs and with the concentration in the first-excited state,
c1, we do not expect important qualitative and quantitative
modifications due to correlations in this density region. En-
ergy minimizations including the LDA-correlation potential,
Vc���u�	=�Cm /���u�, in the effective Schrödinger equation,
confirm that Hartree-Fock accurately describes the high-
density region where the transition from single- to two-mode
occupation of excited modes occurs.
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rs = 0.50, c1 = 0.226

rs = 1.30, c1 = 0.006

rs = 1.00, c1 = 0.084

rs = 0.50, c1 = 0.225

(b)-two modes

FIG. 5. �Color online� Comparison of the unpolarized charge-density profiles ��u=rs
1/3kFz�. Red lines stand for the analytical Hartree

solutions, Eqs. �34� and �D1� while black lines stand for the optimized densities, as described in Secs. IV C and V C. In �b� c1 is the
first-excited-mode concentration minimizing the total energy; at this scale, the corrections coming from LDA-correlation energy are negli-
gible �b�. Notice that the red line at rs=1.3 in �b�, with a rather small value of c1 is close to the red line in �a�.
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VII. CONCLUSIONS

We have studied the model of a quasi-two-dimensional
electron gas where electrons are confined by a positive
charged background localized in the plane z=0. Similar to
the 2DEG, the electronic density �rs� is the only parameter of
the system, however, the phase diagram is different due to
possible transition from single- to multimode occupation in
z. Here, we have restricted the discussion to the most simple
phases in the metallic regime neglecting the possibility of
charge ordering and Wigner crystallization.9,10 Already as-
suming a simple Fermi-liquid wave function in the high-
density region, rs→0, we have shown that a transition from
a single to two or more occupied modes in the confined
direction takes place. Indeed, we expect that close to rs=0
three-dimensional features to be much more pronounced, as
the dominant kinetic energy favors multimode occupations.
Further, within HF, the transition between the polarized and
unpolarized gas at rs�4 occurs in between the correspond-
ing transitions of the 2DEG �rs�2� and the 3DEG �rs�5�.11

Similar to 2DEG and 3DEG, it is likely that the ferromag-
netic phase of the Q2DEG is unstable against Wigner crys-
tallization within HF, however correlations are expected to
stabilize the ferromagnetic fluid phase in higher
dimensions,3,12 so that the spin ordering of the Q2DEG may
essentially differ from that of the 2DEG in the low-density
region.

Within the Q2DEG, we expect that general aspects of the
interplay between correlations and dimensionality can be
studied without the need of a detailed microscopic modeling

of a particular experimental device. This is of particular im-
portance since many experimental observations in quasi-two-
dimensional electronic systems reflect strong correlation
effects.13 Up to now, precise calculations of correlation ef-
fects using quantum Monte Carlo methods have mostly be
done for the 2DEG �Refs. 2, 3, 5, and 14� but perturbative
inclusion of the underlying third dimension have shown to
introduce important quantitative changes, e.g., concerning
the spin susceptibility.5 Within the Q2DEG model nonpertur-
bative calculations are possible and phases not contained in
the 2DEG can be observed. As a side effect, a quantitative
study of the Q2DEG using quantum Monte Carlo methods,
may also provide a reference system, which is strongly inho-
mogeneous in one direction, so that, within DFT, corrections
to the local-density and generalized gradient approximations
�GGAs� should be more pronounced, and functionals beyond
LDA/GGA can be tested �see Ref. 15�.

APPENDIX A: PROPERTIES OF THE EXCHANGE

FUNCTION Ỹ

The exchange function is given by the following integral:

Ỹ�ca,cb,�� =
2

�2�
�k�2�ca

d2k�
�k��2�cb

d2k�
1

�k − k��2 + �2 .

�A1�

This function is positive for all �, even in �, and satisfies

Ỹ�ca ,cb ,��= Ỹ�cb ,ca ,�� as well as �Ỹ�
ca

� ,
cb

� , �
��

�
= Ỹ�ca ,cb ,��. We find

Ỹ�ca,cb,�� =
4

�
�

0

�ca

dkk�
0

�cb

dk�k��
0

2�

d�
1

k2 + �2 + k�2 − 2kk� cos���

=8�
0

�ca

dkk�
0

�cb

dk�k�
1

��k�2 − k2 + �2�2 + 4k2�2

=4�
0

�ca

dkk�tanh−1 cb + �2 − k2

��k2 − cb + �2�2 + 4cb�2
− tanh−1�2 − k2

k2 + �2�
=2�

0

ca

dk�tanh−1 cb + �2 − k
��k − cb + �2�2 + 4cb�2

−
1

2
ln

�2

k �
=X − ca − cb − �2 + 2ca ln

X − ca + cb + �2

2�2 + 2cb ln
X + ca − cb + �2

2�2 , �A2�

where

X = ���2 + ca + cb�2 − 4cacb. �A3�

In particular, within the context of the single-mode solution

it is convenient to introduce the function Ỹ1��� given by

Ỹ1��/�c� = Ỹ�c,c,��/c = Ỹ�1,1,�/�c� ,

Ỹ1��� = 2t − 2 − 4 ln t with t−1 =
1

2
+

1

2
�1 +

4

�2 ,

�A4�

whereas for the two-mode model, we define Ỹ2���

Ỹ2�c,�� = Ỹ�1 − c,c,�� ,
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Ỹ2�c,�� = X − 1 − �2 + 2�1 − c�ln
X + �2 − 1 + 2c

2�2

+ 2c ln
X + �2 + 1 − 2c

2�2 . �A5�

Both, Ỹ1 and Ỹ2, have a logarithmic singularity at �=0 and
behave as �−2 at large �,

Ỹ1��� = − 2 − 4 ln��� + 4��� + O��2� , �A6�

Ỹ2�c,�� = − 4c ln��� + 2��1 − c�ln�1 − c� − �1 − 2c�


ln�1 − 2c� − c	 + O��2� , �A7�

Ỹ1��� =
2

�2 −
2

�4 + O��−6� , �A8�

Ỹ2�c,�� =
2c�1 − c�

�2 −
c�1 − c�

�4 + O��−6� . �A9�

APPENDIX B: EVALUATION OF THE
EXCHANGE TERM

For the one-mode exchange term of the energy, X1, we
need to evaluate the following integral:

X1 = −
�

2�
�

0

�

d��̃���2Ỹ1�Gp��� , �B1�

where �=rs
1/3 and �̃��� is the Fourier transform of ��u�. For

X1
0, the density is defined in Eq. �34� and �̃��� can be com-

puted from

�̃��� = 2�
0

�

du��u�cos��u�

= 2�4�
k�0

�− 1�kf0
k+1�k

2�k + 1��
4�k + 1�2�2 + �2 . �B2�

To remove the logarithmic singularity of the integrand at �
=0, we introduce an auxiliary function e1,

X1 = −
1

2��e1��,	� + �
0

�

d���̃���2�Ỹ1�Gp���

− ẽ1��,�,	�	� , �B3�

with

ẽ1��,�,	� = �e−	��1 + 	��	2��− 4 ln�Gp��� − 2 + 4Gp��	 ,

�B4�

e1��,	� = �
0

�

d�ẽ1��,�,	� =
9Gp�2

2	2

+
�

	
�− 6 + 5 ln

2	

Gp�
+ 5�� , �B5�

where � is the Euler constant and 	=�2�̃�2� is determined

from �̃���=1−��2��2+O��4� ���2�=1.617362956587058 us-
ing the solution of Eq. �34�	. The integral in Eq. �B3� is then
free of singularities and can be evaluated without major
difficulties.

Calculating the first integral in Eq. �53� contributing to the
exchange term of two modes, X2, we adapt the above proce-
dure for the integrals involving �̃aa using ẽ2�� ,	�,

ẽ2��,�,	,c� = �e−	��1 + 	��	2c��− 4 ln�Gp��/�c� − 2

+ 4Gp��/�c	 , �B6�

e2��,	,c� = c3/2e1��,	�c� . �B7�

The logarithmic singularity in the second contribution con-

taining Ỹ2 in Eq. �53� is cancelled by �̃ab��� which is propor-
tional to � at small �.

Similar auxiliary functions are used to evaluate Vaa
exc�u�

whereas the logarithm singularity of Ỹ2�� ,c� in Vab
exc�u� is

again cancelled by �̃ab�����.

APPENDIX C: DETAILS ON THE NUMERICAL
MINIMIZATION SCHEME

Here, we describe some details on the numerical minimi-
zation of the total Hartree-Fock energy, Eq. �19�. For sim-
plicity, we restrict the discussion to the single-mode solution
where the formal derivative is given by d�=Hd� �Hd
=4H0 /rs

4/3+4V00 /rs�. We proceed using a quadratic minimi-
zation scheme. Let ��n� be the solution at step n and
�d��n−1� ,d��n� the derivatives at step n−1 and n. Energies
E��1 ,�2� are computed at ��n�+�1d��n−1�+�2d��n� for the six
points ��1 ,�2�= �0,0�, ��� ,0�, �0, ���, and �� ,−��. By as-
suming a second-order polynomial in �1 and �2, the mini-
mum of E��1 ,�2� is determined analytically and defines the
solution at step n+1.

All functions of u, e.g., ��u�, are computed on a grid of 2p

points �i− i0+1�� with i from 0 to 2p−1, i0=2p−1 and �
=umax / i0. Fast Fourier transform are used to compute �̃���.
In order to achieve good convergence small values of � are
needed to accurately calculate the kinetic energy of the direct
�Hartree� potential whereas a small step in � is needed for the
exchange energy which implies large values of umax. We
found that umax=150 and p=10 are good starting values at
sufficiently large value of c. At small c, the spatial extension
of the excited mode increases significantly which prevents
accurate solutions for c�10−3. Interpolating ��u� allows us
to increase p at fixed umax.

APPENDIX D: RECURRENCE RELATION FOR THE
TWO-MODE HARTREE SOLUTION

We determine the recurrence relation of the series coeffi-
cients in the two-mode case. The densities are given by

� = �4 �
k,k��0

�k,k�X0
2kX1

2k� �k,k� = �k−1,k�
�0� + s4�k,k�−1

�1� ,

�D1�
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�k,k�
�0� = �

j=0

k

�
j�=0

k�

aj,j�ak−j,k�−j� �k,k�
�1� = �

j=0

k

�
j�=0

k�

bj,j�bk−j,k�−j�,

�D2�

with the convention that a−1,k�=bk,−1=0, and the potential is
defined as

v��u� = − �2 �
k,k��0

vk,k�X0
2kX1

2k� with vk,k� =
�k,k�

4�k + k�s�2 .

�D3�

We have

v��0 = −
�4

�1 − c
�

k,k��0

wk,k�X0
2k+1X1

2k�

with

wk,k� = �
j=0

k

�
j�=0

k�

v j,j�ak−j,k�−j�, �D4�

v��1 = −
s2�4

�c
�

k,k��0

wk,k�
� X0

2kX1
2k�+1

with

wk,k�
� = �

j=0

k

�
j�=0

k�

v j,j�bk−j,k�−j�. �D5�

Imposing �0�− �v�+�2��0=0 and �1�− �v�+s�2��1=0 gives

�
k,k��0

ak,k���2k + 1 + 2k�s�2 − 1	X0
2k+1X1

2k�

+ �
k,k��0

wk,k�X0
2k+1X1

2k� = 0, �D6�

�
k,k��0

bk,k���2k + �2k� + 1�s	2 − s2X0
2kX1

2k�+1

+ �
k,k��0

wk,k�X0
2kX1

2k�+1 = 0, �D7�

with the following solution for �k ,k��� �0,0�:

ak,k� = −
wk,k�

4�k + k�s��k + 1 + k�s�
, �D8�

bk,k� = −
wk,k�

�

4�k + k�s��k + �k� + 1�s	
. �D9�

Thus, the coefficients ak,k� and bk,k�, as well as �k,k� and vk,k�,
are rational functions of s only.
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