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We calculate the ground-state phase diagram of the homogeneous electron gas in two dimensions within
the Hartree-Fock approximation. At high density, we find stable solutions, where the electronic charge
and spin density form an incommensurate crystal having more crystal sites than electrons, whereas the
commensurate Wigner crystal is favored at lower densities, rs � 1.22. Our explicit calculations demonstrate that
the homogeneous Fermi-liquid state, though being an exact stationary solution of the Hartree-Fock equations, is
never the Hartree-Fock ground state of the electron gas.
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I. INTRODUCTION

Electrons are found everywhere in matter, most of the
time localized by positive charges. In typical condensed-
matter situations, electronic densities and temperatures are
such that, in addition to the external positive charges, a
quantum description of electrons interacting with each other
is necessary, leading, in general, to a difficult quantum
many-body problem. The homogeneous electron gas, where
the positive charges are reduced to solely ensure global
electroneutrality, is one of the most fundamental models
to study electronic correlation effects. In three dimensions,
d = 3, valence electrons in alkaline metals realize the electron
gas to high precision, in particular in solid sodium,1 whereas
the two-dimensional electron gas (2DEG), d = 2, and its
extension to quasi two dimensions2 is relevant for electrons
at heterostructures, e.g., semiconductor-insulator interfaces.3

At zero temperature, the electron gas is described by a single
parameter, the density n, or, equivalently, by the dimensionless
parameter rs = a/aB . Here a = [2(d − 1)πn/d]−1/d is the
mean interparticle distance, and aB = h̄2/(me2) is the Bohr
radius, where −e and m are the electronic charge and mass,
respectively.

As pointed out by Wigner,4 at low densities and zero
temperature, electrons will form a crystal, which is supposed
to melt at higher densities where the kinetic energy dominates
over the interaction. In the limit rs → 0, the Hartree-Fock
approximation (HF) applies. Since the noninteracting Fermi
sea remains a stationary solution of the Hartree-Fock equa-
tions, it is natural to assume a Fermi-liquid phase at high
densities. First-principles calculations, such as quantum Monte
Carlo,5–8 have located the transition from the Wigner crystal
(WC) to the homogeneous Fermi liquid (FL) to high precision.
Still, there are indications that the Fermi-liquid phase is not
necessarily the absolute ground state of the electron gas
at high densities9–11,16 and that a direct transition between
Wigner crystal and a homogeneous Fermi liquid cannot
occur in two dimensions in the thermodynamic limit.12–14

These conjectures actually hold already for the electron gas
in the Hartree-Fock approximation, but despite the early
predictions by Overhauser of the spin and charge density
instability of the Fermi-liquid ground state, explicit, numerical
HF calculations15 have not confirmed them for a long time.

Based on Bloch functions, these HF calculations15 studied
unpolarized and polarized Wigner-crystal phases of square
and triangular symmetries and found a first-order transition
to the unpolarized Fermi gas that, within this study, remains
the lowest-energy state for rs � 1.44. Only recently, the first
self-consistent Hartree-Fock solutions with energies below the
Fermi-liquid energy have been found at high densities.11

The HF solutions of Ref. 11 obtained without imposing
any periodicity in the density show that the fully polarized
electron gas in two dimensions forms a periodic charge density
with triangular symmetry at high densities. In contrast to
the low-density Wigner crystal, the number of maxima of
the charge density is higher than the number of electrons,
having thus metallic character, and we will refer to such
states as incommensurate crystals in the following. However,
incommensurate states give rise to important size effects, and
the calculations in Ref. 11 were limited to ∼500 electrons.

In this paper, we extend the description based on Bloch
waves to study arbitrary modulation and occupation number.
We focus on the density region rs < 4, where incommensurate
states may occur. We show how the incommensurate states
can be represented by the vector Q of the charge modulation.
Restricting the search for the HF ground state to states with
arbitrary Q, we are able to overcome size restrictions, and we
explore the phase diagram of the 2DEG including triangular
and square symmetries. While our minimization also includes
the possibility of partial polarized states, they do not occur
as ground states, which are either unpolarized (U) or fully
polarized (P); in particular, we show that the incommensurate
unpolarized crystal is favored at high densities. Whereas the
momentum distribution of the Wigner crystal is a continuous
function of the momentum, we show that there are angle-
selective steps in the incommensurate phase.

II. METHODS

The Hamiltonian of the electron gas containing N electrons
reads

H = −1

2

∑

i

�i +
∑

1�i<j�Np

v(xi − xj ), (1)
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FIG. 1. (Color online) Illustration of the k space in the (left) square and (right) triangular geometry. At the center of each graph are
shown the Brillouin zone B (in white) and the corresponding basis vectors Q1 and Q2. The first and second shells of neighboring cells,
B + n1Q1 + n2Q2, are shaded in light green and light blue, respectively. For square (triangular) symmetry, the integers ni of the first and
second shells satisfy n2

1 + n2
2 = 1,2 (n2

1 + n2
2 − n1n2 = 1,3). The corresponding number of cells is summarized by M� in the right column.

Most of the results presented in this paper are done including a number of bands M�, which corresponds to two neighboring shells for the
square and one for the triangular geometry. In light red, we indicate the elementary cell B0 used in our numerical calculations; the NB black
dots are an example of the discretization of the Brillouin zone (here NB = M2 with M = 8, as explained in Sec. III). The circle indicates the
Fermi surface of a Fermi gas.

where �i is the Laplacian with respect to xi , v(x) is the
electrostatic interaction v(x) = ‖x‖−1, and we have used
atomic units where distances are measured in units of aB and
energies in Hartree, 1Ha = h̄2/(ma2

B). In addition to Eq. (1),
the interaction between electrons and a positive background
charge must be considered to ensure charge neutrality.

We are considering N electrons in a finite box of volume
V , of sizes L1 and L2, with periodic boundary conditions, so
that the momentum k belongs to the lattice L∗ generated by
L∗

1 and L∗
2 satisfying LiL

∗
j = 2πδij .

Within the Hartree-Fock approximation, the energy ex-
pectation value is minimized with respect to a single skew-

symmetric product of N single particle states. Periodic
solutions are special states, which can be described by Bloch
waves. Let � be a sublattice of L∗ generated by Q1 and Q2.
The Brillouin zone is defined as the Voronoi cell of the origin,
and a periodic state is given by |ϕk〉 = ∑

q∈� ak(q)|k + q〉,
where k belongs to the Brillouin zone B (see Fig. 1).

As a particular case, the WC is obtained by choosing � such
that the Brillouin zone B contains exactly N states, where
N is the number of electrons. Thereafter, the state is built
as ∧k∈B|ϕk〉. An upper bound of the ground-state energy is
obtained by minimizing the coefficients ak(q) of the Bloch
functions. As rs approaches zero, the kinetic energy dominates,
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FIG. 2. (Color online) Energy (in Hartree units) of the 2DEG in the triangular symmetry at rs = 4 (WC) as a function of the number of
particles, N ≡ NB , and the number of included bands M�. EM = −1.1061/rs is the Madelung energy. (P� indicates polarized final state with
triangular geometry.) (left) Comparison with previous work.11,15,17 Blue solid downward triangles are the results of the present work using
M� = 19. (right) Convergence with respect to N and M�. The inset is a zoom of the dotted-line domain.
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which is minimized by the Fermi gas (FG) defined by k � kF

(see below). Such a state cannot be described by the WC. In
Ref. 11, the HF energy of the polarized gas has been minimized
without imposing periodicity of the solutions; nevertheless,
at intermediate densities, the HF ground states are periodic
with larger modulations than in the WC corresponding to less
electrons than states in the Brillouin zone.

In this paper we focus on periodic solutions with arbitrary
modulations. For a given modulation and for fixed choice
of k vectors in the Brillouin zone the energy computation
is fast enough to tackle millions of electrons as every single
state is described by very few parameters only. However, the
minimization with respect to the choice of k vectors in the
Brillouin zone becomes a complicated combinatorial problem.
This combinatory problem is simplified within the framework
of density matrix.

The one-body density matrix ρ1 is a symmetric positive
matrix such that Trρ1 = 1. Provided that ρ1 � 1/N , this
matrix can be seen as a one-body density matrix of a state
of N electrons. In the thermodynamic limit, the two-body
uncorrelated density matrix can be expressed in terms of ρ1 as

ρ2(1,2; 1′,2′) = ρ1(1; 1′)ρ1(2; 2′) − ρ1(1; 2′)ρ1(2; 1′). (2)

The total energy, a priori a function of the reduced one and two-
body density matrices, can be expressed entirely as a functional
of ρ1. Explicitly, we obtain for the energy per particle in atomic
units:

E = 1

2

∑

k∈L∗,σ

k2ρ1(k,σ ; k,σ )

+
∑

q,k1,k2∈L∗

σ1,σ2

vq

r2
s

ρ2(k1,σ1,k2,σ2; k1 + q,σ1,k2 − q,σ2)

(3)

where vq = 1/‖q‖ for q �= 0 and v0 = 0. For instance, the
unpolarized Fermi gas (UFG) corresponds to ρ1(kσ,k′σ ′) =
δkk′δσσ ′	(kF,U − ‖k‖)/N with πk2

F,U = 2π2N/V ; the result-

ing energy is EU
FG = 1/(2r2

s ) − 8/(3π
√

2rs), and the fully
polarized Fermi gas (PFG) corresponds to ρ1(kσ,k′σ ′) =
δkk′δσ+δσσ ′	(kF,P − ‖k‖)/N , with πk2

F,P = (2π )2N/V and
energy EP

FG = 1/r2
s − 8/(3πrs). In general, without any

specification, kF denotes the Fermi wave vector according
to the polarization of the corresponding state.

In the following we restrict the density matrix to represent
periodic solutions. The corresponding one-body density matrix
can be written as

ρ1(1,1′) ≡ ρ1(k + q,σ ; k + q ′,σ ′) ≡ ρk(q,σ ; q ′,σ ′), (4)

with q,q ′ ∈ � and k in the Brillouin zone B. Thus, the density
matrix is now described by a family of positive matrices ρk

such that ρk � 1/N and
∑

k Trρk = 1.
Numerically, we truncate the number of lattice vectors of

the sublattice � and include only the first M� vectors of
smallest norm in the numerical calculations. In the framework
of band structure calculations, where the Bloch states are
obtained from an external periodic potential, M� corresponds
to the number of bands considered. Thus ρk is a 2M� × 2M�
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FIG. 3. (Color online) Variation of the energy of the 2DEG at
rs = 2.5 with triangular symmetry vs Q for different values of NB =
M2. The inset is the zoom of the region represented by the dashed
rectangle.

matrix and in order to fulfill the condition ρk � 1/N , it is more
convenient to write

ρk = U ∗
k DkUk, (5)

where Dk is a diagonal matrix with 0 � Dk � 1/N and Uk is
a unitary matrix. The potential energy contains a convolution
in momentum space calculated using fast Fourier transform
(FFT). The minimization of the HF energy is done computing
the gradient of the energy with respect to Uk and Dk . The only
drawback of the method is to fulfill the condition Dk � 1/N .

The minimization at a given density consists of the
following steps. At first we choose Dk and Uk to start with.
Then we find the best Uk with a quadratic descent method.11

The next step is to try to improve Dk given the gradient
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FIG. 4. (Color online) Convergence of the energy with respect
to M� for the 2DEG with triangular symmetry for two system
sizes, M = 32 and M = 64. Solid and dotted lines indicate �E =
EM�,1 − EM�,2 and �E = EM�,2 − EM�,3 , respectively, with M�,1 =
7, M�,2 = 13, and M�,3 = 19. Crosses and dots stand for M = 32
and 64, respectively. (Values at rs = 2 are close to the convergence
threshold of the descent method.)
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FIG. 5. (Color online) Energy difference, with respect to the Fermi gas, E(Q,rs) − E
U/P

FG , in milli-Hartree vs modulation Q for different
densities and symmetries (triangular or square) at NB = 256 × 256. The final polarization obtained after minimization is either unpolarized
(U) or fully polarized (P). Lines are the polynomial fits using the parameters given in Table I. In each plot, the lowest curve (largest rs) with
triangular or square symbols has a minimum at Q = QW . The thick dashed line connects QM (rs), the minima of E(Q,rs) for fixed rs . Vertical
dotted lines indicate QW .

of the energy with respect to Dk and the linear constrains,
0 � Dk � 1/N and

∑
k Dk = 1. The process stops as soon as

D
(new)
k = Dk . In this case almost every Dk is 0 or 1/N , and

the gradient is negative or positive accordingly. Otherwise,
we change Dk into (1 − ε)Dk + εD

(new)
k (with a small ε to

ensure that Uk follows Dk adiabatically), and we restart the
minimization with respect to Uk .

In this work, we study the 2DEG for triangular and square
symmetries where ‖Q1‖ = ‖Q2‖ = Q. Starting from a state
of arbitrary polarization, the minimization always resulted in
either a U or a P state. The Brillouin zone of the Wigner
crystal contains exactly N states, so that Q/kF = QW/kF =√

2π/
√

3 ≈ 1.9046 for the triangular WC (U or P), whereas
Q/kF = QW/kF = √

π ≈ 1.7725 for the square WC (U or
P). Notice that for triangular symmetry the corresponding
direct space lattices are quite different: a honeycomb lattice
for unpolarized and a triangular lattice for polarized states.
The FG can be reached when the Fermi surface is contained
inside the Brillouin zone, that is, for Q � 2kF . Thus, in our
simulations, Q varies between QW and 2kF .

III. CONVERGENCE STUDIES

We first focus on size effects in the thermodynamic limit
extrapolation, N → ∞. We set Qi = ML∗

i ; thus the Brillouin
zone contains NB = M2 vectors. Since N/NB = (QW/Q)2,
this limit at fixed Q is equivalent to study the convergence
with respect to NB. Figure 2 shows the size extrapolation of
the 2DEG in the triangular symmetry at rs = 4 (Q = QW ),

together with the results of Trail et al.,15 done at NB = 13
and M� � 20, and those of Ref. 11. As the calculations of
Ref. 11 do not assume any periodicity in the HF search, they
are limited to system sizes N � 500, and the extrapolation to
the thermodynamic limit is less accurate.

Size effects depend on the phase considered. In the incom-
mensurate phase, size corrections are no longer monotonic
functions, as in the Wigner crystal, but oscillatory behavior
occurs depending on the density rs and on the modulation
vector Q. In Fig. 3, we show the energy of the 2DEG in
a triangular symmetry at rs = 2.5 versus the modulation Q

(incommensurate crystal) for various system sizes using M =
2p, with p from 4 to 9 (NB = 162 up to 5122). Note the random-
like oscillations due to the discretization NB of the Brillouin
zone. However, at large enough NB, these oscillations are
sufficiently small to analyze safely E(Q,rs), as seen in Fig. 5.

Our second parameter is the number of vectors M�

considered in �. Note that truncation of � does not violate
the variational principle, so that the energy of a converged
HF solution must decrease as M� increases. Figures 2 and 4
show the convergence in system size NB (discretization of the
Brillouin zone) together with the exponential convergence in
M�, which measures the large k importance. As expected, en-
ergies decrease with M� because the Hilbert space is increased.
Interestingly, the M� improvement is mainly independent of
NB (see Fig. 2, right, and Fig. 4), which allows us to work with
small M� and estimate corrections using small systems. Most
of the calculations presented in this paper are thus performed
with M� = 7 and M� = 9 bands for supercells of triangular
and square symmetry, respectively.

TABLE I. Coefficients αij of the polynomial fits E(Q,rs) − EFG(rs) defined by Eq. (6).

U triangular U square P triangular

−0.78611 1.88240 −1.13180 −0.621900 1.53040 −0.96941 0.15758 −0.08577 −0.011495
0.35614 −0.64435 0.34780 0.058858 −0.26652 0.27359 0.24875 −0.24028 0.070520
0.10624 −0.15804 0.05531 0.032321 −0.06425 0.02500 0.11155 −0.10668 0.024822

−0.00166 −0.00044 0.00081 −0.022986 0.02665 −0.00750 −0.00090 −0.00321 0.001310
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FIG. 6. (Color online) One-body charge and spin densities of an unpolarized incommensurate crystal with (left) triangular symmetry
(rs = 1.2, Q/kF = 1.933, N/NB � 0.97) and (right) square symmetry (rs = 1.5, Q/kF = 1.844, N/NB � 0.92). Average values have been
subtracted. Lengths are given in units of the inverse modulation Q−1. The color scaling is the same for all pictures. Contour levels are at ±0.01,
±0.02 for the charge densities and at ±0.1, ±0.2 for the spin densities.

IV. RESULTS

We have studied the HF ground state of the 2DEG in the
density region 0.8 � rs � 4 at zero temperature considering
commensurate and incommensurate solutions with square and
triangular symmetries. At low densities the electrons form a
commensurate Wigner crystal of modulations Q = QW , and
we recover the results of previous HF studies.11,15,17 For higher
densities, an incommensurate crystal with modulation QW <

Q < 2kF is formed for any fixed polarization and symmetry.
Figure 5 summarizes the energy gain with respect to

the unmodulated Fermi gas as a function of Q at different
densities. Well inside the incommensurate phase (Q > QW ),
the energies can be well represented with a polynomial form:

E(Q,rs) = EFG(rs) +
3∑

i=0

2∑

j=0

αijX
irj

s , (6)

where X = 100(Q/kF − 2). The parameters αij determined
by least-squares fits are given in Table I. From this parametriza-
tion, for fixed rs , we determine the minimum QM (rs) of
E(Q,rs), shown in Fig. 5.

The incommensurate phase is characterized by a crystal
in direct space with slightly more lattice sites NB than
electrons N , increasing for larger modulation according to
NB/N = (Q/QW )2. Figure 6 shows typical charge and spin
densities in the incommensurate phase for the triangular
and square geometries. The two examples are chosen close
to the transition to the Wigner crystallization. The ampli-
tude of the modulation of the charge densities is about
an order of magnitude smaller than that of the spin den-
sities, an effect that is even more pronounced at higher
density.

The momentum distribution nk (N times the diago-
nal part of ρ1) provides additional insight. In contrast to
the step-function behavior at kF of the Fermi gas, nk is
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quadrant (other parts can be deduced by symmetry) for (top) triangular and (bottom) square symmetries. Contour levels are at 0.5 and 0.1,
0.01, etc. From right to left is shown the evolution from the Wigner-crystal distribution (continuous function everywhere) to the Fermi gas with
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continuous inside the commensurate Wigner-crystal phase,
and its variation reflects the symmetry of the Brillouin
zone. The incommensurate phase still reflects the underlying
symmetry of the crystal, but angle-selective steps occur at the
corners of the Brillouin zone (see Fig. 7). The rounding of the
corners increases for smaller rs , and the isotropic step function
of the Fermi gas is continuously approached for rs → 0.

Whereas we have found that the incommensurate phase
is always favored compared to the Fermi gas solution, inde-
pendently of the imposed polarization and crystal symmetry,
the unpolarized incommensurate hexagonal crystal becomes
the true HF ground state at high densities, rs � rc

s � 1.22.
The different phases and energies for 0.8 � rs � 4.0 are
illustrated in Fig. 8. Although our HF method does not
impose the polarization, we have not found any stable
partially polarized ground states. At rs > rc

s the unpolarized
electrons form a commensurate Wigner crystal of hexagonal
symmetry, and at rs � 1.62 a structural transition from
the unpolarized hexagonal WC to the unpolarized square
WC occurs, followed by a transition from the unpolar-
ized square WC to the fully polarized triangular WC at
rs � 2.6.

V. CONCLUSION

We have studied the 2DEG in the Hartree-Fock approxi-
mation at densities rs � 4. We confirm previous observations
of incommensurate phases of the fully polarized electron
gas,11 performing calculations of much larger system sizes.
We further included electron polarization as well as square
and triangular symmetries. Our HF phase diagram at zero
temperature is much richer than that obtained previously,15

which did not consider the unpolarized triangular WC or any
incommensurate phase. Our numerical calculations explicitly
confirm the old conjecture of Overhauser9,10 that Fermi gas is
never the HF ground state, which has been proven rigorously
for the fully polarized electron gas.11

We have further shown that the momentum distribution
provides an unambiguous characterization of the incommensu-
rate phase. In contrast to the isotropic momentum distribution
of a Fermi liquid, discontinuous at the Fermi surface,18,19

the incommensurate phase exhibits an anisotropic momentum
distribution intermediate between a crystal and the Fermi gas
with forbidden domains inside the Brillouin zone, where nk

jumps to zero.
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