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Momentum distribution and Compton profile by the ab initio GW approximation
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We present two possible approaches to calculate the momentum distribution n(p) and the Compton profile
within the framework of the ab initio GW approximation on the self-energy. The approaches are based on
integration of the Green’s function along either the real or the imaginary axes. Examples will be presented
on the jellium model and on real bulk sodium. Advantages and drawbacks of both methods are discussed in
comparison with accurate quantum Monte Carlo calculations and x-ray Compton scattering experiments. We
illustrate the effect of many-body correlations and disentangle them from band-structure and anisotropy effects
by a comparison with density functional theory in the local density approximation. Our results suggest the use
of G0W0 momentum distributions as reference for future experiments and theory developments.
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I. INTRODUCTION

The momentum distribution n(p), defined as the probability
to observe a particle with momentum p, is one of the basic
quantities in quantum statistical mechanics. For fermions, it is
a quantity showing a direct evidence of the Pauli principle (see
Fig. 1). For an ideal Fermi gas of free noninteracting electrons,
the momentum distribution is the Fermi-Dirac distribution. In
equilibrium at zero temperature, it is the step function, i.e., it
is 1 for p below the Fermi momentum pF and 0 above, with a
discontinuity equal to one at the Fermi sphere surface.

When passing from the ideal Fermi gas to a Fermi liquid of
interacting fermions,1 the momentum distribution departs from
the perfect step function. Correlations induce a modification of
the distribution with a spillout from lowest to highest momenta,
so that the probability to observe an electron at a momentum
p larger than the Fermi momentum pF becomes finite even at
zero temperature. However, n(p) still retains the discontinuity
at p = pF , having only its magnitude reduced from 1.

For the homogeneous electron gas (HEG) or jellium, one of
the most fundamental models to study electronic correlations,
the discontinuity is reduced to the quasiparticle renormal-
ization factor ZpF

calculated at the Fermi momentum.2 In
the high-density limit (rs = 0), which is dominated by the
kinetic energy, ZpF

approaches the uncorrelated value 1.
The renormalization factor ZpF

is expected to reduce with
decreasing density as correlations build up (see Fig. 1).
The discontinuity is still retained at finite densities and
vanishes for rs → ∞. In particular, for so-called strongly
correlated systems, the discontinuity is strongly suppressed.
The modification of the momentum distribution and the
reduction of the discontinuity is mainly a correlation effect,
unaffected by other, Hartree or exchange, many-body effects.
Thus, the momentum distribution and its discontinuity, unlike
other observables such as the band dispersion or the gap,

provide a unique and unambiguous quantification of the
level of correlation in a system.3–13 Therefore, experimental
measurements of n(p) and its discontinuity are of fundamen-
tal importance to test and verify many-body theories. The
level of accuracy in describing correlations by a given
theoretical approach can be directly quantified by a comparison
of calculated n(p) and Z with experimental results, if they were
available.

In this work, we focus on the calculation of the momentum
distribution and related quantities within the framework of
ab initio many-body theory in the GW approximation. We have
studied two possible approaches: the momentum distribution
can be calculated by integration of expressions containing the
Green’s function or the self-energy evaluated on either the real
or the imaginary ω axis. Analytically, both integrals provide
the same result. Numerical convergence problems with respect
to the integration sampling favor the real-axis integration for
evaluating the momentum distribution far away from the Fermi
momentum, while the imaginary axis is more accurate near the
discontinuity. Taking bulk sodium and jellium as examples,
our results show that the G0W0 momentum distributions are in
good agreement with x-ray Compton scattering experiments14

and also with quantum Monte Carlo results,12 provided that the
appropriate methodology, as analyzed in this article, is used in
their calculation. As standard G0W0 are applicable to describe
a broad range of realistic systems, results on the momentum
distribution and related quantities, e.g., the quasiparticle
renormalization factor or the Compton profile, can provide
accurate reference values and stimulate new experiments. In
turn, since experimental measurements of the Compton profile
derivative discontinuity provide an unambiguous quantifica-
tion of the level of correlation, the limit of validity of the
GW approximation can be checked, e.g., in strongly correlated
systems, stimulating further theoretical progress.
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FIG. 1. (Color online) The G0W0 momentum distribution of the
jellium model at decreasing densities, as an illustration of increasing
correlation effect. Gray short-dashed line: ideal Fermi gas; black
long-dashed line: rs = 1; light-green dotted-dashed line: rs = 2; blue
dotted line: rs = 4; red solid line: rs = 5; dark-green dashed line:
rs = 10.

The momentum distribution n(p) is also the Fourier
transform of the density matrix n(r,r ′), which is the funda-
mental degree of freedom of density-matrix functional theory
(DMFT).15–17 Since DMFT is an in principle exact theory
to calculate the density matrix, it can give access not only
to ground-state observables such as Kohn-Sham DFT, but
also to some spectral information such as the quasiparticle
renormalization factor Z at the Fermi surface, which can be
extracted from the discontinuity of n(p), for example, by
switching on and off the pseudopotential or the electronic
correlations. Momentum distributions obtained within GW,
as presented here, can also represent a good starting point
for improving exchange-correlation approximations within
DMFT.

In previous works,18–20 Kubo has addressed the momentum
distribution in solids by a G0W0 real-axis integration method
using the Hamada plasmon-pole model,21 which has been
criticized22 for not providing an accurate description of the
imaginary part of the self-energy, hence of the momentum
distribution. Here, we calculate and use the full frequency
dependence of the dielectric function.

The paper is organized as follows: Section II is an
introduction to the momentum distribution. In Sec. III, we
discuss the relation with the experiment. In Sec. IV, we discuss
periodic crystalline band-structure and anisotropy effects on
n(p). In Sec. V, we consider purely many-body effects and
present details of the two GW methodologies used in the
calculation. Finally, we draw conclusions and an outlook.
Unless explicitly specified, we use atomic units (a.u.).

II. MOMENTUM DISTRIBUTION

The spin-averaged momentum distribution is defined as

n(p) = 1

2

∑
σ

〈�|n̂pσ |�〉 = 1

2

∑
σ

〈�|â†
pσ âpσ |�〉,

where � is the ground-state wave function of the system and
n̂pσ = â

†
pσ âpσ is the product of creation/annihilation operators

for electrons at momentum p and spin σ . By replacing, in
terms of the field operators ψ̂†

σ (r),ψ̂σ (r),

n(p) = 1

2

∑
σ

1

V

∫
dr dr′ e−ip(r−r′)〈�|ψ̂†

σ (r′)ψ̂σ (r)|�〉

= 1

2V

∫
dr dr′ e−ip(r−r′)n(r,r′), (1)

the momentum distribution is expressed as the Fourier trans-
form of the reduced single-particle density matrix n(r,r′). One
can see that density-matrix functional theory is particularly
suitable to calculate the momentum distribution n(p) and its
discontinuity ζ , related to the quasiparticle renormalization
factor Z at the Fermi surface.

The momentum distribution is the step function only in
the ideal case of a system of noninteracting free fermions in
equilibrium at zero temperature. The departure from that ideal
shape is due to many factors that must be taken into account,
namely,

(A) finite-temperature effects;
(B) band-structure effects;
(C) anisotropy of the Fermi surface;
(D) electron-phonon interaction effects;
(E) electron-electron correlation many-body effects.

In the next sections, we estimate and discuss the weight of
each effect compared to the others.

In this paper, we use the convention to define the disconti-
nuity of n(p) as ζ , to be distinguished from the quasiparticle
renormalization factor Z at the Fermi surface, and affected by
all other, e.g., band-structure, etc., effects. It should be noted
that ζ = ZpF

only holds in the case of jellium.

A. Noninteracting free fermions and finite-temperature effects

Consider an unpolarized noninteracting and free-electron
gas of given density n = 3/4πr3

s and Fermi momentum pF =
(9π/4)1/3/rs . The electronic structure is simply provided by
perfectly parabolic energy levels εp = p2/2 and plane-wave
orbitals φp(r) = eip·r/

√
V . Due to their fermionic nature,

electrons obey the Pauli principle, and at equilibrium single-
electron states are filled according to the Fermi-Dirac distribu-
tion at temperature T and chemical potential μ with occupation
numbers n(p) = 1/(e(p2/2−μ)/T + 1), which in this case coin-
cides with the momentum distribution. In the limit T → 0,
n(p) reduces to the step function n(p) = θ (pF − p), with a
well-defined jump at pF of magnitude ζ = n(p−

F ) − n(p+
F ) =

1 (gray dashed line in Fig. 1). Finite temperatures introduce
a smoothing of the jump in the region |p2 − p2

F |/2m � T .
At room temperature, |p/pF − 1| � T/TF where TF = p2

F /2
is the Fermi temperature. For metals, we typically have
T/TF ≈ 10−2 at room temperature, so that temperature effects
are fairly negligible for our analysis.

B. Noninteracting electrons in solids: Band-structure effects

In order to describe noninteracting electrons in a periodic
crystalline solid, we have to use Bloch energies ενk and wave
functions

φνk(r) =
∑

G

φ̃G
νke

i(k+G)r, (2)
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where the summation runs over reciprocal lattice vectors G,
and k and ν are the crystal momentum and the band index,
respectively.

At T = 0, all states {ν,k} are filled up to the Fermi energy
εF , with a step function for the occupation number nνk =
θ (εF − ενk). As a consequence, the momentum distribution in
the independent particle approximation becomes

n(p) =
∑
νk

θ (εF − ενk)
∑

G

δ(p − k − G)
∣∣φ̃G

νk

∣∣2
, (3)

and will deviate from the ideal-gas step function.
Whereas the Fermi momentum is no longer a well-defined

concept, a discontinuity of the momentum distribution still
occurs whenever the Bloch energies cross the Fermi surface,
defined by εF . Eventually, more than one discontinuity can
be present in the momentum distribution when the Fermi
surface is organized in several branches. The contributions
of momentum density centered at reciprocal lattice vectors
G 	= 0 are called high-momentum (umklapp) components of
the momentum density and can also be seen experimentally
in non-jellium-like systems.23 Assuming a partially filled,
isotropic valence band, the Fermi sphere of which is entirely
contained within the first Brillouin zone (1BZ), e.g., the case
of Na, the value of the discontinuity at the Fermi surface is
reduced compared to the free-electron gas by the value

ζ = ∣∣φ̃G=0
ν=1,kF

∣∣2 � 1. (4)

With respect to the electron gas, band-structure effects thus
reduce the discontinuity to a value provided by the coefficients
of the plane-wave expansion of the orbitals [Eq. (2)]. The more
the system approaches the ideal Fermi gas, the closer the wave
functions are to plane waves, and the larger is the discontinuity
at the Fermi surface.

Band-structure effects can be calculated by a simple single-
electron theory. We will discuss in detail in Sec. IV how to
account them by density functional theory and will provide an
illustration of these effects.

C. Noninteracting electrons in solids: Anisotropy effects

In a real solid, the momentum distribution defined in
Eq. (3) is in general anisotropic, and the Fermi surface is
nonspherical. Whereas angle-resolved momentum distribution
measurements24–28 may eventually resolve the full three-
dimensional (3D) n(p), Fermi surface anisotropy may prohibit
the access to the magnitude ζ of the n(p) discontinuity by
a simple powder-averaged measurement. We will discuss
anisotropy effects also in Sec. IV.

D. Electron-phonon interactions

An electron in a solid can absorb or emit a phonon with
momentum q and in a mode μ with a probability given by the
electron-phonon coupling λμq . The momentum distribution
of electrons turns out to be modified as a consequence
of such scatterings. In order to precisely account for such
effects, one should evaluate the full electron-phonon scattering
matrix and introduce its effect into the momentum distribution
as a function of the temperature. This can be done by
constructing an electron-phonon self-energy, for example, in

the second Born approximation. The electron-phonon coupling
may lead to a further decrease in the discontinuity of the
momentum distribution. However, since the phonon Debye
frequency ωD is small compared to the Fermi temperature,
changes in the momentum distribution due to electron-phonon
interactions are expected only within a narrow momentum
region δp/pF � ωD/TF ≈ 10−2, well beyond the current
experimental resolution. Similar to pure temperature effects
on the electronic distribution, we will neglect these effects in
the following.

E. Jellium and Fermi liquid behavior: Electron-electron
correlation effects

In an electron-electron interacting system, collisions be-
tween electrons will in general reduce the discontinuity in
the momentum distribution. This effect can be accounted for
only by a theory presenting a good description of correlations
and in principle exact to calculate the density matrix n(r,r ′),
or directly the momentum distribution n(p). Density-matrix
functional theory can be such a theory, once a good ap-
proximation for the exchange-correlation functional is found.
Density functional theory in the local density approximation
(DFT–LDA) or generalized gradient approximation (GGA)
present a good description of correlations in the electronic
density n(r) or other ground-state properties, but Kohn-Sham
DFT is not an exact theory to calculate n(r,r ′) or n(p).

Precise values of the momentum distribution can be
obtained from quantum Monte Carlo (QMC) methods. These
methods are based on the full many-body wave functions
�(r1, . . . ,rN) and correlations are explicitly introduced in
many-body Jastrow and backflow potentials. The reduced
single-particle density matrix can be calculated by integrating
the many-body wave function

n(r,r′) = N

∫
dr2 . . . drN �∗(r,r2, . . . ,rN)�(r′,r2, . . . ,rN)

(with
∫

dr1 . . . drN�∗� = 1) and the momentum distribution
is obtained by Fourier transform [Eq. (1)]. Accurate results
on the momentum distribution and on the renormalization
factor at zero temperature have been obtained by quantum
Monte Carlo calculations.12,29 This way is also available for
other wave-function-oriented many-body theories, such as, for
example, quantum chemistry approaches.

Finally, the momentum distribution can also be calculated
in the Green’s function approach to many-body theory by

n(p) = 1

V

∫
dr dr′ e−ip(r−r′)

∫ μ

−∞
dω A(r,r′,ω), (5)

where A is the spectral function of single-particle excitations
that can be obtained from the imaginary part of the Green’s
function

A(ω) = − 1

π
ImG(ω) sgn(ω − μ), (6)

and is normalized as follows:∫ +∞

−∞
dω A(r,r′,ω) = δ(r − r′). (7)
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Therefore, n(p) is alternatively given by

n(p) = 1 − 1

V

∫
dr dr′ e−ip(r−r′)

∫ ∞

μ

dω A(r,r′,ω). (8)

Thus, the knowledge of the spectral function A, or of the
Green’s function, can provide the momentum distribution upon
frequency integration.

The spectral function of a free, noninteracting gas of
fermions is diagonal in momentum space, and reduces to a
delta function in frequency space:

A(p,ω) = δ(ω − p2/2).

As a consequence, at zero temperature, where the Fermi-Dirac
function becomes a step function, the momentum distribution
contains a jump at the Fermi momentum pF . The magnitude of
the jump is maximal, ζ = 1, and directly equal to the strength
of the delta function.

For any approach characterized by an effective, static,
single-particle Hamitonian, in particular, the Hartree-Fock
method or the Kohn-Sham scheme to DFT, the spectral
function is still characterized by exact delta functions in
frequency space. As a consequence, in the homogeneous
system, the momentum distribution is still given by the step
function of the ideal gas with a jump ζ = 1, while in solids
the discontinuity is reduced only by other effects, e.g., band
structure or anisotropy.

Correlations will in general lead to a broadening of
the single-particle excitation spectra and smooth out the
discontinuity in the momentum distribution. However, for
a normal Fermi liquid, the damping of an excitation at the
Fermi surface vanishes2 and we approach again a delta peak
in the spectral function, but of reduced weight, the so-called
quasiparticle renormalization factor Z. Therefore, we still
expect a discontinuity in the momentum distribution, but its
magnitude is reduced by a factor Z < 1. In jellium, where
band-structure and anisotropy effects are absent, the jump
magnitude itself ζ represents a direct measure of the strength of
quasiparticle excitations ZpF

at the Fermi surface. From Fig. 1,
we expect significant changes in the momentum distribution
of jellium at metallic densities compared to free electrons, a
direct signature of electronic correlations in the system. In real
systems, in particular jelliumlike simple metals, the measure of
the momentum distribution jump can provide a direct evidence
of Fermi liquid behavior. For all other metals, the measure of ζ ,
once disentangled all other, e.g., band-structure, etc., reduction
effects, can provide an estimate of ZkF

and thus a quantification
of correlation effects and possible deviation from Fermi liquid
behavior.

In Sec. V, we will enter into the details of a momentum dis-
tribution calculation in the framework of many-body perturba-
tion theory, including correlations by the GW approximation.

III. COMPTON PROFILE AND EXPERIMENTAL
MEASUREMENTS

An interesting technique that can provide an experimental
indirect access to the momentum distribution is Compton
scattering of x rays,30 a branch of nonresonant inelastic x-ray
scattering spectroscopy (IXSS) performed with hard x rays
(with energies 10–100 keV) in the limit of large transferred

momentum and energy. IXSS measures the probability for
inelastic x-ray scattering, quantified by the double-differential
scattering cross section d2σ/d�dω in the solid angle element
d� and transferred energy interval dω. At values of ω much
larger than the electron binding energy, the experiment is in
the regime of the so-called impulse approximation,31 where
the differential scattering cross section is proportional to the
Compton profile J (q),

d2σ

d�dω
∝ J (q), (9)

where q is the electron momentum vector that points in the
direction of the scattering vector. The Compton profile is
directly related to the momentum distribution and defined as
the projection of n(p) onto the direction q̂ of the scattering
vector,

J (q) = 2

n̄

∫
dp

(2π )3
δ(q − p · q̂)n(p),

where n̄ = 2
∫

dp/(2π )3 n(p) is the average electron density
(factor 2 is for spin).

Substantial simplification is obtained assuming an isotropic
system n(p) = n(p). In this case, we have

J (q) = 1

2π2n̄

∫ ∞

q

dp p n(p) (10)

and n(p) is determined by simple differentiation of the
Compton profile

n(p) = −2π2n̄

p

dJ (q)

dq

∣∣∣∣
q=p

.

Metals with highly isotropic momentum distribution are
therefore most suited for measurements of the momentum
distribution via Compton scattering. Notice that we are using
the convention by which the Compton profile is normalized
to 1, ∫

dq J (q) = 1.

For example, in the case of the ideal Fermi gas, the
momentum distribution n(p) is the step function n(p) =
θ (pF − p) with a discontinuity ζ = 1 at the Fermi momentum
pF . The associated Compton profile is an inverted parabola for
q < pF ,

J (q) = 3

4p3
F

(
p2

F − q2
)
θ (pF − q),

and vanishes for q > pF (see Fig. 2). It presents a discontinuity
of the first derivative at the Fermi momentum q = pF ,
which is related to the discontinuity ζ of the momentum
distribution n(p). A direct measure of the discontinuity of
the first derivative of the Compton profile dJ/dq provides
the discontinuity of the momentum distribution which we are
interested in.

Measurements of the Compton profile of solid sodium have
been presented in Ref. 14. These experiments were performed
at the beamline ID16 of the European Synchrotron Radiation
Facility. Details of the beamline, the spectrometer, sample
preparation, and data analysis are given in Refs. 14, 32,
and 33. To get Compton profiles of valence electrons, the
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FIG. 2. (Color online) Compton profile of valence electrons in
sodium. Orange dotted line: experiment; gray short-dashed line: ideal
Fermi gas; green line: QMC calculation; violet dashed line: DFT–
LDA calculation; blue squares: G0W0 real-axis calculation. The ideal
Fermi gas result is nearly indistinguishable from the DFT–LDA line.

core-electron contributions must be subtracted from the exper-
imental signal. Core-electron IXSS spectra were calculated by
a quasi-self-consistent field (QSCF) approximation34 and the
real-space multiple scattering approach FEFFq,35 both found
in agreement with each other and the measured Compton
spectra.14 In Fig. 2, we present the resulting experimental
Compton profile of sodium valence electrons together with
various theoretical results. With respect to the Compton profile
of an ideal Fermi gas, we observe a departure from the perfect
inverted parabola and a reduction of the discontinuity in the
first derivative at the Fermi momentum. In the next sections,
we will analyze in detail the influence of band structure
and correlations on the Compton profile and the underlying
momentum distribution within the GW approach.

IV. BAND-STRUCTURE AND ANISOTROPY
EFFECTS BY DFT-LDA

Density functional theory is an in principle exact the-
ory to calculate the ground-state electron density n(r) =
〈�0|ψ̂†(r)ψ̂(r)|�0〉 together with the ground-state energy.
However, neither the off-diagonal elements of the density ma-
trix n(r,r′) = 〈�0|ψ̂†(r′)ψ̂(r)|�0〉 nor its Fourier transform,
the momentum distribution, can in general be described within
DFT, similar to quasiparticle properties.

Nevertheless, the Kohn-Sham scheme of DFT can be used
to evaluate the leading-order band-structure and anisotropy
effects to the momentum distribution. This can be done
by replacing Kohn-Sham wave functions and energies into
Eq. (3) where correlation effects are neglected. Whenever the
Kohn-Sham wave functions are close to the exact quasiparticle
ones, and quasiparticle corrections do not significantly modify
the Kohn-Sham Fermi surface, Eq. (3) is expected to provide
a good description of band-structure and anisotropy effects,
as well as the position of the discontinuity. This is the case
in alkali metals and simple semiconductors.36 A breakdown
of this picture was found in solids which contain shallow d

electrons37 and may also be expected for systems with shallow

FIG. 3. (Color online) The Fermi surface in sodium, obtained
from a Kohn-Sham DFT-LDA calculation.

f electrons. In these cases, the Kohn-Sham wave functions of d

electrons are in general not close to quasiparticle ones. Further,
a quasiparticle shift of d levels may significantly modify the
DFT Kohn-Sham Fermi surface, and so the position of the
discontinuity.

The system studied here, sodium, is significantly simpler,
and DFT provides a reasonable estimate of band-structure
and anisotropy effects. We run a standard Martin-Trouillers
pseudopotential DFT–LDA calculation on a plane-waves basis
set, with a cutoff of 24 Ryd on the kinetic energy, fixing
the lattice parameter to the experimental value 8.108 a.u.
(corresponding to an average density of rs = 3.99). Using
a Monkhorst-Pack 8 × 8 × 8 grid of k points to represent
the Brillouin zone, the electron density is converged at self-
consistency. Larger sets of k points were used to calculate the
band plot, the Fermi surface, and the momentum distribution.

We start with an analysis of the anisotropy effects, as
provided by DFT. The Fermi surface (Fig. 3) is very close
to a perfect sphere with a deviation of 0.2% only. This result
shows a close similarity between sodium and the jellium
model. In order to estimate the maximum anisotropy of
the Fermi surface in sodium, we calculated the Kohn-Sham
energies on a very fine k mesh across the Fermi level and
along the three high-symmetry directions �-H , �-P , and �-N
(Fig. 4). The anisotropy at the Fermi surface is evaluated to
be �k = 5.5 × 10−4 bohrs−1. Such a value is well within
the accuracy of the IXSS experiment. Therefore, anisotropy
effects in sodium are currently not detectable,38 and we do
not expect more insights from angle-resolved measurements
on single crystals compared to much simpler powder-averaged
measurements.

The momentum distribution calculated using Eq. (3) and
Kohn-Sham DFT–LDA wave functions is shown in Fig. 5. A
very small deviation from the momentum distribution of the
ideal Fermi gas is observed below and above pF . The DFT–
LDA discontinuity is evaluated to be ζ Na

DFT = 0.98(1), slightly
below the ideal Fermi gas value. An analysis of the Kohn-Sham
wave functions shows that the plane-wave coefficients φ̃G=0

ν=1,k
in sodium are 0.99 for all k points around kF . This value
remains almost the same for states at the bottom of the first
band and up to 1 eV above the Fermi level. Therefore, wave
functions of the first band are very close to plane waves in a
wide range of k, consistent with the band structure (Fig. 6).
The first band in sodium is an almost perfect parabola which
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first band energy vs k: blue circles and line: along the �-H direction;
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energy levels.

superimposes with the dispersion curve of the ideal Fermi
gas. A difference between the two curves is appreciable only
above the Fermi level and close to the BZ boundary. The
DFT bandwidth is only 0.04 eV larger in the ideal Fermi gas
than in sodium, a value below the standard accuracy of a
pseudopotential calculation.

Beyond the first Brillouin zone, band-structure effects
introduce deviations from the momentum distribution of an
ideal Fermi gas which exactly vanishes above pF (Fig. 5 inset).
This is typical for crystalline solids and arises from the Fourier
components of the Bloch wave functions with G 	= 0. The
weights of these components (smaller than 0.005 in sodium)
quantify the deviations of the crystalline wave function from
a perfect plane wave e−ik·r/

√
V .

We can conclude that both band-structure and anisotropy
effects on the momentum distribution are very small in sodium.
They affect n(p) by less than 0.02, with the maximum value
achieved at the level of the discontinuity. The DFT momentum
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FIG. 5. (Color online) The momentum distribution of Na deter-
mined by a DFT–LDA calculation, as compared to the ideal Fermi gas
step function and to the QMC calculation. Data have been rounded
to 10−3 corresponding to the accuracy of the calculation.
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distribution of sodium remains close to that of the ideal
Fermi gas, significantly different from QMC results14 (Fig. 5).
From Eq. (10), we obtain the directional-averaged Compton
profile. Quantitative comparison with the measured Compton
profile confirms that the bare DFT does not provide accurate
momentum distributions or Compton profiles (Fig. 2).

V. CORRELATION EFFECTS BY THE GW
APPROXIMATION

The Green’s function G or the spectral function A entering
into Eq. (5) for n(p) can be calculated in the Hedin’s GW
approximation3 where the self-energy is approximated by

�GW(r,r′,ω) = i

∫
dω′

2π
G(r,r′,ω − ω′)W (r,r′,ω′), (11)

in terms of the Green’s function G and the dynamically
screened interaction W (ω) = ε−1(ω)v. Here, v is the bare
Coulomb potential and ε−1(ω) the inverse of the dielectric
function taken in the random phase approximation (RPA).39

In an iterative scheme, starting with a trial Green’s function G0,
for example, obtained from the noninteracting band structure
or from DFT Kohn-Sham orbitals, one calculates the RPA
polarizability �RPA = G0G0, followed by the dielectric func-
tion εRPA = 1 − v�RPA, and the RPA dynamically screened
interaction WRPA = ε−1

RPA(ω)v. With these ingredients, the GW
self-energy for the first iteration can be calculated according to
Eq. (11), and the corresponding Green’s function is determined
by solving Dyson’s equation

G = G0 + G0�G. (12)

In the fully self-consistent GW approximation, further iter-
ations up to self-consistency in the self-energy and Green’s
function must be performed. If applied to realistic electronic
systems, fully self-consistency is in general a too difficult task
since all functions depend on all space-time coordinates.

Within the so-called G0W0 approximation, observables are
calculated from the self-energy and Green’s function of the first
iteration. The G0W0 approximation turned out40 to be a useful
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approach for calculating quasiparticle electronic structure of
realistic systems, yielding band gaps in solids in very good
overall agreement with the experiment. Different schemes have
been explored to obtain partial self-consistency,41,42 but fully
self-consistent solutions are only reported for jellium.7 Self-
consistent calculations are appealing since they eliminate the
dependence of the results on the initial trial of the Green’s
function. However, the issue as to whether a full self-consistent
GW really improves upon G0W0 remains still controversial,
and likely depends on the observable one is interested in.

A. GW n( p) in jellium as compared to QMC

The first G0W0 electronic-structure calculation on the
jellium model was carried out by Hedin.3 Lundqvist44,45

addressed also the momentum distribution. More recent cal-
culations, involving self-consistency issues within a Gaussian
basis set, were done by von Barth and Holm.7,43 Here, we
calculated the G0W0 momentum distribution following the
original approach by Hedin.3

In Fig. 1, we show our calculated momentum distributions
for jellium for a large range of densities. Starting from lowest
rs = 1, passing by metallic densities rs = 2–5, up to rs = 10
with gradually increasing correlation, we observe the departure
of the momentum distribution from the ideal Fermi gas step
function and an increasing spillout to higher momenta, asso-
ciated with a reduction of the discontinuity, the quasiparticle
renormalization factor Z at the Fermi momentum. We found
ZpF

= 0.86 for rs = 1, as in Ref. 3, down to ZpF
= 0.45 for

rs = 10.
In Fig. 7, we compare our results to those of Refs. 7 and 43.

Our G0W0 n(p) is overall in good agreement with the G0W0

result by Ref. 43. The small discrepancy at values of p � pF

is not due to the different scheme (Gaussian basis set versus
sampling of ω axis), but rather to the fact that for p < pF we
used Eq. (8) instead of Eq. (5),46 a point that will be clarified
later for the more critical case of sodium.
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FIG. 7. (Color online) Comparison of our momentum distribution
with previous results on jellium at rs = 4. Blue dots: our G0W0 result;
blue solid line: G0W0 result of von Barth and Holm (Ref. 43); red
dashed line: GW0 result of von Barth and Holm (Ref. 43); black
dotted-dashed line: GW result of Holm and von Barth (Ref. 7).
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We then notice that any higher level of self-consistency,
both on G and W, reduces the level of correlation, and thus
increases the discontinuity and ZpF

. From comparison with
quantum Monte Carlo results of Ref. 12 (Fig. 8), we observe
that the G0W0 result is already in surprisingly good agreement
with QMC, especially for metallic densities. Even for the most
correlated density rs = 10, the QMC discontinuity Z = 0.40
is not far from our G0W0 prediction of 0.45. On the other
hand, any improvement towards a fully self-consistent GW
has led to an increase of the discontinuity in disagreement with
QMC. Notice that Refs. 7 and 43 provide fully self-consistent
solutions with respect to all degrees of freedom.

B. GW n( p) in solids

For G0W0 non-self-consistent calculations on realistic
solids, it is convenient36 to start from a Kohn-Sham DFT-
LDA eigenvalues εKS

νk and eigenfunctions φKS
νk (r) zero-order

electronic structure

G0(r,r′,ω) =
∑
νk

φνk(r)φ∗
νk(r′)

ω − ενk + iη sgn(ενk − μ)
(13)

used to obtain the screened interaction and the GW self-energy,
as described above. However, in order to avoid double counting
of exchange-correlation effects already taken into account
by the DFT exchange-correlation potential vxc, the Dyson
equation to calculate the Green’s function G in first iteration
reads as

G = G0 + G0(� − vxc)G. (14)

In a solid, spectral functions, as well as all other many-body
quantities, e.g. G and �, can be conveniently described
in terms of an orthonormal set of Bloch wave functions
φνk(r) = ∑

G φ̃G
νke

i(k+G)r, as already provided by the Kohn-
Sham eigenfunctions. Expressing the spectral function in this
basis set,

A(r,r′,ω) =
∑

νkν ′k′
φνk(r)φ∗

ν ′k′(r′)Aνν ′(k,k′,ω), (15)
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the momentum distribution reads as

n(p) =
∑
νν ′kG

δ(p − k − G)φ̃G
νkφ̃

G∗
ν ′k

∫ μ

−∞
dω Aνν ′ (k,k,ω). (16)

In sodium and other nearly free-electron systems, the self-
energy operator, as well as the spectral function A, are almost
diagonal on ν and ν ′, and the neglect of nondiagonal elements
is justified47 in the expression for the momentum distribution

n(p) =
∑
νkG

δ(p − k − G)
∣∣φ̃G

νk

∣∣2
nνk, (17)

nνk =
∫ μ

−∞
dω Aν(k,ω), (18)

where Aν(k,ω) ≡ Aνν(k,k,ω). This approximation does not
hold in systems where some of the true quasiparticle wave
functions differ from the DFT wave functions, and the former
expression involving also nondiagonal elements Aνν ′(k,k,ω)
should be used.

In Eqs. (17) and (18), nνk provides the correlation con-
tribution to the momentum distribution from each band. For
any uncorrelated system, nνk = 1 for all the states within the
Fermi surface ενk < μ and 0 elsewhere (step function) and
the strength of the quasiparticle excitation remains Z = 1 as
for free fermions. However, band-structure effects reduce the
discontinuity in the momentum distribution ζ < Z already for
noninteracting electrons [Eq. (4)]. Therefore, it is important
to distinguish ζ [the jump in n(p)] from the quasiparticle
renormalization factor Z (the jump in nνk) quantifying the
strength of excitations at the Fermi surface. Whereas both
coincide for a homogeneous system, e.g., jellium, they are
different in real solids. Within leading order, correlations
induce deviations of nνk from the step function, whereas
band-structure effects are already contained in the weights
φ̃G

νk inside the summation [Eq. (17)] over all bands, reciprocal
lattice, and BZ vectors.

C. GW n( p) by integration on the real ω axis

Neglecting off-diagonal contributions in the band index, the
spectral function, Eq. (15), can be expressed as

Aν(k,ω)= 1

π

|Im�ν(k,ω)|[
ω − ενk + vxc

νk − Re�ν(k,ω)
]2 + [Im�ν(k,ω)]2

(19)

in terms of the band-diagonal self-energy �ν(k,ω) ≡
�νν(k,ω), calculated within G0W0, the Kohn-Sham eigenval-
ues ενk, and the matrix elements of the DFT–LDA exchange-
correlation potential

vxc
νk = 〈φνk|vxc|φνk〉. (20)

From the spectral function, we can calculate nνk by integra-
tion along the real axis [Eq. (18)]. Finally, the momentum
distribution is evaluated from Eq. (17) using the plane-wave
coefficients φ̃G

νk of the underlying DFT–LDA calculation. For
the G0W0 calculation, we have used 50 bands, a cutoff of
5 H (both on the wave functions and on the dimension of
the polarizability matrices). The dielectric function has been
calculated on 800 frequencies along the real ω axis, up to 2 Ha,
and 10 Gauss-Legendre knots frequencies along the imaginary
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FIG. 9. (Color online) Spectral function Aν(k,ω) of sodium for
the first band (ν = 1) and k = 0.274 (solid black line); cumulative
sum of the spectral function

∫ ω

−∞ dω′ A(ω′) (red dashed line). The
crossing of the cumulant to the Fermi level provides the value of nk .
The total integral of the spectral function, which should be 1, provides
the error on nk . A zoom of the Aν(k,ω) within the energy interval
3–17 eV is shown by a thin black line.

axis. With these parameters, n(p) at a given p is converged
within 10−2.

In Fig. 9, we show the G0W0 spectral function Aν(k,ω)
for k/kF  0.57. It contains a quasiparticle peak (the most
intense feature) and some satellites. The distribution of the
spectral weight among the various structures can be read off
by the integrated spectral function (its cumulant). In this case,
the quasiparticle peak has a weight Z  0.6, low- and high-
energy satellites have weights of 0.3 and of 0.1, respectively.
According to the sum rule, Eq. (7), the total weight of the
spectral function Aν(k,ω) is 1. The difference between the in-
tegrated spectral weight and unity is the numerical error of our
calculation, ≈0.01 in this case. The value of nνk is graphically
provided by the crossing of the cumulant with the Fermi en-
ergy, i.e., nνk = 0.91 ± 0.01 for k = 0.274 and ν = 1 (Fig. 9).

The momentum distribution calculated by the G0W0

method using the real-axis integration is shown in Fig. 10
at the example of sodium. The results are in good agreement
with the QMC calculation over a large range of p. When
looking at the way n(p) is calculated in a many-body
approach [Eq. (18)], the good agreement with QMC implies
that the G0W0 approximation reproduces the correct spectral
weight repartition between the quasiparticle peak and the
rest (satellites). It also implies that the energy position of
the quasiparticle peak with respect to the Fermi energy is
correctly reproduced by G0W0. However, it does not yet imply
a correct energy position of satellites. Since n(p) is just only
sensitive to the satellites’ spectral weight, GW turns out to be
a good approximation to describe the momentum distribution,
regardless of its ability to correctly describe the satellites’
energy position.

Notice that close to the Fermi surface, the straightforward
integration over real frequencies using a fixed discretization
grid fails, e.g., the point at n(p = 0.475) = 0.5 in Fig. 10
obtained from direct integration provides a too low value for
the momentum occupation. The observed underestimation of
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FIG. 10. (Color online) The G0W0 momentum distribution in Na
calculated along the real (blue squares) and imaginary (violet circles)
axes, as compared to the quantum Monte Carlo (green diamonds)
data (Ref. 14). In the case of integration along the real axis and for
k = 0.475, we show both the direct result of the integration [n(p) =
0.5] and the corrected value of n(p) = 0.78 (the correction procedure
is described in the text). We show also the momentum distribution in
the ideal Fermi gas (gray dashed line).

nνk near the Fermi surface is an artifact of the coarse sampling
along the ω axis. Since the quasiparticle lifetime tends to
infinity at the Fermi surface, the width of the quasiparticle
peak becomes increasingly narrow, and is described by less
and less points. As we can see from Fig. 11, the quasiparticle
peak for k = 0.475 is actually described by only three points on
the ω mesh underlying our calculation. As a consequence, the
integral

∫
dω A(ω) (black dashed line and circles in Fig. 11)

is highly inaccurate. The normalization of A(ω) turns out to
be 0.79 instead of 1, and the remaining spectral weight 0.21 is
lost due to the undersampling. Using Eq. (8), which involves
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FIG. 11. (Color online) The spectral function for k = 0.475
(close to kF ) and ν = 1. Black continuous line and circles: G0W0

spectral function calculated on a coarse ω mesh; black dashed line
and circles: integrated spectral weight of the calculated G0W0 spectral
function

∫ ω

−∞ dω′ A(ω′); red dotted-dashed line: renormalized inte-
grated spectral weight; blue continuous curve: QP peak generated by
a fit over a Lorentzian; blue dashed line: cumulative sum over the QP
fit generated curve.

only the spectral function of unoccupied states, offers certain
improvement. However, one should keep in mind that the finite
ω mesh employed in calculations on realistic systems might
not accurately capture all features of the spectral function for
energies and momenta very close to the Fermi surface.

The drawback related to the coarse ω mesh can be corrected
by a more appropriated evaluation, without the need of
recalculation of the spectral function on a more expensive
fine ω mesh. Based on the assumption that, for points k

close to the Fermi surface, the (negligible) spectral weight
of satellites is correctly reproduced by our coarse grid, we
expand the self-energy inside the spectral function [Eq. (19)]
around their values at the grid points. This justifies the use
of a Lorentzian form for the spectral function around the
quasiparticle peak. The spectral weight is then essentially lost
by the poor description of the quasiparticle peak on the finite
ω mesh. This procedure corrects the values of momentum
distribution close to the Fermi surface, in particular, the value
at n(p = 0.475) = 0.78 is significantly increased compared
with the value of the direct integration (see Fig. 10).

In Fig. 11, we illustrate this procedure where a Lorentzian
form for the quasiparticle peak is assumed:

l(ω) = ZQP
1

π

η

(ω − ω0)2 + η2
, (21)

and the parameters ZQP, ω0, and η are determined from a
fit of the G0W0 data such to obtain a total weight of 1 to
satisfy Eq. (7). The final result of this procedure is the shift
of the n(p) point evidenced by the blue arrow in Fig. 11. The
weight above the Fermi level of the fitted QP peak (blue line in
Fig. 11) is reduced, as compared to the weight under the black
G0W0 points connected by direct lines. The obtained integrated
spectral weight, shown by the blue dashed line in Fig. 11,
provides a value of nνk = 0.80 for ν = 1 and k = 0.475. The
final value of n(p) = 0.78 is then obtained as the product of
nνk and of the wave-function coefficient.

D. GW n( p) by integration on the imaginary ω axis

A different strategy to obtain the momentum distribution
consists in deforming the frequency integration in the complex
plane toward an imaginary ω-axis integration. Therefore, using
the normalization of A [Eq. (7)], we write nνk in the following
form:

nνk = 1 −
∫ +∞

μ

dω Aν(k,ω) = 1 + 1

π

∫ +∞

μ

dω ImGν(k,ω).

(22)

Since the Green’s function Gν(k,ω) is analytic in the upper part
of the complex plane for ω > μ, the frequency integral along
the real axis can be now deformed to the positive imaginary
axis (Fig. 12). Picking up a contribution iπ/2 from the quarter
circle at infinite distance, we obtain43

nνk = 1

2
+ 1

π

∫ +∞

0
dω ReGν(k,μ + iω). (23)

Thus, we can replace the integral along the real ω axis of
the imaginary part of G by an integral along the imaginary ω

axis of the real part of G, which is in general a rather smooth
function. The real part of the Green’s function ReG can again
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π/2

FIG. 12. (Color online) Integration contour: the integration along
the real axis is replaced by the integration along the imaginary axis
and a quarter circle.

be evaluated from � solving the Dyson equation (14):

ReGν(k,μ + iω)= μ − ενk + vxc
νk − Re�ν(k,μ + iω)(

μ − ενk + vxc
νk − Re�

)2 + (ω − Im�)2
.

(24)

In this approach, also the GW self-energy is calculated by
imaginary frequency integration in Eq. (11). The compu-
tational cost is significantly reduced with respect to the
integration on the real axis.

The calculated real and imaginary parts of the self-energy
�(ω) along the imaginary frequency ω axis are shown in
Fig. 13 at the example of sodium. One can see that the real
part of the self-energy is a much smoother quantity on the
imaginary axis, in contrast to the imaginary part.48 Close
to the Fermi surface, where the imaginary part vanishes,
imaginary-axis integration does not suffer from the problems
encountered in the integration along the real axis. So, the
description of the discontinuity in n(p) is better in the
imaginary- than in the real-axis integration (Fig. 10). However,
undersampling artifacts may still occur in the description of
states far away from the Fermi surface. Here, in contrast to
the real frequency integration, we have not corrected these
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FIG. 13. (Color online) Real and imaginary parts of the self-
energy along the ω frequency imaginary axis calculated by the non-
self-consistent G0W0 approach for sodium. We show the real parts for
three k points: k = 0.274 (black continuous line); k = 0.475 (black
dashed line); k = 0.6711 (blue dotted line). The imaginary part is
shown only for k = 0.274 (red continuous line and circles).
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artifacts, which explains the differences between the two
integration methods in Fig. 10, with the real-axis integration
more in agreement with the QMC momentum distribution at
p far away from the Fermi surface.

E. Contributions from higher bands induced
by GW correlations

In Fig. 14, we analyze the contributions of the different
bands to the momentum distribution. We show the nνk curves,
as calculated from Eq. (23), for the first ν = 1 band (dotted
red lines) and for the second ν = 2 band (blue double-dotted-
dashed line), the nν(p) curves including band-structure effects
[Eq. (17)] for the first (red dashed line) and second (blue
dotted-dashed line) bands, together with the full n(p) (black
solid line). At the noninteracting level in sodium, only the first
band contributes to n(p) [see Eq. (3), Figs. 6 and 5]. Correlation
effects may induce contributions from higher bands. From
Fig. 14 we observe that in sodium the first ν = 1 band
provides the dominant contribution inside the first Brillouin
zone, in particular for p � pF . Correlation effects induce a
contribution n2k from the second band of an almost constant
0.08. However, band-structure effects, taken into account by
the |φ̃G=0

ν=2,k|2 coefficients in Eq. (17), are more intense than
in the first band (which is almost parabolic and plane-waves
like), and depress this contribution to negligible values. The
contribution of the second band starts to be at the level of
the first only around p = 1.1 pF and for p � 1.3 pF where
the |φ̃G=0

ν=2,k|2 coefficients are significant. Higher bands (ν > 2)
provide a negligible contribution.

The discontinuity ζ in sodium is dominated by the first band
only. The magnitude of the discontinuity is therefore given by

ζ = ∣∣φ̃G=0
ν=1,kF

∣∣2
Zν=1,kF

, (25)

where Zν=1,kF
is the renormalization factor of the first band

quasiparticle peak at the Fermi surface. Since |φ̃G=0
ν=1,kF

|2 
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TABLE I. Anisotropy of the G0W0 quasiparticle renormalization
factor in sodium.

k direction ZNa
kF

(G0W0)

�-N 0.649(1)
�-P 0.643(1)
�-H 0.649(1)

0.99, band-structure effects introduce only a small 1% reduc-
tion of the discontinuity ζ in the momentum distribution of
sodium.

F. Anisotropies in the GW renormalization factor

In general, in solids the renormalization factor is a function
of the wave-vector k direction. In Table I, we have calculated
the G0W0 ZkF

for the first sodium band

ZkF
=

(
1 − ∂ Re�(kF ,ω)

∂ω

∣∣∣∣
ω=μ

)−1

(26)

along the main symmetry directions in the BZ. In sodium,
anisotropy effects are small also on many-body quantities,
leading to variations in Z of less than 1%. The G0W0

value of Z = 0.65 ± 0.01 in sodium is directly comparable
with the G0W0 value of Z = 0.64 in jellium at the sodium
average density of rs  4. Valence electrons of sodium look
very much like a good realization in nature of the ideal
homogeneous electron model, both from the point of view of
noninteracting as well as many-body interacting observables.
We can then compare the G0W0 value to many different
theoretical predictions,3–11,13 including the latest QMC value
for jellium.12 0.64 ± 0.01, which is more accurate than that
reported for sodium14 (0.70 ± 0.02). The experimental value
0.58 ± 0.07 from Ref. 14 clearly eliminates several important
approximations, such as fully self-consistent GW (Ref. 7) as
well as the so-called on-shell RPA approximation.5,6

G. GW Compton profile in sodium

In Fig. 2, we present the GW Compton profile as compared
to the ideal Fermi gas, DFT–LDA, QMC, and the IXSS
experiment. Both the ideal Fermi gas and the DFT–LDA
Compton profile appear like an inverted parabola, with a
discontinuity in the first derivative equal to 1 (or nearly for
DFT–LDA) at the Fermi momentum. The DFT–LDA Compton
profile is almost coincident with the ideal Fermi gas curve, so
that band-structure effects are even less appreciable than in the
momentum distribution: small differences in the two n(p) are
further smoothed after the integration to get at J (q).

The discontinuity is clearly reduced in the QMC sodium
pseudopotential and in G0W0 calculations. Both QMC and
G0W0 discontinuities are in agreement with the experimental
discontinuity within its error bar, mostly dictated by the
experimental momentum resolution and statistical accuracy.
The G0W0 real-axis integration Compton profile is practically
coincident with the Slater-Jastrow QMC result, except at pF

where it provides a lower discontinuity. A more accurate
backflow QMC calculation in sodium would probably further
reduce the discontinuity, like it is the case in jellium. As

to the comparison with the experiment, in principle, most
possible systematic errors that may influence the experimental
Compton profile, such as the finite experimental q resolution,
tend to reduce the experimental value of J (0). For this reason,
the experimental Compton profile should be rather regarded as
the lowest bottom extremum for small q and a highest limiting
value for large q.

VI. CONCLUSIONS AND OUTLOOK

We have presented two possible ways within the ab initio
G0W0 approximation to calculate the momentum distribution
n(p), the Compton profile J (q), and their discontinuities
associated to the quasiparticle renormalization factor ZpF

. We
have analyzed and discussed the advantages and drawbacks
of both approaches in comparison with QMC calculations and
x-ray Compton scattering measurements on bulk sodium. All
the analyzed quantities have been found in good agreement
with both QMC and the experiment.

In sodium, we have found that n(p) and J (q) are mostly
determined by the first band and are very weakly affected
by band-structure and anisotropy effects, in contrast to other
alkalines, e.g., Li.49–51 This confirms that the valence electrons
of sodium, in ambient conditions, almost perfectly realize the
jellium model, even considering its electron dynamics.52,53

Since jellium is one of the most fundamental models to study
electronic correlations, a reedition of experiments on sodium
with improved accuracy may help to clarify open theoretical
many-body issues.

Based on the comparison with the Compton profile obtained
by inelastic x-ray scattering spectroscopy experiments, non-
self-consistent G0W0 turns out to be a very good approxima-
tion to calculate the momentum distribution and related quanti-
ties, while this is not yet evident for any attempt including self-
consistent GW, both on G and W. Therefore, we expect G0W0

to provide quantitative reference values for the momentum
distribution valuable for the development of new exchange-
correlation approximations within density-matrix functional
theory. Reverse engineering from G0W0 to DMFT is one of the
promising ways to improve exchange correlations in DMFT.
Similar strategies have already successfully applied regarding
improvement of time-dependent density functional theory
(TDDFT) by exploiting the Bethe-Salpeter equation.54–59

Finally, it would be interesting to explore the limits of the
GW approximation in reproducing the correct quasiparticle
renormalization factor and the momentum distribution as mea-
sured in IXSS experiments on other systems. An IXSS measure
of such quantities, not influenced by Hartree or exchange
effects such as, e.g., the band gap, would unambiguously assess
the level of correlation in these systems and thus the validity of
GW in describing correlations. A still open question is whether
GW can describe the quasiparticle renormalization factor in
systems with increasing level of correlations, up to strongly
correlated systems.
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34A. Issolah, B. Lévy, A. Beswick, and G. Loupias, Phys. Rev. A 38,
4509 (1988).

35J. A. Soininen, A. L. Ankudinov, and J. J. Rehr, Phys. Rev. B 72,
045136 (2005).

36M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418
(1985).

37M. Gatti, F. Bruneval, V. Olevano, and L. Reining, Phys. Rev. Lett.
99, 266402 (2007).

38S. Botti, N. Vast, L. Reining, V. Olevano, and L. C. Andreani, Phys.
Rev. Lett. 89, 216803 (2002).

39J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 28,
No. 8 (1954).

40W. Aulbur, L. Jönsson, and J. W. Wilkins, Solid State Phys. 54, 1
(1999).

41M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96,
226402 (2006).

42F. Bruneval, N. Vast, and L. Reining, Phys. Rev. B 74, 045102
(2006).

43U. von Barth and B. Holm, Phys. Rev. B 54, 8411 (1996).
44B. I. Lundqvist, Phys. Kondens. Mater. 6, 206 (1967).
45B. I. Lundqvist, Phys. Kondens. Mater. 7, 117 (1968).
46It should be noticed that Eq. (8) is equivalent to Eq. (5) only in the

exact theory or for number-conserving approximations. Non-self-
consistent G0W0 is not conserving. However, the difference one
can find in G0W0 between the two formulas can not be larger than
0.001 at metallic densities, as it has been found by Schindlmayr et al.
(Ref. 61). This value is not appreciable here due to our numerical
error, which is not smaller than 0.01 both in the real sodium and in
the jellium calculations.

47B. I. Lundqvist and C. Lydén, Phys. Rev. B 4, 3360 (1971).
48R. Del Sole, G. Adragna, V. Olevano, and L. Reining, Phys. Rev. B

67, 045207 (2003).
49C. Filippi and D. M. Ceperley, Phys. Rev. B 59, 7907

(1999).
50Y. Tanaka, Y. Sakurai, A. T. Stewart, N. Shiotani, P. E. Mijnarends,

S. Kaprzyk, and A. Bansil, Phys. Rev. B 63, 045120 (2001).
51W. Schülke, G. Stutz, F. Wohlert, and A. Kaprolat, Phys. Rev. B 54,

14381 (1996).
52S. Huotari, M. Cazzaniga, H.-C. Weissker, T. Pylkkänen, H. Müller,

L. Reining, G. Onida, and G. Monaco, Phys. Rev. B 84, 075108
(2011).

53M. Cazzaniga, H.-C. Weissker, S. Huotari, T. Pylkkänen,
P. Salvestrini, G. Monaco, G. Onida, and L. Reining, Phys. Rev.
B 84, 075109 (2011).

195123-12

http://dx.doi.org/10.1103/PhysRev.119.1153
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1016/0003-4916(65)90234-4
http://dx.doi.org/10.1088/0022-3719/15/12/016
http://dx.doi.org/10.1088/0022-3719/15/12/016
http://dx.doi.org/10.1103/PhysRevB.3.3243
http://dx.doi.org/10.1103/PhysRevB.57.2108
http://dx.doi.org/10.1103/PhysRevB.22.1380
http://dx.doi.org/10.1103/PhysRevB.44.7879
http://dx.doi.org/10.1002/1521-3951(200208)232:2<231::AID-PSSB231>3.0.CO;2-7
http://dx.doi.org/10.1103/PhysRevB.66.235116
http://dx.doi.org/10.1103/PhysRevLett.107.110402
http://dx.doi.org/10.1103/PhysRevB.84.245134
http://dx.doi.org/10.1103/PhysRevLett.105.086403
http://dx.doi.org/10.1103/PhysRev.97.1474
http://dx.doi.org/10.1103/PhysRevB.12.2111
http://dx.doi.org/10.1002/qua.969
http://dx.doi.org/10.1143/JPSJ.65.16
http://dx.doi.org/10.1143/JPSJ.66.2236
http://dx.doi.org/10.1016/S0022-3697(01)00178-0
http://dx.doi.org/10.1103/PhysRevB.41.3620
http://dx.doi.org/10.1103/PhysRevB.41.3620
http://dx.doi.org/10.1103/PhysRevB.66.085104
http://dx.doi.org/10.1103/PhysRevB.66.085104
http://dx.doi.org/10.1126/science.1199391
http://dx.doi.org/10.1107/S0909049509029112
http://dx.doi.org/10.1103/PhysRevB.68.155106
http://dx.doi.org/10.1103/PhysRevB.68.155106
http://dx.doi.org/10.1103/PhysRevB.66.155110
http://dx.doi.org/10.1103/PhysRevB.62.7956
http://dx.doi.org/10.1103/PhysRevB.62.7956
http://dx.doi.org/10.1103/PhysRevB.79.041308
http://dx.doi.org/10.1103/PhysRevA.2.415
http://dx.doi.org/10.1107/S090904950901886X
http://dx.doi.org/10.1107/S090904950901886X
http://dx.doi.org/10.1107/S0909049505010630
http://dx.doi.org/10.1107/S0909049505010630
http://dx.doi.org/10.1103/PhysRevA.38.4509
http://dx.doi.org/10.1103/PhysRevA.38.4509
http://dx.doi.org/10.1103/PhysRevB.72.045136
http://dx.doi.org/10.1103/PhysRevB.72.045136
http://dx.doi.org/10.1103/PhysRevLett.55.1418
http://dx.doi.org/10.1103/PhysRevLett.55.1418
http://dx.doi.org/10.1103/PhysRevLett.99.266402
http://dx.doi.org/10.1103/PhysRevLett.99.266402
http://dx.doi.org/10.1103/PhysRevLett.89.216803
http://dx.doi.org/10.1103/PhysRevLett.89.216803
http://dx.doi.org/10.1016/S0081-1947(08)60248-9
http://dx.doi.org/10.1016/S0081-1947(08)60248-9
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevB.74.045102
http://dx.doi.org/10.1103/PhysRevB.74.045102
http://dx.doi.org/10.1103/PhysRevB.54.8411
http://dx.doi.org/10.1103/PhysRevB.4.3360
http://dx.doi.org/10.1103/PhysRevB.67.045207
http://dx.doi.org/10.1103/PhysRevB.67.045207
http://dx.doi.org/10.1103/PhysRevB.59.7907
http://dx.doi.org/10.1103/PhysRevB.59.7907
http://dx.doi.org/10.1103/PhysRevB.63.045120
http://dx.doi.org/10.1103/PhysRevB.54.14381
http://dx.doi.org/10.1103/PhysRevB.54.14381
http://dx.doi.org/10.1103/PhysRevB.84.075108
http://dx.doi.org/10.1103/PhysRevB.84.075108
http://dx.doi.org/10.1103/PhysRevB.84.075109
http://dx.doi.org/10.1103/PhysRevB.84.075109


MOMENTUM DISTRIBUTION AND COMPTON PROFILE BY . . . PHYSICAL REVIEW B 86, 195123 (2012)

54L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev. Lett.
88, 066404 (2002).

55F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett. 91, 056402
(2003).

56G. Adragna, R. Del Sole, and A. Marini, Phys. Rev. B 68, 165108
(2003).

57A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett. 91, 256402
(2003).

58R. Stubner, I. V. Tokatly, and O. Pankratov, Phys. Rev. B 70, 245119
(2004).

59U. von Barth, N. E. Dahlen, R. van Leeuwen,
and G. Stefanucci, Phys. Rev. B 72, 235109
(2005).

60http://www.abinit.org
61A. Schindlmayr, P. Garcia-Gonzalez, and R. W. Godby, Phys. Rev.

B 64, 235106 (2001).

195123-13

http://dx.doi.org/10.1103/PhysRevLett.88.066404
http://dx.doi.org/10.1103/PhysRevLett.88.066404
http://dx.doi.org/10.1103/PhysRevLett.91.056402
http://dx.doi.org/10.1103/PhysRevLett.91.056402
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevLett.91.256402
http://dx.doi.org/10.1103/PhysRevLett.91.256402
http://dx.doi.org/10.1103/PhysRevB.70.245119
http://dx.doi.org/10.1103/PhysRevB.70.245119
http://dx.doi.org/10.1103/PhysRevB.72.235109
http://dx.doi.org/10.1103/PhysRevB.72.235109
http://www.abinit.org
http://dx.doi.org/10.1103/PhysRevB.64.235106
http://dx.doi.org/10.1103/PhysRevB.64.235106



