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We fit finite-temperature path integral Monte Carlo calculations of the exchange-correlation energy of the
3D finite-temperature homogeneous electron gas in the warm-dense regime [rs ≡ (3/4πn)1/3a−1

B < 40 and
� ≡ T/TF > 0.0625]. In doing so, we construct a Padé approximant which collapses to Debye-Hückel theory
in the high-temperature, low-density limit. Likewise, the zero-temperature limit matches the numerical results of
ground-state quantum Monte Carlo, as well as analytical results in the high-density limit.
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I. INTRODUCTION

Density functional theory (DFT) is used ubiquitously in
computational chemistry and condensed-matter physics.1,2 Re-
cently there has been intense interest in extending the success
of ground-state DFT to finite-temperature systems such as
stellar, planetary interiors and other hot dense plasmas.3–5

However, such attempts have met both fundamental and
technical barriers when electrons have significant correlations.

There are two broad approaches to building finite-
temperature functionals. In one approach, the exact Mermin
finite-T DFT is approximated by smearing the electronic
density of states over a Fermi-Dirac distribution.6 Although
a useful approximation, this approach is not exact even in
the limit of the exact ground-state exchange functional as
the Kohn-Sham orbitals need have no relation to the true
excited states.7 Additionally, as temperature increases, an
ever-increasing number of molecular (Kohn-Sham) orbitals is
required in order to evaluate the functional. This inevitably
results in the DFT calculations becoming computationally
intractable at some temperature. A second approach is to
use orbital-free density functional theory (OFDFT) where the
usual Kohn-Sham orbitals are replaced by explicit density
functionals for the kinetic energy and entropy terms.8,9 How-
ever, an a priori way to determine such functionals has yet to
materialize. Without a reliable benchmark, OFDFT has histor-
ically been left to rely on Thomas-Fermi-like approximations
which can incur errors an order of magnitude larger than typical
DFT errors.7 Recently generalized gradient approximations
have improved OFDFT, introducing higher accuracy orbital-
free kinetic energy density functionals for both 0T and finite
T ,10,11 as well as an exchange-correlation density functional
for 0T .12 Nevertheless, the field still lacks a high-accuracy,

orbital-free exchange-correlation energy density functional for
finite T .

In a recent paper, we provided accurate, first-principles
thermodynamic data of the 3D homogeneous electron gas
(HEG) throughout the warm-dense regime, making firm
connections to both previous semiclassical and ground-state
studies.13 In that work we utilized the restricted path integral
Monte Carlo (RPIMC) method.14–16 Now, we fit this data to
a functional form for the exchange-correlation energy which
obeys the exact limiting behavior in temperature and density.

II. ASYMPTOTIC LIMITS

A satisfactory fit must match with known asymptotic limits.
For the 3D HEG, analytic limits exist at high temperature and
low density (the Debye-Hückel limit), and at zero temperature.

In the Debye-Hückel (DH) limit, the quantum-mechanical
Fermi-Dirac distribution may be approximated by the classical
Boltzmann distribution, i.e., when � ≡ 2/(rsT ) � 1, where T

is in Rydbergs and rs is the Wigner-Seitz radius normalized by
the Bohr radius. In this regime, the average potential energy
per particle is much smaller than the thermal energy per
particle, and each electron may be treated with a short-ranged,
spherically symmetric, screened interaction.17 These approx-
imations combined give the excess energy per particle to
be UDH ≡ U − U0 = −

√
3

2 �3/2T = −√
6r

−3/2
s T −1/2, where

U0 is the energy of an ideal gas (classically) or of a free
Fermi gas (quantum mechanically). Classical simulations have
numerically extended these results to larger values of �.18,19

The first-order quantum-mechanical correction to these
results is given through the Wigner-Kirkwood expansion
in powers of h̄, UQ = −�3

8 T 2 = −r−3
s T −1. The next order

correction as well as the first-order exchange correction have
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FIG. 1. (Color online) Ratio of the exchange-correlation energy Exc at temperature T to that at T = 0 for the unpolarized ξ = 0 3D
HEG with rs = 1.0, 4.0, and 10.0 (respectively). Shown are the results from numerical calculations (RPIMC), the present parametrization
(BDHC), and several previous parametrizations. The latter include Debye-Hückel (DH), Hansen (H), Tanaka and Ichimaru (TI), and Perrot and
Dharma-wardana (PDW), all of which are discussed in the text.

also been calculated explicitly.20,21 Finally there has been some
effort to calculate virial expansions of the excess energy at low
density and finite temperature.22

At zero temperature, a significant body of numerical and
analytical work has defined the exchange-correlation energy
at all densities. In the high-density limit (rs � 1) the total
energy can be expressed as E = a1r

−2
s + a2r

−1
s + a3 ln rs +

a4 + a5rs ln rs + a6rs + O(r2
s ln rs). The first two coefficients

can be determined through Hartree-Fock theory, with the
first being the energy of a free Fermi gas and the second
being the Fock exchange energy. Terms a3 and a4 were
calculated by Gell-Mann and Brueckner23 using the random
phase approximation (RPA). These results were extended
by Carr and Maradudin24 to determine a5 and a6. In the
low-density limit (rs � 1), one expects a body-centered cubic
configuration, i.e., the Wigner crystal.25 This suggests the form
E = A1r

−1
s + A2r

−3/2
s + A3r

−2
s + A4r

−5/2
s + O(r−3

s ) for the
total energy. The first coefficient, the Madelung term, was first
calculated by Fuchs.26 The next three terms, coming from the
zero-point harmonic vibration and its associated anharmonic
corrections, were determined by Carr et al.27

High-precision quantum Monte Carlo (QMC) calculations
have since spanned these two regimes,28,29 paving the way
for accurate parametrizations which leverage the foregoing
limiting forms.30–32 Such functionals have been integral to the
development and expansion of the local density approximation
(LDA) of zero-temperature DFT.33

III. PRIOR FITS

Several attempts have been made at extending the success
of ground-state DFT to finite temperature and this has
resulted in the creation of a number of finite-temperature
parametrizations of the exchange-correlation energy.34–37 A
basic approach is the RPA, which is accurate in the low-density,
high-temperature limit (where it reduces to DH) and the low-
temperature, high-density limit, since these are both weakly
interacting regimes. Its failure, however, is most apparent in its
estimation of the equilibrium, radial distribution function g(r)
which becomes unphysically negative for stronger coupling.37

Extensions of the RPA into intermediate densities
and temperatures have largely focused on constructing
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FIG. 2. (Color online) Ratio of the exchange-correlation energy Exc at temperature T to that at T = 0 for the polarized ξ = 1 3D
HEG with rs = 1.0, 4.0, and 10.0 (respectively). Shown are the results from numerical calculations (RPIMC), the present parametrization
(BDHC), and several previous parametrizations. The latter include Debye-Hückel (DH), Hansen (H), Tanaka and Ichimaru (TI), and Perrot and
Dharma-wardana (PDW), all of which are discussed in the text.
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local-field corrections (LFC) through interpolation since
diagrammatic resummation techniques often become in-
tractable in strongly coupled regimes. Singwi, et al.38 intro-
duced one such strategy relying on two assumptions. First, they
use the static polarization-potential approximation allowing
one to write the LFC, G(k,ω) � G(k,ω = 0) ≡ G(k). Next
they assume the two-particle distribution function is a function
of the Fourier transformed momentum distribution, n(r), and
the pair-correlation function, g(r), allowing a self-consistent
solution for G(k). Tanaka and Ichimaru35 (TI) extended this
method to finite temperatures and provided the parametrization
of the 3D HEG correlation energy shown in Figs. 1 and 2. A
similar method by Dandrea et al. uses the Vashista-Singwi LFC
(Ref. 34) to interpolate between the high- and low-temperature
limits. Both methods appear to perform marginally better than
the RPA at all temperatures, though both still fail to produce a
positive-definite g(r) at values of rs > 2.

A third, more recent approach introduced by Perrot and
Dharma-wardana (PDW)36 relies on a classical mapping
wherein the distribution functions of a classical system at tem-
perature Tcf , solved for through the hypernetted-chain equa-
tion, reproduce those for a quantum system at temperature T .
In a previous work, PDW showed such a temperature Tq

existed for the classical system to reproduce the correlation
energy of the quantum system at T = 0.39 To extend that work
to finite-temperature quantum systems, they use the simple
interpolation formula Tcf =

√
T 2 + T 2

q . This interpolation is
clearly valid in the low-T limit where Fermi-liquid theory gives
the quadratic dependence40 of the energy on T . Further in the
high-T regime, T dominates over Tq as the system becomes
increasingly classical.

IV. PRESENT FIT

For our fit to RPIMC data, we employ a similar fitting
functional as was used by PDW. To this end we define

Exc(rs,T ) ≡ Exc(rs,0) − P1

P2
, (1)

where Exc(rs,0) is the ground-state exchange-correlation
energy,

P1 ≡ (A2u1 + A3u2)T 2 + A2u2T
5/2, (2)

P2 ≡ 1 + A1T
2 + A3T

5/2 + A2T
3, (3)

TABLE I. Fit parameters of the function in Eq. (6) for the
unpolarized (ξ = 0) gas. The top three rows correspond to rs < 10,
while the bottom three rows correspond to 10 < rs .

k ak bk ck dk

1 3.56364 −2.18158 0.85073 −0.28255
2 4.97820 −2.72627 0.62562 −0.22889
3 9.41995 −3.78699 −1.87662 0.39992

1 4.38637 1.22928 −0.789404 0.178368
2 5.96304 0.249599 −0.991637 0.220769
3 5.43786 −1.10198 −0.716191 0.157061

TABLE II. Fit parameters of the function in Eq. (6) for the
polarized (ξ = 1) gas. The top three rows correspond to rs < 10,
while the bottom three rows correspond to 10 < rs .

k ak bk ck dk

1 −1.57839 −9.99823 7.10336 −2.19297
2 −1.46754 −11.3387 7.85547 −2.40187
3 −0.784554 −11.5341 7.07407 −2.17553

1 −7.23836 19.8258 0.254584 0.0521708
2 −6.65715 19.9802 0.263629 0.0540244
3 −5.89226 17.3632 0.238536 0.0488823

u1(rs) ≡ 3

2r3
s

, (4)

u2(rs) ≡
√

6

r
3/2
s

, (5)

and

Ak(rs) ≡ exp [ak ln rs + bk + ckrs + dkrs ln rs]. (6)

Here u1 and u2 are chosen such that limT →∞ Exc(rs,T ) =
UDH + UQ + O(T −3/2). The higher-order terms reflect the
higher-order quantum corrections mentioned above. Likewise,
note that limT →0 Exc(rs,T ) = Exc(rs,0) − O(T 2), reproduc-
ing both the ground-state exchange-correlation energy of
Ceperley-Alder29 and the small-T quadratic behavior of
Fermi-liquid theory.41 The Perdew-Zunger30 parametrization
is used throughout for Exc(rs,0). The exchange-correlation
energy between this and other parametrizations is at least two
orders of magnitude smaller than the difference between the
lowest temperature simulated and the Perdew-Zunger result.
Because of this, we expect the use of another 0T functional
to have negligible effect on the finite-T parametrization we
present.

We determine the best parameters of Eq. (6) through a
least-squares fitting of RPIMC data.42 The RPIMC data shows
a qualitative change in behavior around rs ≈ 10 and so we
divide the fitting regime into two parts, rs < 10 and rs > 10.
At rs = 10, we make sure both the functional and its derivative
are continuous. This is accomplished by ensuring each factor
Ak and its respective rs derivative is continuous at rs = 10,
providing six constraints and leaving 18 free parameters.
For the unpolarized gas ξ = 0, we give the parameters in
Table I. Using these values, the fitting function has a maximum
relative error of 0.9%. For the polarized gas ξ = 0, we give the
parameters in Table II. Using these values, the fitting function
has a maximum relative error of 0.3%. Both of these maximum
deviations occur at rs = 1.0 where errors from RPIMC
simulation were largest. All energies are in units of Rydbergs.

V. DISCUSSION AND CONCLUSIONS

In Figs. 1 and 2, we plot our fit, the RPIMC data, and
all mentioned prior fits of the finite-temperature exchange-
correlation energy. Clearly, the classical Debye-Hückel limit
is obeyed by each fit. However, only our fit and PDW obey
the correct zero-temperature behavior [Exc(�)/Exc(0) → 1 as
� → 0]. The Singwi-Tosi-Land-Sjölander (STLS) driven fit
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of TI only agrees well with the RPIMC data at high density,
i.e., where the RPA, the basis of STLS, is most applicable.

The PDW line in Figs. 1 and 2 clearly matches well
with the RPIMC results in both temperature limits. It is not
surprising, however, that in the intermediate temperature
regime, where correlation effects are greatest, the quadratic
interpolation of the temperature fails. A similar approach
by Dutta and Dufty37 uses the same classical mapping as
PDW, matching the T = 0 pair-correlation function instead
of the correlation energy. While this gives accurate results
near T = 0, the breakdown of Fermi-liquid behavior near
the Fermi temperature causes the method to overestimate
the exchange hole of the pair-correlation function. A direct
comparison of Exc is not yet available.

Finally we note that there has been some previous work on
the low-density phases of 3D HEG both at T = 0 (Ref. 43) and
T > 0.44 These include a predicted second-order transition to
a partially polarized state around rs � 50, and a first-order
transition into a Wigner crystal for rs > 100. Since both these
transitions are outside the range of the fit data, we do not expect
to see these transitions with the above functional.

In summary, we have performed a least-squares fitting of
recent RPIMC data to a functional form which reproduces
both high- and low-temperature asymptotic limits exactly.
This fit outperforms all previous attempts at parametrizing the
exchange-correlation energy at arbitrary temperature. We are

providing a simple script of the functional in the Supplemental
Material45 as well as in Ref. 46. It is our hope that this
parametrization will be useful as a basis for finite-temperature
DFT functionals, and as a benchmark for orbital-free DFT
studies.

Note added. Recently we have learned that another group
has performed a QMC study of the zero-temperature, spin-
polarized 3D HEG.47 Nevertheless, as noted previously,
our choice of the Perdew-Zunger30 ground state exchange-
correlation parameterization should have little effect on the
finite-temperature functional fit we provide.
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42In fitting the data to this functional, it was noticed that the
leading-order, temperature-dependent finite-size correction for the
very high temperature points at small rs was not adequate.
Instead, a more useful correction for these points extends from
the classical regime. Again we may write the potential energy

as V = 1
2�

∑
k

4πq2

k2 S(k) where the structure factor is given by

S(k) = k2

mωp (k) [ 1
expωp/T −1

+ 1
2 ]. Here ω2

p(k) ≡ 4πne2

m
(1 + k2/k2

s ) with

k2
s ≡ 4πe2/(∂μ/∂n)T , though since we are mostly concerned with

the small k limit, we take ωp(k) � ωp = 4πne2/m. The finite-size
correction then just reads as 	V = V∞ − VN . This correction
is dominated by the long-wavelength (k → 0) contribution. For
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