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We present new trial wave functions which include three-body correlations into the backflow coordinates
and a four-body symmetric potential. We show that our wave functions lower the energy enough to stabilize the
ground state energies of normal liquid 3He in the unpolarized state at all pressures in agreement with experi-
ment; however, quantitative discrepancies remain. Further, we include strong spin coupling into the Fermi
liquid by adapting pairing wave functions. We demonstrate a new, numerically stable method to evaluate
pairing functions which is also useful for path integrals calculations at low, but nonzero temperatures.
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For the understanding and development of quantum
many-body systems, liquid helium is a key test case due to
its experimentally well-characterized low temperature phases
and the simplicity of the helium interaction. The calculation
of its thermodynamic and ground state properties is one of
the most important benchmarks for microscopic theory and
for the quantum Monte Carlo �QMC� simulation methods.1–4

While QMC can calculate exact properties for bosonic sys-
tems, and has successfully been applied to calculate proper-
ties for liquid and solid 4He,5,6 fermion systems are still chal-
lenging, since antisymmetry leads to the so-called fermion-
sign problem. In general, no exact method is known that
provides a solution for an extended fermion quantum system
in two or three spatial dimensions.

To overcome the fermion-sign problem, most fermion
QMC calculations rely on the fixed-node �FN� approxima-
tion where the nodes of a trial wave function, �T, are im-
posed as a boundary condition on the many-body
Schrödinger equation with the projector diffusion Monte
Carlo �DMC� method.7 Since the nodal surfaces of the exact
ground state wave function are, in general, unknown, the
energies of FN-DMC calculations are higher than the exact
answer by a small but unknown amount. Progress in fermi-
onic Monte Carlo calculations is, therefore, often connected
to progress in constructing new types of trial wave functions.
Actually, for homogeneous quantum systems, only a few
types of different trial wave functions have been successfully
applied within QMC, in particular for liquid 3He.8–11

Many calculations use the simplest possible nodal struc-
ture based on a Slater-Jastrow wave function

�SJ = det
ki

�k�ri�exp�− UJ� , �1�

where ri are the positions of the N fermions �i=1, . . . ,N�.
Antisymmetry is assured by a Slater determinant, detki�k�ri�
of single particle orbitals �k�r�, where k labels one of the N
single particle orbitals and the Jastrow potential UJ�R�
=�iju�rij�, rij = �ri−r j�, takes into account correlations �R in-
dicates its dependence on all the particle coordinates�. Since
it is symmetric with respect to particle exchange and real, it
does not modify the nodes of the many-body wave function
and, therefore, it does not influence the ground state energy
within a FN-DMC calculation.

Homogenous quantum systems play an important role in
understanding many-body correlations, since for inhomoge-
neous systems, the Hartree energy typically dominates the
correlation energy. Translational invariance restricts the
single particle orbitals to be plane waves with energies less
than the Fermi level. This explains why the simple Fermi
liquid Slater determinant gives accurate results, and, at the
same time, it explains the difficulty in going beyond Slater-
Jastrow without violating homogeneity.

Backflow12 is one possibility to extend this type of wave
function by including many-body correlations in the
nodes13–15 using a Slater determinant detki�k�qi

BF� where the
bare coordinates ri used in the Slater determinant of the
Slater-Jastrow wave functions are replaced by dressed “qua-
siparticle” coordinates

qi
BF = ri + Yi, �2�

where Yk�R�=�k�ijy�rij�. An additional symmetric three-
body potential U3B is also added to the Jastrow part of the
trial function

U3B = �T�
i

WiWi �3�

with Wk�R�=�k�ijw�rij�.16 The resulting backflow-three-
body �BF3� wave function

�BF3 = det
ki

�k�qi
BF�exp�− UJ − U3B� �4�

contains the unspecified functions u�r�, w�r�, and y�r�; these
are determined either by analytical theories or by numeri-
cally minimizing the expectation value of the energy using
simple analytical forms with free parameters. The backflow
BF3 has provided the most accurate results for the electron
gas17–19 and for liquid 3He.10,11,20,21 Spin-dependent correla-
tions have been considered in Ref. 22, but have found to be
roughly equivalent to backflow.

However, the calculated liquid 3He energy and magnetic
susceptibility is still in disagreement with experimental
estimates,20,21 the FN-DMC ground state energy is higher by
about 260 mK. The prediction of the polarization energy is
particularly unsatisfactory: within variational Monte Carlo
�VMC�, the Slater-Jastrow wave function predicts a polar-
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ized fluid at zero pressure;23 inclusion of three-body correla-
tions results in a slight improvement, however, still largely
unsatisfactory.24 Backflow mainly affects the unpolarized
state and therefore improves the estimate of the polarization
energy. Only within FN-DMC is the unpolarized state stable
at zero pressure, but the computed susceptibility is still too
large, and at higher pressure, the unpolarized state becomes
unstable.21 Because liquid 3He is such an important bench-
mark system, it is crucial to find what correlations are absent
in the backflow-three-body wave functions.

Pairing wave functions, where the Slater determinant is
replaced by the antisymmetrization of a pairing wave func-
tion ��ri ,rj� has been suggested by Bouchaud and Lhuillier25

to overcome this problem. In general, the antisymmetrization
of pairing functions leads to a pfaffian, Pfi,j��ri ,rj�, which
reduces to a determinant for a M =0 �s-wave� pairing wave
function. Recently, singlet pairing wave functions have been
applied to calculations on the BEC-BCS crossover of fermi-
onic gases.26–28 As far as the calculations on 3He are con-
cerned, spin-triplet pairing wave functions with M =1 �p
wave� are promising, but it remains to be shown that they
indeed provide lower energies than the backflow-three-body
wave functions.

It is known experimentally that the ground state of 3He is
a superfluid with spin-triplet pairing. The transition occurs
around 1 mK which is an estimate of the energy gap, �. We
expect that energy differences between the true superfluid
ground state and the best Fermi liquid state are small, of
order �	1 mK and the introduction of a superfluid pairing
wave function alone cannot resolve the energetic mismatch
between theory and experiment of order 260 mK. Further,
one expects that pairing only involves states close to the
Fermi surface, e.g., states of momenta k with kF−�k�k
�kF+�k, where k=kF at the Fermi surface and �k
	2m� /kF defines the typical coherence length �	�k−1 of
the pairing wave function. In 3He �kF	0.9 Å−1� one esti-
mates �k	10−2 Å−1, and the coherence length �	100 Å ex-
ceeds by an order of magnitude the size of a typical simula-
tion box, L, as L	10 Å for a system of N=66 atoms. Strong
correlations in helium in changing the bare mass into the
effective mass hardly modify this conclusion. On the other
hand, size effects �for a nondegenerate ground state� will
favor the normal state since the energy of a weakly bound
state is increased when the size of the system is decreased.
For these reasons, we mainly limit the discussion to the nor-
mal state.

In this paper, we propose new types of trial wave func-
tions with explicit many-body character and use them to cal-
culate the unpolarized ground state energy of 3He at the
maximum, intermediate, and the minimum densities of liquid
3He. First, we introduce a three-particle backflow and four-
body correlations �3BF4�, as a natural extension of the BF3
Fermi liquid wave function. As in the case of backflow, the
Slater determinant is a function of quasiparticle coordinates,
but a three-body correlation is added to the original backflow
coordinate

qi
3BF = qi

BF + Q̂iDi, �5�

where Q̂i�R� is a tensor with generic elements Q̂k�R�	


=�k	�k
�ijq�rij�+�	
�k
2�ijq��rij�, and Dk�R�=�k�ijd�rij� is

a vector. Furthermore, a symmetric four-body potential is
added to the Jastrow part of the trial function:

U4B = �
i

XiP̂iXi, �6�

where P̂i�R� is a tensor and Xi a vector, analogous to Q̂ and
D. The new trial wave function including four-body back-
flow and a 3BF-4 is

�3BF4 = det
ki

�k�qi
3BF�exp�− UJ − U3B − U4B� . �7�

As in previous studies, we use Gaussian functions as a
basis for the one-dimensional �1D� functions arising in the
wave function �such as q, q�, and d�, and minimize a com-
bination of energy and variance of the trial wave function
within VMC. Results for a system of N=66 unpolarized 3He
atoms interacting with the recent Aziz-SAPT2 potential29,30

with periodic boundary conditions are shown in Table I.31 To
reduce finite size effects we have also performed twist
averaging32 and we have corrected size effects in the poten-
tial energy. Results for different polarizations are given in
Table II. For comparision we have added the twist-averaged
results of the backflow three-body wave functions of Ref. 21
in Table II and the corresponding results for periodic bound-
ary conditions in Table I.

The three densities 16.35, 19.46, and 23.80 atoms nm−3

correspond to pressures equal to 0, 8.4, and 35.3 bars. The
magnetic susceptibility, � /C has been estimated in Table III
by assuming E=E0+�2 / �2� /C�+a4�4 where � is the spin
polarization. At the equilibrium density, inclusion of three-
and four-body correlations reduce the magnetic susceptibility
in agreement with the experimental value.33 Away from equi-
librium density, a4 becomes more important, and the estimate
of � /C at the intermediate density is less reliable. Close to
crystallization, the energy variation between the unpolarized
and the partially polarized state for the 3BF4 wave function

TABLE I. Variational �Ev� and FN-DMC energies �EDMC� in
K/atom for a system of N=66 unpolarized 3He atoms with periodic
boundary conditions at two different densities; 
2 is the variance
per atom; BF3 are results of the backflow-three-body wave func-
tion, 3BF4 are the results presented here using an additional three-
body correlation for the backflow and an additional symmetric four-
body term, and S3BF4 is the pairing form described below.

� �nm−3� Wave function Ev �K� 
2 EDMC �K�

16.35 BF3 −2.201�6� 23 −2.417�1�
3BF4 −2.284�3� 14 −2.438�1�

S3BF4 −2.294�3� 14 −2.432�4�

19.46 BF3 −1.775�5� 26 −2.155�5�
3BF4 −1.905�4� 20 −2.174�3�

S3BF4 −1.945�4� 20 −2.182�4�

23.80 BF3 −0.055�1� 65 −0.77�2�
3BF4 −0.272�7� 53 −0.834�2�

S3BF4 −0.340�5� 49 −0.861�4�
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is of the order of the uncertainty of the calculation. We have
not performed calculations for the 100% polarized phase
since backflow is already much less important than in the
unpolarized phase;22 similarly three-body correlations
mainly affect the unpolarized state.24 Therefore, we do not
expect significant corrections to the energies of the complete
polarized state of the BF3 trial function.

We have tried also different tensorial forms for a four-
body trial function, a five-body trial function, as well as four-
body and k-dependent corrections to the quasiparticle coor-
dinates without significant improvements ��5 mK�. We
cannot exclude the possibility that more effective optimiza-
tion with more flexible functions would lead to significantly
lower energy. This possibility, together with the application
of the released node technique35 is under current investiga-
tion.

We have also considered pairing wave functions. Simple
functional forms �Gaussians� for the pairing functions �plus
the Jastrow potential� have led to energies considerably
higher than those from the BF3 trial functions. Shell effects
lead to large size effects and make a direct comparison of
energies of triplet and singlet pairing wave functions prob-
lematic without a careful extrapolation to the thermodynamic
limit. Since triplet pairing functions did not show significant
improvements over the singlet pairing, we restrict the pairing
functions to spin-singlet pairing: the pfaffian reduces to a
determinant and the antisymmetric part of the wave function
is:

det
ij

�s�ri↑ − r j↓� , �8�

where ri↑ �ri↓� represents the coordinates of particle i with
spin-up �down�. Using a Gaussian form for �s�r�, we have
that the minimum energy orbital has a width as large as the
simulation cell L. In this case, the orbitals have to be peri-
odized, which is most easily done using a Fourier sum. Op-
timization of the Fourier coefficients led to the limiting form
of the Fermi liquid:

�FL�r� = �
k�kF

eik·r. �9�

We conclude that pairing of bounded singlet and/or triplet
pairs does not improve the energy significantly, consistent
with the small pairing energy in superfluid 3He.37

To go beyond the Fermi-liquid trial function, we can use
the singlet pairing wave function as a way of introducing
strong spin correlations:

�s�r� = �
k�kF

eik·r�1+��r��e−��r� �10�

in the determinant of Eq. �8�. Here ��r� and ��r� are local-
ized functions vanishing at large particle separation. They
introduce modulations and correlations in the pairing of
opposite-spin atoms without affecting the long-range corre-
lations of the Fermi-liquid determinant. They do not describe
a bound state, so we do not expect them to describe a super-
fluid state, but they might be a precursor to superfluidity.
However, the correlations between unlike spins turn out to be
much stronger than introducing a spin-dependent backflow
or Jastrow potential which have not been successful in low-
ering the energy. We also include backflow, three-body back-
flow, three-body, and four-body potentials as discussed
above:

�S3BF4 = det
i,j

�s�qi↑
3BF − q j↓

3BF�e−UJ−U3B−U4B. �11�

As shown in Table I, the energies are lowered by this wave
function. By construction, this wave function does not affect
the energy of the completely polarized state and, therefore, it
stabilizes the unpolarized phase. We have not performed

TABLE II. VMC and DMC energies of the BF3 wave function of Ref. 21 and of the 3BF4 wave function
using twist-averaged boundary conditions. Notations and units as in Table I; � is the polarization.

�
�nm−3� �

Ev �K�
BF3

EDMC �K�
BF3

Ev �K�
3BF4

EDMC �K�
3BF4

16.35 0 −2.1633�9� −2.3586�8� −2.241�1� −2.3802�4�
0.242 −2.1614�9� −2.3548�10� −2.242�1� −2.3743�1�
0.485 −2.1753�9� −2.3433�8� −2.248�1� −2.3633�6�

19.46 0 −1.7469�12� −2.0685�13� −1.863�1� −2.0972�9�
0.242 −1.7499�12� −2.0623�13� −1.873�1� −2.0948�6�
0.485 −1.7984�12� −2.0807�11� −1.905�1� −2.1046�8�

23.80 0 −0.0184�20� −0.6612�20� −0.203�2� −0.7094�9�
0.242 −0.0229�21� −0.6619�21� −0.222�2� −0.7093�11�

TABLE III. Magnetic susceptibility � /C in K−1, where C is the
molar Curie constant, estimated from the DMC calculations using
the 3BF4 wave function; experimental values �Ref. 33� at densities
�exp are given for comparision.

�
�nm−1�

� /C �K−1�
BF3

� /C �K−1�
BF4

�exp

�nm−3�
�exp /C
�K−1�

16.35 8�2� 4.5�5� 16.37 3.0

19.46 5�2� 8�3� 19.44 4.0

23.80 �� /C��14 23.45 6.1
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twist-averaging, but it is likely that the relative gain of the
energy compared to the three-body-backflow wave function
survives in the thermodynamic limit, but a more detailed
study of the finite size extrapolation of this wave function
remains to be done. In Ref. 21, it was estimated that the
three-body potential together with the effect of higher-order
many-body terms in the interparticle interactions raise the
energy by 	140 mK, and have to be added to the computed
results when compared to the experimental energy36

−2.481 K at �=16.35 nm−3. Even if the absolute energies
are, therefore, still in disagreement with experiments by
	240 mK the agreement with the compressibility is consid-
erably improved. Further, we expect a reduced magnetic sus-
ceptibility compared to the 3BF4 wave functions, closer to
the experimental values. At high density 10–20 mK might
be still missing to stabilize completely the unpolarized phase.
However, size effects are of the order of 30 mK, and a clear
prediction would involve an extensive finite size study.

We briefly explain our method to evaluate the determinant
of the pairing function in Eq. �11�. A straightforward evalu-
ation of the determinant of the matrix �ij =�s�ri ,rj� is nu-
merically unstable in the limit where the wave function ap-
proaches a Fermi liquid, Eq. �9�, because it becomes ill-
conditioned; a direct evaluation of the determinant is
dominated by round-off errors as the number of particles, N,
increases. Let us consider the expansion of the pairing func-
tions, into eigenmodes, �k�r�,

�s�ri,rj� = �
k

dk�k
*�ri��k�rj� , �12�

where dk is the occupation number of eigenstate k. For a
Fermi liquid, the summation is dominated by N modes, k
=1, . . . ,N. We introduce the matrices of the Slater determi-

nants of the Fermi liquid, Lik=�k
*�ri�, Rki=�k�ri�, and a diag-

onal matrix Dkk�=�k,k�dk, and write Eq. �12� as a matrix,

� = LDR + M = LD1/2�1 + M̃�D1/2R �13�

with Mij =�k�Ndk�k
*�ri��k�rj�, and M̃ =L−1D−1/2MD−1/2R−1.

Now, the determinant of Eq. �13� can be written as

det � = det L det D det R det�1 + M̃� �14�

and involves only the usual Slater determinants, det L, det R,

and their inverses which are well-behaved. The matrix M̃ is
typically much more rapidly decaying in space and a numeri-
cal evaluation of the terms on the rhs of Eq. �14� is numeri-
cally stable, including all limiting cases. This method is not
restricted to spin singlet and/or triplet pairing, but it is also
useful to calculate finite temperature density matrices well
below the Fermi temperature where the same problem of
extremely ill conditioned determinants occurs.

In conclusion, we have found three-body and four-body
correlations improving the energy and the magnetic suscep-
tibility of liquid 3He. We expect that the new terms will be
important to calculate the Fermi-liquid parameters in
strongly correlated liquids such as liquid 3He and the elec-
tron gas, the polarization transition of the electron gas close
to Wigner crystallization and related systems. The method to
calculate pairing function close to the Fermi liquid should
further allow us to study the very dilute limit of a BCS gas.
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