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We calculate the off-diagonal density matrix of the homogeneous electron gas at zero temperature

using unbiased reptation Monte Carlo calculations for various densities and extrapolate the momentum

distribution and the kinetic and potential energies to the thermodynamic limit. Our results on the

renormalization factor allow us to validate approximate G0W0 calculations concerning quasiparticle

properties over a broad density region (1 � rs & 10) and show that, near the Fermi surface, vertex

corrections and self-consistency aspects almost cancel each other out.
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The uniform electron gas (jellium) is one of the most
fundamental models for understanding electronic proper-
ties in simple metals and semiconductors. Knowledge of its
ground state properties and, in particular, of modifications
due to electron correlation is at the heart of all approximate
approaches to the many-electron problem in realistic
models. Quantum Monte Carlo methods (QMC) [1] have
provided the most precise estimates of the correlation
energy, electron pair density, and structure factor of jel-
lium, basic quantities for constructing and parametrizing
the exchange-correlation energy used in density functional
theory [2].

Correlations modify the momentum distribution, nk, of
electrons, and introduce deviations from the ideal Fermi-
Dirac step function. The magnitude of the discontinuity at
the Fermi surface (kF), the renormalization factor Z, quan-
tifies the strength of a quasiparticle excitation [3] and plays
a fundamental role in Fermi liquid and many-body pertur-
bation theory (GW) for spectral quantities. Whereas the
momentum distribution (as well as other spectral informa-
tion) is inaccessible in current Kohn-Sham density func-
tional theory formulations, the reduced single-particle
density matrix—the Fourier transform of nk in homoge-
neous systems—is the basic object in the so-called
density-matrix functional theory [4]; this theory relies on
knowledge of nk of jellium. Inelastic x-ray scattering mea-
surement of the Compton profile of solid sodium [5] has
determined nk, but experiments for elements with different
electronic densities are less conclusive.

In this Letter, we calculate nk for the electron gas
(jellium) by QMC calculations in the density region
1� rs�10. Here, rs ¼ ð4�na3B=3Þ�3 is the Wigner-Seitz

density parameter, n is the density, and aB ¼ @
2=me2 is the

Bohr radius. In contrast to previous calculations [6], our

calculations are based on more precise backflow (BF) wave
functions [7], and a careful extrapolation to the thermody-
namic limit [8,9]. Similar to the worm algorithm in finite
temperature path-integral and lattice Monte Carlo [10,11]
calculations, we have extended reptation Monte Carlo
(RMC) calculations[12] to include the off-diagonal density
matrix in order to obtain an unbiased estimator of the
momentum distribution [13,14]. From our extrapolation
scheme, we derive the exact behavior of nk close to the
Fermi surface. By comparing the renormalization factor, Z,
with different approximate GW theories, we can judge the
importance of self-consistency and vertex corrections
within these approaches. The excellent agreement of our
QMC results with G0W0 over a broad density region in-
dicates strong cancellations of vertex and self-consistency
corrections close to the Fermi surface.
Within variational Monte Carlo (VMC) calculations, the

ground state wave function is approximated by a trial wave
function, �TðRÞ, whereas within projector Monte Carlo
methods, e.g., diffusion Monte Carlo (DMC) or RMC
calculations, the trial state is improved using �� /
exp½��H��T ; this converges exponentially fast to the
true ground state for increasing projection time �. To
circumvent the so-called fermion sign problem, calcula-
tions are done within the fixed-node approximation,
introducing small systematic deviations from the exact
fermion ground state [15]. Whenever the (approximate)
nodes of the system are described by a determinant of
single-particle orbitals�nðrÞ, the (fixed-node) ground state
wave function,�NðRÞ, ofN particles at positionsR � frig
can be written as

�NðRÞ ¼ DN exp½�UN�; DN ¼ det
nl
�nðrl þrlWNÞ;

(1)

PRL 107, 110402 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 SEPTEMBER 2011

0031-9007=11=107(11)=110402(5) 110402-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.110402


where WN and UN are generalized backflow and Jastrow
potentials [16], respectively.

From an approximate ground state wave function,
�NðRÞ, we obtain the reduced single-particle density
matrix [17]

fNðrÞ ¼ hFðR; rÞiN; F ¼ 1

N

X
i

�NðR: ri þ rÞ
�NðRÞ ; (2)

where R: ri þ r indicates that the position of particle i is
displaced by r, and h. . .iN � R

dR . . . j�Nj2=Q with

Q � R
dRj�Nj2 playing the role of a partition function.

The Fourier transform of fNðrÞ directly yields the momen-
tum distribution, nNk , of the electrons per spin

nNk ¼ 1

2V

Z
dre�ik�rfNðrÞ; (3)

where V is the volume.
The large variance of the estimator of the off-diagonal

density matrix, Eq. (2), makes precise calculations very
time-consuming. To reduce the variance for homogeneous
systems with plane wave orbitals, �nðrÞ / eikn�r, we
separate the ideal gas density matrix, fidðrÞ ¼P

n�
�
nðrÞ�nð0Þ=

P
nj�nð0Þj2, based on the estimator

FidðR; rÞ ¼ 1

N

X
i

DNðR: ri þ r;WNðRÞÞ
DNðR;WNðRÞÞ ; (4)

where the determinants on the right-hand side of Eq. (4)
are evaluated using the backflow coordinates, WNðRÞ, of
the diagonal configuration R with undisplaced particle
coordinates. Expanding it around r ¼ 0, we can explic-
itly verify that fidðrÞ ¼ hFidðR; rÞiN , so that the F� Fid

is a reduced variance estimator [18] of the difference:
fN � fid.

There is a problem with projecting methods to calculate
properties other than the energy. Forward walking or re-
weighting methods based on using �� in Eq. (2) become

very inefficient for long projection time, since the variance
increases exponentially with �. To avoid this problem,
mixed estimators, based on ���0, are frequently used

but they can introduce a systematic bias. Unbiased estima-
tors for the pair correlation function, potential, and kinetic
energy have been obtained within RMC calculations [12].
Based on a generalized partition function, Q, we extend
RMC calculations to include sampling of off-diagonal
matrix elements [10]

Q¼
Z

dRj��=2ðRÞj2

þ s

N

X
i

Z dr

V

Z �

0

d�

�

Z
dRj����ðRÞ��ðR: ri þ rÞj;

(5)

where s is a parameter used to optimize the efficiency
(s ¼ 0 corresponds to the usual diagonal RMC calcula-
tions [12]). Similar to the worm algorithm used in con-
tinuous path-integral calculations [11], our calculations
include moves which ‘‘open’’ (or ‘‘close’’) a path from
diagonal space R to off-diagonal space (R, ri þ r). Such
moves are included at � ¼ 0 and ‘‘propagated’’ by re-
ptation moves [12,19] to the interior of the path (� > 0).
In contrast to previous calculations using so-called mixed
estimators [6], this generalization gives an unbiased
estimator of the off-diagonal density matrix, fNðrÞ, and
the momentum distribution, nNk . Reduction of the vari-

ance based on the considerations above, Eq. (4), is still
possible, but less effective.
Quantum Monte Carlo results are obtained for typically

N & 103 electrons. The extrapolation to the thermody-
namic limit introduces important quantitative and qualita-
tive changes of the momentum distribution around the
Fermi surface, kF [9]. For a homogeneous periodic system,

the orbitals are plane waves, �nðrÞ ¼ exp½iðkn þ ~�Þ � r�,
in the Slater determinant of Eq. (1), where kj 2 GN �
fðn1; n2; n3Þ2�V�1=3g with integer ni, and ~� can be chosen
to introduce twisted boundary conditions [8,20]. For a

normal Fermi liquid, we further have jkj þ ~�j � kF, and

the generalized backflow and Jastrow potentialWN andUN

can be written exclusively in terms of collective coordi-
nates �k ¼ P

ne
ik�rn and their gradients [7,16]. Using the

wave function ‘‘potentials,’’ WN and UN , expressed as
continuous functions in terms of the collective coordinates,
the relation between the wave function in the limit N ! 1
to a finite system is well defined, as it just amounts to
evaluations on a denser grid in k space [8,9].
Let us first discuss the finite size scaling for a Slater-

Jastrow (SJ) wave function: a determinant with WN � 0,
together with a two-body Jastrow correlation, UN ¼P

kuk�k��k=2V. We further assume that the function uk
is analytically given. In our SJ-VMC calculations,

we use the Gaskell form 2nuSJk � �S�1
0 ðkÞ þ ½S�2

0 ðkÞ þ
2nvk="k�1=2 where S0ðkÞ is the ideal gas structure factor,
vk ¼ 4�e2=k2, and "k ¼ @

2k2=2m [21,22]. Neglecting
mode coupling between single-particle modes in DN and
collective modes described by UN , the single-particle
density matrix, Eq. (2), can be approximated as

fNðrÞ � fcðrÞ �
�
D0

N

DN

�
N
he�ðU0

N�UNÞiN; (6)

where the prime indicates the off-diagonal configuration,
e.g.,D0

N � DNðR: r1 þ rÞ. Within the cumulant and rotat-
ing wave approximation, we then obtain an explicit
expression,

fcðrÞ ’ fidðrÞ exp½�xNðrÞ�; (7)
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xNðrÞ ¼ 1

V

X
jkj�kc

½ukðSk � 1Þ þ nu2kSk�½eik�r � 1�; (8)

where Sk ¼ h�k��kiN=N is the structure factor, fidðrÞ ¼
2
P

k�kF
eik�r=N is the single-particle density matrix of the

corresponding ideal gas, and we have neglected contribu-

tions of short wavelength modes, kc � 0:48r1=2s kF [23].
Further, we can use Sk � ½2nuk þ 1=S0ðkÞj�1 to express
Sk in terms of uk and S0ðkÞ, which is based on assuming
Gaussian statistics for �k, so that Eq. (7) gives an explicit
expression for fNðrÞ � fcðrÞ in terms of a given Jastrow
factor. Whereas the resulting model, Eq. (7), depends
weakly on kc, so that fNðrÞ and nk are only qualitatively
described, the size extrapolation is quantitatively correct,

as it is dominated by the Jastrow singularity uk !
ðvk=2n"kÞ1=2 and Sk ! ð2nvk="kÞ�1=2 for k ! 0 stem-
ming from the plasmon contributions.

Since we expect that mode coupling is negligible in the
long wavelength limit, the cumulant expression, Eq. (7),
can be used to determine the size corrections of QMC
calculations of the finite system

f1ðrÞ ¼ 2

n

Z d3k

ð2�Þ3 n
N
k e

ik�re�ðx1ðrÞ�xNðrÞÞ: (9)

Here nNk is the momentum distribution of the N electron

system, defined for all values of k in a grand canonical
ensemble using twisted boundary conditions [8]. Using the
long-range properties of uk and Sk, x1ðrÞ is obtained from
Eq. (8) in the limit N ! 1. From the Fourier transform of
f1ðrÞ, Eq. (9), we obtain the extrapolated momentum
distribution, n1k . A related linearized expression has been

used to extrapolate nk of the two-dimensional electron gas
using BF-VMC [9] calculations.

Following the analysis of Ref. [9], leading order correc-
tions to the renormalization factor, ZN ¼ nNkF� � nNkFþ, are
given by

Z1 ’ ZN exp½��N�

�N ¼
Z �=L

��=L

d3q

ð2�Þ3
uq
2
½1þOð½2nuqS0ðqÞ��1Þ�

¼ c

�
3

4�

�
1=3

�
rs
3

�
1=2

N�1=3 þOðN�2=3Þ; (10)

where c ’ 1:221 is a numerical factor to account for the
cubic integration volume [24]. Whereas the asymptotic re-

gion is only reached for large systems with N1=3r1=2s � 1,
the extrapolation based on the full expression, Eq. (9),
includes corrections beyond the leading order term.
Analyzing Eq. (9) around kF, we obtain the exact leading
order behavior with an infinite slope at kF:

nðk ! k	F Þ ’ nðk	F Þ

þ Z1
2�

�
9�

4

�
1=3

ffiffiffiffi
rs
3

r �
k

kF
� 1

�
log

��������
k

kF
� 1

��������:
(11)

TABLE I. The total (E), potential (V), and kinetic energy (T) per particle in Ry, and the
contact value of the pair correlation function gð0Þ, all extrapolated to the thermodynamic limit
from unbiased RMC calculations with BF nodes. We further give parameters of the momentum
distribution at small k (n0, and n2), nðk ! 0Þ ¼ n0 � n2ðk=kFÞ2, and at kF, �n ¼ ½nðkþF Þ þ
nðk�F Þ�=2.
rs 1 2 3.99 5 10

E 1.173(2) 0.0039(1) �0:1555ð1Þ �0:1520ð1Þ �0:1071ð1Þ
T 2.290(3) 0.6024(5) 0.1688(1) 0.1131(1) 0.0349(1)

V �1:116ð1Þ �0:5985ð1Þ �0:3243ð1Þ �0:2651ð1Þ �0:1421ð1Þ
gð0Þ 0.268(3) 0.152(2) 0.057(2) 0.034(1) 0.0036(4)

n0 0.999 0.998 0.97 0.93 0.88

n2 0.038 0.066 0.12 0.098 0.21

�n 0.490 0.477 0.460 0.456 0.414

FIG. 1 (color online). The momentum distribution (nk) of the
unpolarized electron gas for various densities extrapolated to the
thermodynamic limit. The inset shows the extrapolation of nk for
rs ¼ 5 from a system with N ¼ 54 electrons to the thermody-
namic limit, N ! 1, leading to a significant reduction of the
renormalization factor Z.
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Size extrapolation, discussed above, requires the knowl-
edge of the structure factor, Sk, and the Jastrow potential,
uk, in Eq. (8). The QMC calculation of the N-particle
system allows us only to determine them on a finite grid
in k space, but the analytic continuation to the dense grid
can be done by interpolation from their known behavior at
small k [8]. Whereas Sk can be calculated directly,
uk ¼ uSJk is only known explicitly for VMC calculations

using a Slater-Jastrow trial function. In general, imaginary
time projection and backflow introduce an effective
Jastrow potential, uk, different from the explicitly given
form of the underlying trial wave function. Expecting
small changes at long wavelength, uk ¼ uSJk þ �uk, we
obtain the modifications �uk from changes in the structure
factor �Sk ¼ Sk � SSJk by linear response. For our purpose,

mode coupling can be neglected, as well as deviations from
Gaussian statistics, so that �Sk=�uk0 ’ �2nS�2

k �k;k0 for

k ! 0. Modifications due to �uk have been used to esti-
mate the systematic error of the finite size extrapolation.

Using SJ-VMC calculations with uSJk for N ¼ 54 to

N ¼ 1024 electrons, we have checked that size extrapola-
tions based on Eq. (9) with N ¼ 54 are reliable. We have
further checked for larger systems (N ¼ 342) that our
backflowwave functions and the imaginary time projection
do not modify the long-range behavior already present in
SJ-VMC calculations, so that the analysis above can be
also applied to BF-VMC and RMC calculations. Thus, the
more expensive backflow VMC and RMC calculations
based on the analytical wave functions in Ref. [7] are
only done with N ¼ 54. Extrapolated results on the total
energy E, unbiased estimators from reptation for the po-
tential (V) and kinetic energies (T), and the contact value
of the pair correlation function, gð0Þ, are given in Table I.
The momentum distribution is shown in Fig. 1. The values
for the renormalization factor, Z, together with different
perturbative results from the literature are given in Table II.
Note that the BF-VMC value Z ¼ 0:66ð2Þ at rs ¼ 3:99
of Ref. [5] was based on the extrapolation of systems

containing up to N ¼ 342 electrons. This is an explicit
check on the extrapolation procedure. Table I also contains
the values of the momentum distribution at the origin,
n0, the negative slope at the origin, n2, and �n ¼
ðnk�F þ nkþF Þ=2. These values can be used to parametrize

the momentum distribution along the lines given in
Ref. [29], together with Z, the exact large k asymptotics
[30], nðk ! 1Þ ¼ ð9=2Þr2sgð0Þ=k8, and the exact behavior
close to the Fermi surface, Eq. (11). Whereas the mixed
estimator usually employed in DMC calculations introdu-
ces a small bias in the momentum distribution, size ex-
trapolation introduces large systematic modifications
which limit the precision of the calculations. Previous
DMC results [6], using mixed estimators and SJ nodes,
suffer from these strong finite size effects and overestimate
Z by a large amount.
In summary, we have calculated the momentum distri-

bution using a new unbiased and much more accurate
Monte Carlo method, and extrapolated the results to the
thermodynamic limit. In particular, our data allow a quan-
titative comparison of the renormalization factor, Z, with
approximate calculations (see Table II). The excellent
agreement of our results with G0W0 [25,31,32] over the
whole metallic density region rs & 5 strongly indicates
that vertex corrections and self-consistency issues – neither
is included in G0W0—are canceling each other, at least
close to the Fermi surface.
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