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We study the condensed fraction of a harmonically trapped atomic Bose gas at the critical point

predicted by mean-field theory. The nonzero condensed fraction f0 is induced by critical correlations

which increase the transition temperature Tc above TMF
c . Unlike the Tc shift in a trapped gas, f0 is

sensitive only to the critical behavior in the quasiuniform part of the cloud near the trap center. To leading

order in the interaction parameter a=�0, where a is the s-wave scattering length and �0 the thermal

wavelength, we expect a universal scaling f0 / ða=�0Þ4. We experimentally verify this scaling using a

Feshbach resonance to tune a=�0. Further, using the local density approximation, we compare our

measurements with the universal result obtained from Monte Carlo simulations for a uniform system, and

find excellent quantitative agreement.
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Some of the most interesting fundamental problems of
many-body physics involve strong interparticle correla-
tions, and cannot be addressed by mean-field (MF) theo-
ries. Harmonically trapped ultracold atomic gases are
promising candidates for highly controllable ‘‘quantum
simulation’’ of such intricate many-body scenarios [1].
However, for testing the existing theories of spatially uni-
form systems, it is often important to experimentally ex-
tract information on local properties of a nonuniform
trapped gas (see, e.g., [2–4]).

The effect of interactions on Bose-Einstein condensation
of a dilute gas is a classic example of a difficult beyond-
MF problem, which has challenged theorists for decades
[5–20]. It is also an example of a situation where harmonic
confinement both quantitatively and qualitatively alters the
physics [21–30]. For a uniform gas the interaction shift of
the critical temperature Tc cannot be calculated to any
order in the interaction strength using perturbation theory,
owing to strong correlations that develop near the critical
point. On the other hand, nonuniformity of a trapped
atomic gas results in a significant MF shift of Tc (at fixed
total atom number) [21]. It also diminishes the relative
contribution of the more interesting beyond-MF effects,
in essence because near Tc only a small fraction of the
cloud is actually in the critical regime (see Fig. 1). Only
recently have the beyond-MF effects on condensation of an
atomic gas become experimentally accessible [30], and
many questions are still open.

In this Letter, we study the condensed fraction (f0) of an
atomic Bose gas at the critical point predicted by MF
theory. By definition f0 vanishes within MF theory, and
directly measures the effect of critical correlations which
shift Tc above TMF

c . Moreover, while the Tc shift itself
strongly depends on the global properties of a nonuniform
gas, f0 measurements directly probe the quasiuniform

critical region near the center of the trap. To leading order
in the strength of interactions we predict a universal scaling
f0 / ða=�0Þ4, where a > 0 is the s-wave scattering length
and �0 the thermal wavelength at the ideal-gas critical
temperature T0

c . Using a Feshbach resonance in a 39K gas
to tune a=�0, and accurately measuring condensed frac-
tions in the range 0:1%–1%, we experimentally verify this
prediction. Further, we directly relate our measurements to
the universal critical behavior seen in the classical-field
Monte Carlo simulations of a uniform system [31], and find
excellent quantitative agreement.
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FIG. 1 (color online). Beyond-mean-field effects near the criti-
cal point in a harmonically trapped Bose gas. (a) For a fixed
temperature, the density distribution at the critical point N ¼
Nc < NMF

c (solid blue line) is compared with the mean-field
prediction (dashed red line). In the trap center we expect
nMF
c � nc / a=�0, characteristic of the critical behavior in a

uniform system. However, the experimentally measured Nc shift,
NMF

c � Nc / ða=�0Þ2, is dominated by the density shift outside
the central critical region, and is not directly related to the nc
shift. (b) If N is increased to NMF

c > Nc, a small condensate
induced by critical correlations forms within the critical region
of size / a=�0. The condensed atom number N0 / ða=�0Þ4
directly relates to the critical density shift �nc / a=�0. (Note
that the plots are only indicative of the relevant physics, and are
not meant to be quantitatively accurate.)
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In Fig. 1(a) we illustrate the qualitative difference be-
tween the beyond-MF shifts of the critical point in a
uniform and a trapped gas, and in Fig. 1(b) the expected
scaling of the condensed fraction at the MF critical point.
For visual clarity, here we fix the temperature of the gas
and consider the interaction shift of the critical density nc
(in the center of the trap) and the critical atom number Nc.
The quadratic beyond-MF Nc shift was observed in [30].
The expected linear nc shift is characteristic of a uniform
system and more interesting from the point of view of the
theory of critical behavior. However, it cannot be experi-
mentally verified without a direct probe of the local density
in a 3D cloud.

Here we show how to overcome this problem and ex-
perimentally obtain information about the critical behavior
in a uniform gas. We first outline some general scaling
arguments, then present our experimental results, and fi-
nally make a quantitative comparison of our measurements
with the theory based on the Monte Carlo simulations of
Ref. [31].

In a uniform system, ideal-gas condensation occurs at a
chemical potential �0

c ¼ 0, and a critical phase space
density n�3 ¼ �ð3=2Þ � 2:612, where � is the Riemann
function. In an interacting gas there is no Tc shift at MF
level, i.e., TMF

c ¼ T0
c . To leading order in a=�0 � 1 the

expected beyond-MF Tc shift is given by [7–20]

�Tc

T0
c

� c
a

�0

; (1)

where �Tc ¼ Tc � T0
c , and c � 1:8 [13,14]. Equivalently,

the nc shift at constant T is �nc=n
0
c � �ð3=2Þ�Tc=T

0
c .

An important point is that, at both MF and beyond-MF
level, the interactions differently affect Tc (or equivalently
nc) and the critical chemical potential �c. The simple
MF shift ��MF

c ¼ 4�ð3=2Þa=�0, where � ¼ 1=kBT,
has no effect on condensation, and to lowest beyond-MF
order [32]:

��c � ��MF
c þ B2

�
a

�0

�
2
: (2)

The qualitative difference between Eqs. (1) and (2) high-
lights the fact that the problem of the Tc shift is non-
perturbative and near criticality the equation of state does
not have a regular expansion in� (otherwise one would get
�nc / �MF

c ��c).
In a harmonically trapped gas Tc is defined for a given

atom number N, rather than for a given density n. For an

ideal gas kBT
0
c ¼ @!½N=�ð3Þ�1=3, where �ð3Þ � 1:202.

Within the local density approximation (LDA) one expects
the uniform-system results for nc and �c to apply in the
center of the trap, r ¼ 0. Elsewhere in the trap the local
chemical potential is�ðrÞ ¼ �ð0Þ �m!2r2=2, wherem is
the atom mass and! the trapping frequency. The result for
the Tc shift, however, does not carry over so easily to the
nonuniform case. At Tc, the size of the central critical

region in a trapped cloud is rc � ða=�0ÞRT , where RT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m!2

p
is the thermal radius [25]. Combining this with

�nc � a=�0, one obtains a very small beyond-MF shift of
the critical number of atoms within the critical region, of
the order ða=�0Þ4. However, the actual beyond-MFNc shift
is instead / ða=�0Þ2. In fact, the experimentally observed
Tc shift qualitatively mirrors Eq. (2):

�Tc

T0
c

� b1
a

�0

þ b2

�
a

�0

�
2
: (3)

Here b1 � �3:426 is an analytical, strictly MF result [21],
and b2 ¼ 46� 5 was measured in [30].
We can qualitatively understand the similarity of

Eqs. (2) and (3) by noting that (i) the interaction shift of
�c affects the density everywhere in the trap, (ii) away
from the critical point the equation of state is regular in �
and the local density shift is simply proportional to �c, at
both MF and beyond-MF level [33], and (iii) the contribu-
tion to Nc from the noncritical region outweighs the con-
tribution from within the critical region by a large factor
�ð�0=aÞ3.
To conclude this analysis, the beyond-MF Tc shift ob-

served in a trapped gas [30] is directly related to the
beyond-MF �c shift (in either trapped or uniform system).
It does not, however, directly reveal the expected linear nc
shift and the theoretically most intriguing nonperturbative
connection between �c and nc shifts.
By studying the condensed fraction f0 at the MF-

predicted critical point we overcome the problem of the
absence of the local density probe. Simply put, instead of
asking how Nc is reduced with respect to NMF

c by critical
correlations, we ask how many atoms pile up in the con-
densate if (at constant T) we increase the total atom
number to NMF

c > Nc. Experimentally, the obvious advan-
tage is that the condensed and thermal component can be
clearly distinguished in standard time-of-flight (TOF) ex-
pansion, thus allowing us to use a ‘‘global’’ measurement
technique to access the local behavior of the gas within the
critical region. Theoretically, the analogous quantity for a
uniform gas, n0=n (where n0 is the condensate density),
was first considered by Holzmann and Baym [34].
Although the formal proof is rather involved, the main
scaling result is intuitive, n0=n / �nc / a=�0 [35]. From
this result we immediately obtain f0 / ða=�0Þ4, as illus-
trated in Fig. 1(b). The harmonic trapping potential still
affects the scaling of f0 with a=�0, but in this case the
results for a harmonic and a uniform system are trivially
related by the volume of the critical region, / ða=�0Þ3.
To experimentally measure f0 we use an optically

trapped cloud of 39K atoms in the jF;mFi ¼ j1; 1i hyper-
fine state, in which the strength of interactions can be tuned
via a Feshbach resonance centered at 402.5 G [36]. Our
setup and measurements close to the critical point are
described in [30,37]. Briefly, we prepare partially con-
densed clouds at various values of the scattering length

PRL 107, 190403 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 NOVEMBER 2011

190403-2



a, and then let the number of atoms in the trap gradually
decay through inelastic processes, while finite trap depth
and sufficiently high rate of elastic collisions ensure that
the sample remains in equilibrium at an approximately
constant temperature. For the measurements presented
here, N � ð4� 5Þ � 105, the geometric mean of the trap-
ping frequencies in our nearly isotropic trap is �!=2� �
80 Hz, and T � 250 nK, corresponding to �0 � 104a0,
where a0 is the Bohr radius. To discern condensed fractions
as low as �0:1% we switch a close to zero during TOF,
thus minimizing the condensate expansion [30].

Our experimental results are summarized in Fig. 2.
Starting at zero for small a (in agreement with MF theory),
f0 grows to �1% at a � 350a0. At even larger a the
unfavorable ratio of the three-body loss rate to the two-
body elastic collision rate precludes reliable equilibrium
measurements [30].

Because it is essential that we measure f0 at N ¼ NMF
c ,

we explain in detail how we ensure this, and assess the
errors in our measurements and analysis. Absolute N cali-
bration is usually limited by the uncertainty in the
absorption-imaging cross section �. NMF

c can be corrected
for small effects such as the finite-size Tc shift [38] (in our
case � 1%), but its absolute accuracy is limited by the
experimental uncertainty in �! (in our case � 2%). To
eliminate these systematic errors to leading order, for every
‘‘measurement’’ series at a given a (data point in Fig. 2) we
also take a ‘‘reference’’ series at a � 50a0. In the weakly
interacting gas with a=�0 � 0:005 the beyond-MF effects
are negligible (the expected f0 is <10�5) and the critical
atom number Nc, obtained for N0 ! 0, is experimentally
indistinguishable from NMF

c [30]. Setting NMF
c ¼ Nc for

the reference series therefore introduces a negligible error,

and allows us to calculate NMF
c for the measurement series.

Since the two series have identical � and �! (hence also
equal finite-size shifts) [39], we only need the ratio of the
two NMF

c values, given by the standard MF theory (see also
[33]). From our reference series we can also absolutely
calibrate � and all atom numbers to � 6%, but we do not
rely on this calibration and this uncertainty does not affect
our results. Our cancellation of systematic errors is valid
only to first order; e.g., we assume that the small MF and
finite-size Tc shifts are additive. However, higher order
corrections are much smaller than our statistical errors,
coming from shot-to-shot variations in atom numbers and
temperatures. Combining N and T fluctuations, our statis-
tical error in NMF

c is typically � 1%. For comparison, the
difference between NMF

c and Nc is as large as 10% in our
most strongly interacting samples [40].
We fit our f0 data with a function ða=�0Þx where x is a

free parameter. The fit yields x ¼ 3:9� 0:4, in agreement
with the predicted x ¼ 4. This confirmation of the ex-
pected scaling of f0 with a=�0 is the first main result of
this Letter.
We now quantitatively relate our measurements to

Monte Carlo (MC) calculations for a uniform gas.
Following [31] we first define the reduced chemical poten-
tial [42]

X ¼ ���c

32�3ða=�0Þ2kBT
: (4)

Next, following [13] we calculate X0, the value of X in the
center of the trap for N ¼ NMF

c . [Because of logarithmic
corrections this is a slightly different condition from
�ð0Þ ¼ �MF

c , but this distinction is not experimentally
observable.] We use the experimental value b2 ¼ 42� 2
and bMF

2 ¼ 11:7� 0:1 [30,33] to get

X0 � 3�ð3Þ
32�3�ð2Þ ðb2 � bMF

2 Þ ¼ 0:067� 0:005: (5)

For a uniform system the reduced condensate density ~fðXÞ,
defined by n0�

3
0 ¼ 16�3ða=�0Þ~fðXÞ, was tabulated in [31]

using MC simulations. Invoking LDA, for a harmonically
trapped gas we get

N0

N0
c

¼
ffiffiffi
2

p ð4�Þ7
4�ð3Þ

�
a

�0

�
4 Z X0

0

~fðXÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X0 � X

p
dX: (6)

Writing ðN0=N
0
cÞ1=4 ¼ �ða=�0Þ and numerically evaluat-

ing the integral in Eq. (6), using the results of [31], we get
the numerical coefficient �MC ¼ 10:4� 0:4.
In Eq. (6)N0 is calculated atN ¼ NMF

c but normalized to
N0

c . This expression therefore differs from f0 by a factor of
NMF

c =N0
c . This difference does not affect the leading

ða=�0Þ4 term and is relevant only at the ða=�0Þ5 level.
Nevertheless, for a direct quantitative comparison, in
Fig. 3 we normalize the measured N0 values to N0

c , and
assume the quartic dependence on a=�0. The linear fit to
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FIG. 2 (color online). Condensed fraction of an atomic gas
induced by critical correlations. The condensed fraction f0 is
measured at the point where the total atom number is
N ¼ NMF

c > Nc. A fit to the data (solid line) with the function
f0 / ða=�0Þx gives an exponent x ¼ 3:9� 0:4, in agreement
with the predicted x ¼ 4. Vertical error bars are statistical and
horizontal error bars reflect the 0.1 G uncertainty in the position
of the Feshbach resonance. The insets show representative
column density distributions after 19 ms TOF.
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ðN0=N
0
cÞ1=4 yields the experimental value �exp ¼ 10:3�

0:3, in excellent agreement with the Monte Carlo result.
For another comparison, it is interesting to convert X0

into N0 using the standard Thomas-Fermi (TF) law. This
MF law is valid well below Tc, where N0 � N, but should
not hold close to the critical point. For a given X0, the
TF law also predicts N0 / ða=�0Þ4. However, it corre-

sponds to ~fðXÞ ¼ X and gives�TF ¼ 8:2� 0:4. This result
underestimates the condensed fraction f0 by a factor
ð�MC=�TFÞ4 � 2:6, and we experimentally exclude it at
about 4 sigma level. This confirms that near Tc mean-field
theory fails on both sides of the critical point.

In conclusion, we have studied the condensed fraction of
an atomic gas induced by interparticle correlations at a
point where no condensate is predicted by mean-field
theory. Building on the recent observation of correlation
effects on the condensation temperature of a trapped gas,
this work makes a more direct connection with the critical
behavior in a homogeneous system. We experimentally
confirm the predicted scaling f0 / ða=�0Þ4, which high-
lights the conceptual difference between the interaction
shifts of the critical density (characteristic of a uniform
system) and the critical atom number in a harmonically
confined cloud. Moreover, we demonstrate excellent
quantitative agreement between our experiments and
Monte Carlo simulations for a homogeneous gas. In a
more general context, this provides an example of the
potential of ultracold atomic gases for quantitative quan-
tum simulation of intricate beyond-mean-field phenomena
in uniform many-body systems.
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3549 (1997).
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Rev. Lett. 87, 120403 (2001).
[16] G. Baym et al., Eur. Phys. J. B 24, 107 (2001).
[17] H. Kleinert, Mod. Phys. Lett. B 17, 1011 (2003).
[18] J. O. Andersen, Rev. Mod. Phys. 76, 599 (2004).
[19] M. Holzmann et al., C.R. Physique 5, 21 (2004).
[20] S. Pilati, S. Giorgini, and N. Prokof’ev, Phys. Rev. Lett.

100, 140405 (2008).
[21] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A

54, R4633 (1996).
[22] J. R. Ensher et al., Phys. Rev. Lett. 77, 4984 (1996).
[23] M. Houbiers, H. T. C. Stoof, and E. A. Cornell, Phys. Rev.

A 56, 2041 (1997).
[24] M. Holzmann, W. Krauth, and M. Naraschewski, Phys.

Rev. A 59, 2956 (1999).
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