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We use quantum Monte Carlo methods to compute the density profile, the nonclassical moment of
inertia, and the condensate fraction of an interacting quasi-two-dimensional trapped Bose gas with up to
N � 5� 105 atoms and parameters closely related to recent experiments. We locate the Kosterlitz-
Thouless temperature TKT and discuss intrinsic signatures of the onset of superfluidity in the density
profile. Below TKT, the condensate fraction is macroscopic even for our largest systems and decays only
slowly with system size. We show that the thermal population of excited states in the transverse direction
changes the two-dimensional density profile noticeably in both the normal and the superfluid phase.
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Recent experiments have opened the way for detailed
microscopic studies of the Kosterlitz-Thouless phase tran-
sition [1] in quasi-two-dimensional quantum gases [2–5].
These systems are particularly interesting because the
external potential—a pancake-shaped harmonic trap with
a tightly confining transverse direction—places them in
the vicinity of two distinct phase transitions. Interactions,
on the one hand, drive the Kosterlitz-Thouless transition
from the normal state to a superfluid state with a vanishing
condensate fraction in the infinite system [6]. The modifi-
cation of the free density of states through the two-
dimensional trap, on the other hand, drives a conventional
Bose-Einstein condensation at finite temperature, but only
for the noninteracting gas [7,8]. However, due to the meso-
scopic size of trapped quantum gases, the clear distinction
between the Kosterlitz-Thouless and the Bose-Einstein
transition necessitates finite-size extrapolation to the ther-
modynamic limit.

Experimental evidence for a Kosterlitz-Thouless transi-
tion in quasi-two-dimensional quantum gases was pro-
vided by interference studies revealing thermally
activated vortices [3] and quasi-long-range coherence [4].
Initially, strong deviations of the measured critical tem-
perature with respect to known results in strictly two
dimensions seemed to point towards effects beyond
mean-field theory even in the high-temperature normal
phase [5]. However, in the quasi-two-dimensional regime,
the population of several excited states in the tightly con-
fined direction must be taken into account [8]. As we will
show, the latter is important for a proper description of the
density profiles above and below the critical temperature.

In this Letter, we apply quantum Monte Carlo (QMC)
methods [10–13] to simulate a very large number N of
dilute interacting bosons in trap geometries directly rele-
vant to the experiments. These methods allow us to deter-
mine thermodynamic properties. We consider three-

dimensional trapped bosons interacting with an s-wave
pseudopotential in a harmonic trap with frequencies ! �
!x � !y � !z. Our particle numbers range from N �
2000 to N � 576 000, the latter exceeding current experi-
ments with �40 000 atoms [5] by more than 1 order of
magnitude. The diagonal many-particle density matrix
yields the density profile and the nonclassical moment of
inertia. Both allow us to locate the phase transition. We
also determine the condensate fraction explicitly from the
largest eigenvalue of the reduced off-diagonal one-particle
density matrix. We can distinguish between condensatelike
and Kosterlitz-Thouless–like behavior by studying finite-
size effects of the condensate.

The trapped ideal strictly two-dimensional Bose gas
shows a Bose-Einstein transition [7] at a temperature
T2d

BEC �
�������
6N
p

@!=�. In the quasi-two-dimensional regime,
for finite ~!z � @!z=T

2d
BEC, the Bose-Einstein temperature

is decreased [8]. It occurs at a temperature Tq2d
BEC �

0:78T2d
BEC for the experimental value ~!z � 0:55 [5]. In

the strongly anisotropic trap, at temperatures around
Tq2d

BEC, and at finite ~!z, the extension of the density profile

in z is comparable to the de Broglie wavelength � ����������������������
2�@2=mT

p
, so that the gas is essentially two dimensional.

In the many-body density matrix, the z dependence is
dominated by a (normalized) single-particle contribution,
��z; z0�, which separates out, and the effective two-
dimensional interaction strength is given by

 g �
4�@2a0

m

Z
dz���z; z�	2; (1)

where a0 is the three-dimensional s-wave scattering
length. For particles distributed in z according to the
ground state of the harmonic oscillator, Eq. (1) reduces

to g � ~g 
 a0

�����������������������
8�!z@

3=m
q

. For our simulations, we have
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used the experimental value m~g=@2 � 0:13 [5]; however,
the actual value of g can be obtained directly from the
computed density profile in the z direction using Eq. (1).

Numerical calculations [14] have determined the critical
density nc at the Kosterlitz-Thouless transition in the
weakly interacting two-dimensional homogeneous Bose
gas of density n,

 nc�2 ’ ln
380@2

mg
: (2)

The interaction g enters this expression only logarithmi-
cally, and the differences between g and ~g, of the order of
40% at TKT, results in only a 6% shift in the critical density.

In the trapped Bose gas, within the local-density ap-
proximation, the transition takes place when the central
density n�0� equals the critical density of the homogeneous
gas, in our case nc�0��2 ’ 8. Within strictly two-
dimensional mean-field theory [6], the Kosterlitz-
Thouless transition is somewhat belowT2d

BEC:
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�
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’ 0:75; (3)

where we used Eq. (2). In the quasi-two-dimensional re-
gime, the Kosterlitz-Thouless temperature can also be
computed. For ~!z � 0:55, one obtains Tq2d

KT � 0:69T2d
BEC

[8].
In Fig. 1, we show the two-dimensional density profile

n�r�with r �
����������������
x2 � y2

p
from our QMC calculations at T �

T2d
BEC for N � 576 000. We also illustrate the large devia-

tions from the strictly two-dimensional ideal Bose gas. As
already noticed in the experiments [5], the profile also
deviates strongly from the strictly two-dimensional

mean-field theory and it is closer to that of ideal quantum
Boltzmann particles described by the density matrix of the
harmonic oscillator. However, it is virtually indistinguish-
able from the quasi-two-dimensional mean-field theory
proposed in Ref. [8].

In Fig. 2, we show the analogous density profile at
temperature T=T2d

BEC � 0:5, again for N � 576 000 parti-
cles. The central density is now well in excess of the
critical value of Eq. (2). We may define a ‘‘critical radius’’
rc, which separates the ‘‘inner region’’ of the trap, with
r < rc and n�r�> nc, from an ‘‘outer region’’ with r > rc
and n�r�< nc. In the local-density approximation, the
inner region is in the superfluid phase, whereas the outer
region is normal. At the critical radius, the density is at the
Kosterlitz-Thouless temperature. In the inner region, n�r�
is very well described by a Thomas-Fermi profile

 n�r� � n�0� �
1

g
m!2r2

2
; r < rc; (4)

with the effective two-dimensional interaction parameter at
this temperature mg=@2 � 0:107, obtained, via Eq. (1),
directly from the density profile in z (see inset of Fig. 2).
The latter is wider than the ground state distribution of the
harmonic oscillator, so that g is smaller than ~g. The density
profile in r, whose width depends linearly on g�1, is more
sensitive to the detailed value of the interaction than the
transition temperature, which decreases with the logarithm
of g.

In Fig. 3, we plot the central density n�0��2 and also the
(central) curvature � � �@n�r��2=@��m!2r2�jr�0. The

MFT

MFT

FIG. 1. Two-dimensional density profile n�r��2 at T � T2d
BEC

for N � 576 000, compared to that of the strictly two-
dimensional ideal Bose gas, the ideal gas of distinguishable
particles, and strictly two-dimensional mean-field theory
(MFT). The QMC data are virtually indistinguishable from the
results of quasi-two-dimensional mean-field theory [8]. The inset
compares the density profile in z to the ground state distribution
of the harmonic oscillator and to the ideal gas of distinguishable
particles.

FIG. 2. Two-dimensional density profile n�r��2 at temperature
T � 0:5T2d

BEC for N � 576 000 (thick line), compared to the
Thomas-Fermi profile of Eq. (4) (with mg=@2 � 0:109, dashed
line). The ansatz of Eq. (5) for the superfluid density �s�r�, with
the universal jump at r � rc, corresponds to the shaded region.
The inset compares the density profile in the tightly confined z
direction to the ground state distribution of the harmonic oscil-
lator and the distribution of an ideal gas of distinguishable
particles.
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curvature of the Thomas-Fermi profile [in Eq. (4)] is � �
�@2=�mg� with g � ~g at very low temperature. The curva-
ture increases (the profile becomes narrower) with T be-
cause particles spread out farther in the z direction. Above
the critical temperature, however, the curvature decreases
(the profile becomes wider), as is natural for a thermal gas,
with � / n�0��2. The curvature plot provides an intrinsic
signature of the phase transition, at a temperature
T=T2d

BEC ’ 0:70, which agrees nicely with the temperature
at which the central density passes the critical value
Eq. (2). We have also studied smaller systems (with N �
2250, 9000, 36 000, and 144 000) at unchanged values of
T=T2d

BEC and ~!z � 0:55, but found only very small varia-
tions in the density profiles. Our value for the critical
temperature TKT ’ 0:70T2d

BEC agrees reasonably well with
the mean-field value Tq2d

KT � 0:69T2d
BEC of the Kosterlitz-

Thouless transition in the quasi-two-dimensional trapped
Bose gas [8].

From Fig. 1, we see that the density profile deviates from
the thermal distribution with a single Gaussian component
as soon as n�r��2 * 1. The temperature determination
from the tails of the density profile therefore suffers from
a poor signal-to-noise ratio. Indeed, a direct comparison of
our data with the experimental density profiles [9] showed
that a proper temperature calibration of the experimental
data accounts for the difference between our transition
temperature and the original experimental value of
Ref. [5]. Alternatively, the experimental temperature in
the high-temperature phase can be calibrated conveniently
using quasi-two-dimensional mean-field theory [8,9].

The low-temperature phase below the Kosterlitz-
Thouless transition is a superfluid. For a homogeneous
system, the superfluid fraction can be probed through the
response to boundary conditions [10]. Likewise, a trapped
superfluid does not respond to an infinitely slow rotation

of a trap leading to a nonclassical moment of inertia, Inc,
which is smaller than the classical value Icl �

R
drr2n�r�.

The nonclassical moment of inertia can be computed from
the diagonal elements of the density matrix [15]. In a
homogeneous system, the ratio of the nonclassical moment
to the classical moment equals the normal fraction. In
Fig. 4, we show that a superfluid phase emerges below T ’
0:70T2d

BEC, and that Inc=Icl remains different from unity,
independent on system size.

To interpret our data for the nonclassical moment of
inertia, we observe that in an infinite homogeneous system,
at the Kosterlitz-Thouless transition, the superfluid density
develops a universal jump [16], ��s � 2mTKT=��@

2�, and
the superfluid mass and the moment of inertia are both
discontinuous. In the trap, the spatial structure smears out
these discontinuities [6], but in local-density approxima-
tion, as mentioned, the gas is critical at the critical radius
rc. Therefore, we expect a normal phase beyond rc, and a
superfluid for r < rc, with a jump of the superfluid density
taking place at this radius and the superfluid density
vanishing for r > rc. For our parameters, the superfluid
fraction at the critical radius is �s�rc�=n�rc� �
2mT=�n�rc��@

2� ’ 0:5. We can continue the superfluid
density �s�r� into the inner region by a Thomas-Fermi
profile:

 �s�r��

8<
:
m!2r2

c�1�r
2=r2

c�=2g�2mT=��@2� for r� rc;
2mT=��@2� for r! r�c ;
0 for r>rc:

(5)

(See Fig. 2.) The nonclassical moment of inertia Inc �R
drr2�n�r� � �s�r�	, computed using Eq. (5) and the com-

FIG. 4. Left panel: Nonclassical moment of inertia Inc=Icl vs
T=T2d

BEC for N � 9000 (crosses) and N � 144 000 (stars) com-
pared to the ansatz of Eq. (5) (squares). Right panel: Condensate
fraction for particle numbers ranging from N � 2250 (crosses)
to N � 144 000 (squares).

FIG. 3. Left panel: Densities nc�2 and n�0��2 vs T=T2d
BEC for

the quasi-two-dimensional gas with N � 576 000. The intersec-
tion of both curves leads to a transition temperature TKT ’ 0:70.
Right panel: Central curvature � compared to the ground state
Thomas-Fermi (TF) curvature, Eq. (4), with g � ~g and with g
corresponding to an ideal gas of distinguishable particles. The
central curvature changes slope at TKT.
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puted density profile n�r�, agrees excellently with our data
(see Fig. 4).

In an inhomogeneous system, the ground state eigen-
function of the one-body density matrix is fixed by sym-
metry alone. Still, in the rotationally symmetric trap the
one-body density matrix is block diagonal with respect to
the Fourier components l of the angle between r and r0.
Projection onto the Fourier components yields one-
dimensional matrices, ��1�l �r; r

0;��, which can be discre-
tized more easily than the bigger matrix ��1��r; r0;��. The
condensate fraction, N0=N, corresponds to the largest ei-
genvalue with l � 0 [17]. Figure 4 shows that the conden-
sate fraction of our quasi-two-dimensional system is rather
large, but it decays algebraically with system size:N0=N �
N���T�=2. The exponent ��T� depends on the temperature;
we obtain ��0:70T2d

BEC�  0:5 and ��0:67T2d
BEC�  0:2.

Precisely at the critical temperature, we expect ��TKT� ’
1=4 from the homogeneous Kosterlitz-Thouless theory [1]
which implies that the critical temperature is between
0:67T2d

BEC and 0:70T2d
BEC. This value is compatible with

our more precise estimate based on the nonclassical mo-
ment of inertia. The algebraic decay of the condensate
fraction with the system size strongly supports the
Kosterlitz-Thouless character of the transition with a van-
ishing condensate in the thermodynamic limit.

Notably, in the trap, the characteristic universal jump in
the superfluid density at the critical temperature of the
Kosterlitz-Thouless transition does not induce a significant
discontinuity in the inertial response, as in two-
dimensional films [19]. Nevertheless, the universal jump
determines �s�r� at the radius r � rc where the gas is
locally critical. Based on the local-density approximation,
we proposed a superfluid density profile, Eq. (5), which
continues the �s�r� from r � rc into the superfluid inner
region. It depends on a single parameter rc whose value can
be determined directly from the density profile. The non-
classical moment of inertia calculated from the superfluid
density profile, Eq. (5), is in excellent agreement with a
direct computation of this quantity. Further, it is remark-
able that in the finite Kosterlitz-Thouless system, the con-
densate fraction, which must vanish for an infinite system,
is still rather large, even close to the transition temperature.
The fact that the ground state wave function of size �rc
remains macroscopically occupied for systems with parti-
cle number N & 106 implies that the coherence of the
atoms is neither destroyed by interparticle interactions
nor by fluctuations, essential for building continuous and
coherent sources of matter waves in lower dimensions [20].
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