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Abstract — We discuss the quasi-two-dimensional trapped Bose gas where the thermal occupation
of excited states in the tightly confined direction is small but remains finite in the thermodynamic
limit. We show that the semiclassical theory describes very accurately the density profile
obtained by quantum Monte Carlo calculations in the normal phase above the Kosterlitz-Thouless
temperature Tk, but differs strongly from the predictions of strictly two-dimensional mean-field
theory, even at relatively high temperature. We discuss the relevance of our findings for analyzing
ultra-cold—atom experiments in quasi-two-dimensional traps.
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For many years, the physics of two-dimensional
quantum gases has been under close experimental and
theoretical scrutiny. The quest for quantum phase tran-
sitions in two-dimensional atomic Bose gases has started
with experiments on spin-polarized atomic hydrogen
adsorbed on liquid *He surface reaching the quantum
degenerate regime (see, e.g., [1,2]) and observing quasi-
condensation [3]. The Kosterlitz-Thouless transition [4]
was observed recently in trapped atomic gases of ultra-
cold 8"Rb atoms in an optical lattice potential with a
tightly confined z-direction [5].

In contrast to experiments with liquid *He films [6],
where the Kosterlitz-Thouless transition is realized
directly, the typical extension in the z-direction in the
experiments on two-dimensional gases is much larger than
the three-dimensional scattering length. For this reason,
the effective two-dimensional interaction strength remains
sensitive to the density distribution in z [7]. Nevertheless,
the gas is kinematically two-dimensional because of the
strong out-of-plane confinement.

In this letter, we consider the quasi-two-dimensional
regime of the trapped Bose gas, where the temperature T'
is of the order of the level spacing in z. This corresponds to
the experimental situation with small, but not completely
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negligible, thermal occupation of a few excited states
of the tightly confining potential [5,8]. The quasi—two-
dimensional regime crosses over to the three-dimensional
and the strictly two-dimensional Bose gases as the poten-
tial in the z-direction is varied.

Semiclassical theory cannot describe the Kosterlitz-
Thouless transition, but it is expected to describe
accurately the spatial distribution of a trapped dilute gas
in the normal high-temperature phase. At the transition,
only the particles in the very center of the trap are critical,
and it was argued that the mean-field profile should still
hold down to this temperature [9]. However, it was noticed
in experiments [8,10] and in direct quantum Monte Carlo
calculations [11] that the density profile of the gas devi-
ates strongly from strictly two-dimensional mean-field
theory, even at relatively high temperature. Originally,
these deviations were thus attributed to effects beyond
mean field [8]. We point out in the present paper that
they are rather accounted for by a quasi—two-dimensional
mean-field theory which incorporates the thermally
activated states in the tightly confined direction.

We first discuss Bose-Einstein condensation of the
ideal gas in strongly anisotropic harmonic traps, and
we define the quasi-two-dimensional regime where the
ideal-gas critical temperature is always lower than that
of the strictly two-dimensional ideal gas. By including
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interactions on the level of mean field, we obtain the
density profiles in the semiclassical approximation and
solve the self-consistent mean-field equations directly.
Remarkable agreement of the semiclassical density profiles
with the results of quantum Monte Carlo calculations
is obtained in the high-temperature normal phase down
to the Kosterlitz-Thouless temperature. The profiles
should be very convenient for calibrating the temperature
in experiments of quasi—two-dimensional Bose gases.
Comparison of experimental density profiles with quan-
tum Monte Carlo data has already removed the original
discrepancy of the Kosterlitz-Thouless temperature
between calculation and experiment [10].

We consider an anisotropic trap with oscillator frequen-
cles w=w, =wy <w,. At temperature T ~ hw,, the
motion is semiclassical in the coordinates z, y and in
the momenta hk;, hk,, whereas the quantization in
the z-direction is best described through the energy
levels vhw, (v=0,1,...) of the corresponding harmonic
oscillator. Semiclassically, the number dN of particles per
phase-space element dk,dk,dzdy in the energy level v is
given by [12]

1 dk, dk,dady

dN: 21.2 9 1
(27)2 exp [5(& +o(r) + vhw, — ,u)} -1 M)
where =1/T, k*=k2+k7, and where v(r) is an
arbitrary = two-dimensional potential energy (with
r2 =22 +y2).

Equation (1) can be integrated over all momenta and
summed over all oscillator levels to obtain the two-
dimensional particle density

Z/ dk? 1 B
4m exp (B(ZE: +v(r) + viw, —p)) — 1
*pzln{lfexp Bk —

v=0

where A= ./27h?3/m is the thermal wavelength. The
potential v(r) can itself contain the interaction with
the density n(r), so that eq. (2) is in general a self-
consistency equation. The integral of n(r) over space yields
the equation of state, that is, the total number of particles
as a function of temperature and chemical potential.

Let us first consider the ideal gas, where the potential
energy v(r) = mw?r?/2 is due only to the trapping poten-
tial, so that the rhs of eq. (2) is independent of the density
n(r). We get

N = —;i/{;ood(rz)ln [1

ZFQ (—uB -+ vBhw.),

v(r) —vhw:)]},

_ eﬁ(,ufuhwzfmwzr2/2)

52 2
where we have deﬁned
n=1

The saturation number Ng(7T) is the maximum
number of excited particles (reached at p=0) at a given
temperature. We have

T2 &
quaQtd_ h202 ZF2(V/6h’wz)' (4)
v=0

The above relation between the saturation number and the
temperature defines the dependence of the Bose-Einstein
condensation temperature on the particle number N. As
mentioned before, the strictly two-dimensional limit is
characterized by the limit Shw, — oo (the level spacing in
z is much larger than the temperature). In this limit, only
the first term in eq. (3) contributes. Using F5(0) =72 /6,
we find

T? 72 V6N hw
NE(T) = s & @ TR = 22 (5)

In the quasi-two-dimensional case, with finite GAw,, the
occupation of the oscillator levels v =1,2,... increases
the saturation number and therefore lowers the critical
temperature. It is convenient to express in units of 723
both the temperature t=7/T2%. and the oscillator
strength @, = hw, /T2, and to write ji=Su. Using
eq. (5), we may rewrite the equation of state, eq. (3),
as a relation between the temperature ¢, the chemical
potential [i, and the oscillator strength @,,

t:f(t,ﬂ,(:)z), (6)

with

—-1/2
ft i, < ZFz +vwz/t>> )

Equation (6) is solved numerically by iterating ¢,41 =
f(t,) from an arbitrary starting temperature to to the
fixed point. The critical temperature tggc = Tg%% / Té%c
(as a function of @,) of the quasi-two-dimensional ideal
Bose gas is the solution for fi = 0 (see fig. 1). The reduction
with respect to the strictly two-dimensional case is notable
for systems of experimental interest. For example, we
find tggc = 0.78 for the experimental value @, = 0.55 [5,8]
considered in the quantum Monte Carlo calculations [11].

We can expand eq. (7) for small and for large @, and find

<<2>r/3 s 1C(2) .

o, w,, forw, <1,
6¢(3) (8)

for @, >1,

{BEG ~ {4(3)

1- W exp (—@z) )

where we have used ((s) = F,(0) (note that ((2)=72/6
and ¢(3) ~1.202). The expansions are indicated in fig. 1.
They give the critical temperature to better than 1.2% for
all values of @, (the low-©, expansion is used for © < 1.8
and the high-@, expansion for @ >1.8). The first term
in the small-&, expansion of eq. (8) corresponds to the

three-dimensional gas. Indeed, tgrc ~ [C(2)/§(3)]1/3®;/3
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tBEC

wz/ TIZB?EC

Fig. 1: Bose-Einstein condensation temperature tgec of the
ideal quasi-two-dimensional gas in a harmonic trap with
w,/w o< NY/2 (expansions from eq. (8)). The inset shows tprc
for scaling w./w=N° as a function of § for different N. At
8 =0, the critical temperature T5gc = [N/¢(3)]*/? of the ideal
gas in a three-dimensional isotropic trap is recovered.

is equivalent to

1/3

[htw.w? ¢(3)]/° N2, (9)
the well-known condensation temperature for the three-
dimensional Bose-Einstein gas in an anisotropic trap [13].
Equation (9) also follows directly from eq. (4) by replac-
ing the sum over the oscillator levels by an integral.
Likewise, the first term in the large-@, expansion of
eq. (8) represents the strictly two-dimensional gas.

The inset of fig. 1 further analyzes the expansions of
eq. (8). Indeed, we can choose a scaling w, /w ~ N? differ-
ent from the quasi-two-dimensional case 6 =1/2. Any
choice of § < 1/2 corresponds to @, — 0 for N — oo so that
asymptotically the three-dimensional regime is reached.
Analogously, § > 1/2 corresponds to @, — oo for N — oo,
driving the transition into the strictly two-dimensional
regime. The rescaled transition temperatures are plotted
for w,/w=N° where the case § =0 corresponds to the
three-dimensional isotropic trap’.

In order to describe interaction effects in the quasi—two-
dimensional Bose gas, we now add a semiclassical contact
term to the potential energy of eq. (2):

v(r) = mw?r? /24 2g[n(r) — n(0)]. (10)

We have subtracted the central density, so that the poten-
tial still vanishes at the origin. As discussed earlier [11], the
effective interaction g=4mah®/m [dz[p(2)]* is propor-
tional to the three-dimensional s-wave scattering length

1The inset of fig. 1 is evaluated from the asymptotic expansion
eq. (8). Very similar results for T, follow from the exact saturation
numbers at finite N.

a and to the integral of the squared density distribution
in z, described by the normalized diagonal density matrix
p(z). In the temperature range of interest, this density
distribution is well described by the single-particle
harmonic-oscillator density matrix in z, leading to

g=a (11)

8w, h3 -
.

- V/tanh[w, /(2t)]
The effective interaction thus decreases with temperature
from its zero-temperature value §=ay/8nw,h3/m. To
keep the interaction strength fixed, we must keep g (or
equivalently §) constant in the quasi—two-dimensional
thermodynamic limit which requires a fixed value of the
scaled scattering length a,/w, o aw/2N1/4,

The mean-field density n(r), on the lhs of eq. (2),
depends on the variable r only via the potential v(r). In
the space integral over the particle density, we can thus
change the integration variable from r to v. This allows us
to determine the equation of state explicitly:

N = w/oood(ﬁ) n(r)ﬂ/ooodv [agj)} n(v) =
s o0 oo

T2 (S~ By (i ) + 9 TnoA2] 12
P22 lIZZO p(—f+18 z)‘f'm[”() } , o (12)

where the central density,
o0
n(O)AQZ—Zln{l—exp (i —v,/t)}, (13)
v=0

is directly expressed in terms of [, independently of
the interaction, due to the subtraction performed in our
effective potential, eq. (10). (Note that the first integral
on the second line of eq. (12) has already appeared in
eq. (3) and that the second integral is a total derivative.)
The equation of state can be written in terms of the
temperature ¢. This yields the following generalization of

eq. (7) to the mean-field gas:
6 [ _ —1/2
~ W= mg 212
(= S B (—a+ve .
t (7@ ;) 2< fitvs, >+2m2[n(0)>\ ] D
(14)

An iteration procedure t,+1 = f(t,) again obtains the
temperature t=T/T2%, as a function of the chemical
potential f for given parameters @, and g. (The central
density is computed using eq. (13) during each iteration.)

The mean-field density profile is obtained in two steps
by first calculating the density profile as a function of the
scaled effective potential v = (v,

(@A == In{l—exp (i — o —va./1)},
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Fig. 2: Two-dimensional density profile n(r = /22 +y2)A\? at
temperature T =T2% in a trap with w, = 0.55Ta%, in the
ideal Bose gas and for mg/ h? =0.13 according to mean-field
theory, compared to quantum Monte Carlo simulations at
N =10000, and for ideal distinguishable particles (first term in
eq. (16)). The inset shows the cycle weights 7y for the strictly
two-dimensional and the quasi-two-dimensional ideal Bose gas,
and for the quantum Monte Carlo simulations (from above).

and then by inverting eq. (10) to obtain r(n) (thus n(r))
for the given ¢ and n\2:

- 2T (.
T(n)\Q,v) = \/mw2 (v —
In fig. 2, we show the remarkable agreement of the
quasi-two-dimensional mean-field profile with the one
obtained by quantum Monte Carlo simulations as in
ref. [11], for N =10000 bosons for parameters &, = 0.55,
t=T/T3%c =1, and mg/h* = 0.13. The simulations take
into account the full three-dimensional geometry, and
particles interact via the three-dimensional s-wave scat-
tering length a (see ref. [14] for a more detailed description
of finite-temperature simulations of trapped Bose gases).
Comparison with the ideal quasi—two-dimensional gas is

also very favorable.
The mean-field density is extremely well represented by

a sum of Gaussians,

9 N
n(r)\? = (7;? Z kmy exp {
k=1

whose variances correspond to the density distribution
of the harmonic oscillator at temperature k3. The pre-
factors in eq. (16) contain the cycle weights 7. These
weights give the probability of a particle to be in a cycle
of length k£ in the path-integral representation of the
Bose gas, where the density matrix must be symmetrized
through a sum of permutations [15,16]. For the ideal Bose
gas, the 7 are easily computed for any choice of the
three-dimensional oscillator frequencies. Mean-field theory
modifies these weights, without essentially changing the
functional form of eq. (16). In the distinguishable-particle

(15)
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Fig. 3: Two-dimensional density profile n(r= /22 + y2)\?
at temperature T =0.8T2% in a trap with w, =0.55T2%q,
in the ideal Bose gas and for mg/h*>=0.13 according to
strictly two-dimensional and quasi—two-dimensional mean-field
theory (using g and §), compared to quantum Monte Carlo
simulations with N =10000. The inset shows the Kosterlitz-
Thouless temperature within modified mean-field theory as a
function of &, (the strictly two-dimensional limit is ¢33 = 0.745
(from eq. (18)).

limit, at infinite temperature, only cycles of length k=1
contribute (w1 = 1), whereas the Bose-Einstein condensate
is characterized through contributions of cycles of length
ko< N. The cycle weights m; are shown in the inset of
fig. 2 for small k. Only very short cycles contribute, and
the density profile can thus be described by a very small
number of Gaussians. The exact cycle-weight distribution
of the quantum Monte Carlo calculation does not rigor-
ously correspond to a profile as in eq. (16), although the
corrections are negligible in our case.

Figure 3 considers the temperature ¢=0.8 in the
interval between the Kosterlitz-Thouless tempera-
ture of the quasi-two-dimensional interacting gas (at
t =tgr ~0.70 for these parameters [11]) and the strictly
two-dimensional Bose-Einstein condensation temperature.
Again, the agreement of the quasi—two-dimensional mean
field with the exact density profile obtained by quantum
Monte Carlo calculation is remarkable. At this tempera-
ture, the deviations with the ideal quasi—two-dimensional
profile and with the strictly two-dimensional mean field
are important. To illustrate the temperature dependence
of the effective interaction, we also show the mean-field
profile computed with the zero-temperature interaction
parameter g instead of the true effective two-dimensional
interaction g (see eq. (11)). We note in this context that
the difference in eq. (11) between g and § was determined
under the condition that the interaction leaves the density
distribution in z unchanged. Whenever this condition is
violated, the density distribution in z must be computed
by other means, as for example by quantum Monte Carlo
methods (see [11]). The importance of changes of the
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density profile in z in the low-temperature regime of a
quasi-condensed Bose gas has already been pointed out
in the context of spin-polarized hydrogen absorbed on
helium surfaces [17].

Let us finally discuss the Kosterlitz-Thouless transition
into the low-temperature phase, which is not contained
in mean-field theory. The semiclassical quasi-two-
dimensional gas does not Bose-condense because the
particle number in eq. (12) diverges at i =0 (it saturates
at a finite value in the ideal Bose gas). This divergence is
due to the logarithmic divergence of the central density
(see eq. (13)). However, interaction effects beyond mean-
field drive a Kosterlitz-Thouless phase transition [4] from
the high-temperature normal phase to a superfluid one
below Tkr.

As discussed previously [9,11], the Kosterlitz-Thouless
transition occurs when the central density n(0)A\? reaches
the critical value of the two-dimensional homogeneous gas,
which has been determined numerically [18] for g — 0:

2

n(0)A? ~n \? ~log 3807 .

mg

We can introduce (by hand) the concept of a critical
density into mean-field theory by selecting among the
solutions ¢(f1) of eq. (14) the one satisfying eq. (17). For the
interaction parameters used in ref. [11], mg/h? = 0.13, we
find a mean-field critical temperature t{on = Toad /T34, =
0.69. This value is in excellent agreement with the Monte
Carlo data. The inset of fig. 3 shows the variation of this
mean-field critical temperature as a function of @, (for
mg/h2 =0.13).

The calculation of the mean-field critical temperature
simplifies further in the strictly two-dimensional Bose
gas, because the chemical potential in eq. (13) is then
an explicit function of the critical density, and can be
entered into eq. (12). With . =In {1 —exp (—n.A\?)} ~
—mg/(380A2), and by again transforming the equation
for N ws. central density into a relation between critical
temperatures [9,11], we obtain

(17)

T3 [ 3mg ( 380712)2] i
=1+ In ,

T3 m3h2 mg

where we have neglected small corrections of order

fic log |jic|. The strictly two-dimensional limit t3&, = 0.745

for mg/h? =0.13 agrees with the data shown in the inset

of fig. 3 in the large w, limit.

In conclusion, we have considered in this letter the
semiclassical description of the quasi—two-dimensional
trapped Bose gas. We have compared this description
with quantum Monte Carlo data and have shown that the
density profiles are accurately reproduced in the normal
phase down to the Kosterlitz-Thouless temperature. The
thermal occupation of excited states in the out-of-plane
direction quantitatively explains the large deviations
of the density profiles from strictly two-dimensional
mean-field theory, which was recently noticed in the
experiment [8]. Originally, it was speculated that the

t%(dT = (18)

emerging almost-Gaussian density profiles could be
attributed to effects beyond mean field [8,10]. However,
even though the thermal occupation of the excited states
in the tightly confined direction is clearly noticeable
for the experimental parameters, the transition itself
is still of the Kosterlitz-Thouless type as revealed by
the experimental coherence patterns [5] and confirmed
by numerical calculations of the algebraic decay of the
condensate density with system size [11].

% % %

We are indebted to J. DALIBARD for many inspiring
discussions.
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