
PHYSICAL REVIEW
LETTERS

VOLUME 83 4 OCTOBER 1999 NUMBER 14

Transition Temperature of the Homogeneous, Weakly Interacting Bose Gas
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We present a Monte Carlo calculation for up to N � 20 000 bosons in 3D to determine the shift

of the transition temperature due to small interactions a. We generate independent configurations of
the ideal gas. At finite N , the superfluid density changes by a certain correlation function in the limit
a ! 0; the N ! ` limit is taken afterwards. We argue that our result is independent of the order
of limits. Detailed knowledge of the noninteracting system for finite N allows us to avoid finite-size
scaling assumptions.

PACS numbers: 03.75.Fi, 02.70.Lq, 05.30.Jp

Feynman [1] has provided us with a classic formula for
the partition function of the canonical noninteracting Bose
gas. It represents a “path integral without paths,” as they
have been integrated out. What remains is the memory of
the cyclic structure of the permutations that were needed
to satisfy bosonic statistics,

ZN �

X

�mk�

P ��mk��; with P ��mk�� �

N
Y

k�1

r
mk

k

mk! kmk
.

(1)
The partitions �mk� in Eq. (1) decompose permutations of
the N particles into exchange cycles (mi cycles of length
i for all 1 # i # N with

P

k k mk � N). rk is a system-
dependent weight for cycles of length k.

In this paper we present an explicit Monte Carlo calcu-
lation for up to �20 000 bosons in three dimensions, start-
ing from Eq. (1). The calculation allows us to determine
unambiguously the shift in the transition temperature Tc

for weakly interacting bosons in the thermodynamic limit
for an infinitesimal s-wave scattering length a. This fun-
damental question has lead to quite a number of different
and contradictory theoretical as well as computational an-
swers (cf., e.g., [2–4]).

We will first use Eq. (1) and its generalizations to de-
termine very detailed properties of the finite-N canonical
Bose gas in a box with periodic boundary conditions. We
then point out that all information on the shift of Tc for
weakly interacting gases is already contained in the nonin-

teracting system. In the linear response regime (infinitesi-
mal interaction), it is a certain correlation function of the
noninteracting system which determines the shift in Tc.
This correlation is much too complicated to be calculated
directly, but we can sample it, even for very large N . To
do so, we generate independent bosonic configurations in
the canonical ensemble. We have found a solution [based
on Feynman’s formula Eq. (1)] which avoids Markov
chain Monte Carlo methods. In our two-step procedure,
a partition �mk� is generated with the correct proba-
bility P ��mk��. Then, a random boson configuration is
constructed for the given partition.

We stress that all our calculations are done very close
to Tc, so that the correlation length j of any macroscopic
sample is much larger than the actual system size L of the
simulation. This condition L ø j allows us to invoke
the standard finite-size scaling hypothesis [5], but also to
take the N ! ` limit after the limit a ! 0.

A key concept in the path integral representation of
bosons is that of a winding number. Consider first
the density matrix r�r , r 0, b� of a single particle [r �

�x, y, z�] at inverse temperature b � 1�T . In a three-
dimensional cubic box of length L with periodic bound-
ary conditions, r�r , r 0, b� � r�x, x0, b� 3 r�y, y0, b� 3
r�z, z0, b� with, e.g.,

r�x, x0, b� �

X̀

wx�2`

exp����x 2 �x0 1 Lwx����2�2b�p
2pb

. (2)
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In Eq. (2), x and x0 are to be taken within the periodic
box (0 , x, x0 , L).

It is more convenient to adopt nonperiodic coordinates
(2` , x, x0 , `), as we will do from here on. In Fig. 1,
the path drawn with a thick line can equivalently be
tagged by �x1, x

0
1� or by �x̃1, x̃

0
1�. This notation allows

one to keep track of the topology of paths without
introducing intermediate time steps t, even for very small
systems. With this convention, the winding number of a
configuration, W � �Wx , Wy , Wz�, is defined as

W �

X

�r 0i 2 ri��L . (3)

The winding number W in Eq. (3) is the sum of the
(integer) winding numbers for each of the statistically
uncorrelated cycles which comprise the configuration.
The complete statistical weight rk of a cycle of length
k [cf. Eq. (1)] is given by the sum of the weights rk,w for
all winding numbers w,

rk �

"

X̀

w�2`

rk,w

#

3

;

rk,w �

L
p

2pkb
exp

µ

2
L2w2

2kb

∂

.

(4)

Pollock and Ceperley [6] have obtained the result

rs�r �

	W2
L2

3bN
, (5)

which connects the system’s superfluid density rs�r to
the winding number in a rigorous fashion.

It is possible to determine the mean square winding
number 	W2
 from Eq. (1). We first compute 	W2
 for
a given partition �mk�

	w2
�mk� �

X

mk	w2
k . (6)

Here, 	w2
k is the mean with respect to cycles of length
k, 	w2
k � 3�

P

w rk,ww2� �
P

w rk,w�2�rk . This yields, by
summation over partitions

	W2
 �

X rk

k
	w2
kZN2k�ZN . (7)

We have also determined the probability distribution
of Wx .
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FIG. 1. A one-dimensional periodic simulation box with three
bosons. Particles move in imaginary time 0 , t , b and in
periodic space 0 , x , L. We use nonperiodic coordinates.

An analogous calculation formally replaces 	w2
k ! k

in Eq. (6), which becomes
P

k kmk � N [cf. Eq. (1)].
Equation (7) is transformed into

ZN �

X

rkZN2k�N . (8)

Equation (8) allows the recursive calculation of the
partition function ZN if Z1, . . . , ZN21 are known [7].

The same relation Eq. (8) allows us to identify
k	mk
 � rkZN2k�ZN (9)

as the mean number of particles in a cycle of length k.
From a different point of view, the quantity

P

k kmke2b k ei �rk determines the occupation num-
ber of single-particle energy levels ei for a given partition
�mk�. This allows us to compute the average number
	Ni
 of particles occupying state ei in the bosonic system,

	Ni
 �

N
X

k�1

Ω

e2b k ei
ZN2k

ZN

æ

. (10)

Equation (10) is of crucial importance: We find that
N0�N , the condensate fraction, is different from the
superfluid fraction, as determined from Eqs. (5) and (7)
in a finite noninteracting system.

The term � � in Eq. (10) can be regarded as the
probability P�ni $ k� of having at least k particles in
state ei . Taking the sum over all states i, with the use
of Eq. (9), we can connect cycle statistics with the usual
occupation number representation,

k	mk
 �

X

i

P�ni $ k� . (11)

This curious result, which is of practical use in inhomo-
geneous systems [8], tells us that the discrete derivative
of the mean cycle numbers with respect to their length is
given by the probability of having k particles in the same
single-particle energy level.

Rescaled superfluid densities N
1�3

i rs�r [from Eqs. (5)
and (7)] are plotted in Fig. 2a for N1 � 37, N2 �

296, N3 � 2368, and N4 � 18 944 as a function of the
rescaled temperature t � �T 2 T`

c ��T`
c , where T`

c is the
critical temperature for N ! `.

FIG. 2. Rescaled superfluid density of an ideal Bose gas. The
curves for different N with Ni11 � 8Ni intersect approximately
at T`

c , as shown in (a). The close-up view (b) reveals impor-
tant differences. We determine the shift of the intersection
points as a function of the interaction (light arrows). The dark
arrow shows schematically the extrapolated shift in the thermo-
dynamic limit.
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A finite-size scaling ansatz, which was used in previous
Monte Carlo work on the problem [3], assumes that the
curves of N

1�3

i rs�r for a weakly interacting Bose gas
should intersect at the transition temperature, as they do
approximately. However, the small-scale Fig. 2b clearly
shows the importance of corrections to scaling (cf. [9])
already for the noninteracting gas. By continuity, the
corrections to scaling for the weakly interacting Bose gas
must be important, especially if the temperature shift due
to interactions becomes small.

Our strategy greatly benefits from the solution Eq. (7)
for the ideal gas. We compute the intersection point
(N1�3

i rs�r, t) for two finite systems with N1 and N2 �

8N1 particles and determine how this point is shifted
under the influence of interactions (cf. Fig. 2b). Our
arbitrary but fixed ratio N2�N1 � 8 facilitates the direct
extrapolation in N1 to N1 ! `.

To generate a random partition, we interpret the term
rkZN2k�ZN in Eq. (8) as the probability to split off a
cycle of length k from a configuration of N bosons, and
to be left with a system of N 2 k bosons. We can
pick k with probability �rkZN2k with a simple “tower
of probabilities” strategy [10]. Recursively, we can thus
generate an independent random partition �mk� with great
speed. The recursion stops as soon as we have split off a
cycle of length j from a system with j particles.

To go from a random partition to a random configu-
ration, we may treat each cycle separately. For a cycle
of length k, we select a winding number wx with proba-
bility rk,wx

[cf. Eq. (4)], and analogously for wy and wz .
Towers of probabilities are again used. The cycle starts
at a random position r � �x, y, z� with 0 , x, y, z , L,
and ends at r 0 � �x 1 wxL, y 1 wyL, z 1 wzL�. Inter-
mediate points are filled in with the appropriate Lévy con-
struction [6]. We have tested our algorithm successfully
against the known results (cf. Fig. 2).

We thus generate independent free boson path-integral
configurations by a method very different from what is
usually done in path-integral (Markov-chain) quantum
Monte Carlo calculations, but with an equivalent outcome:
Any appropriate operator is sampled with the probability

	O 
0 �

P

P

R

dR �
Q

i r�ri , r
0
i��O

P

P

R

dR �
Q

i r�ri , r
0
i��

. (12)

Here,
P

P indicates the summation over all permutations
P, and r

0
i is the position of the particle P�i�. In the

presence of interactions, the statistical weight of each
configuration is no longer given by the product of the one-
particle density matrices p0 � �

Q

i r�ri , r
0
i ��. To lowest

order in the interaction, the density matrix is exclusively
modified by s-wave scattering. Likewise, only binary
collisions need to be kept. This means that the correct
statistical weight is given by

pa�r1, . . . , rN ; r 01, . . . , r 0N � � p0

Y

i,j

gij�ri , rj , r
0
i , r

0
j� .

(13)

The contribution of collisions is to lowest order in a

Y

i,j

gij � 1 2 a
X

i,j

cij (14)

with

cij � �jrij j21 1 jr 0ijj21�

3 exp�jrijj jr 0ijj �1 1 cosgij��2b� .

Here, rij � ri 2 rj and gij is the angle between rij

and r
0
ij . Equation (13) corresponds to the popular path-

integral Monte Carlo “action” with the following impor-
tant modifications: (i) no interior time slices are needed,
(ii) the interaction may be treated on the s-wave level,
and (iii) the interaction may be expanded in a. For a con-
sistent evaluation of the interaction with periodic bound-
ary conditions, as schematically represented in Fig. 1, it
is best to sum over all pairs i , j shown, with the con-
dition that ri be in the original simulation box (shaded in
gray). As indicated by the small circles in Fig. 1, cij may
have important contributions stemming from more than
one representative of the path �rj , r

0
j�, especially for small

systems. Of course, a cutoff procedure can be installed.
We now find for the mean-square winding number in

the interacting system

	W2
a �

	�1 2 aC�W2
0

	�1 2 aC�
0

, (15)

where we put C �

P

i,j cij . Expanding in a, this yields

	W2
a 2 	W2
0 � 2a	�DW2� �DC�
0 , (16)

where DO � O 2 	O 
0 [11].
For a finite system of N bosons, the shift in the super-

fluid density drs � rs�a� 2 rs�0� can thus be proven to
be linear in a

drs

r
� 2

XN

bN1�3
ar1�3, (17)

with XN � 	�DW2� �DC�
0��3r�.
To determine quantitatively the shift of the intersection

points in Fig. 2, we expand the ideal gas superfluid
density around the intersection temperature Ts of two
systems with N and 8N bosons at the same density,

rs�r�T �N1�3
� rs�r�Ts�N1�3 1 aN 3 �T 2 Ts� .

(18)

In this formula, the linear expansion coefficients can
be computed. With interactions, only rs�r�Ts�N1�3 is
modified to linear order in a. a�N� remains unchanged,
as we restrict the expansion to jT 2 Tsj�Ts � ar1�3. We
find the new intersection point of the two systems to be
shifted in temperature as

DTs

Ts�0�
:� Ts�a� 2 Ts�0�

Ts�0�
�

X8N 2 XN

a8N 2 aN

ar1�3
. (19)

We have also computed the shift in rs�r, but found
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out only that it must be extremely small. We are
unaware of any fundamental reason for a vanishing shift
in this quantity. In Fig. 3, we plot the shift DTs for
different system sizes ranging from �N1, N2� � �37, 296�

to �2368, 18 944� vs N
21�2

1 . We have not attempted a
thorough analysis of the finite-size effects, which already
appear negligible for our largest systems.

We conclude that the transition temperature of the
weakly interacting Bose gas increases linearly in the
scattering length a by an amount of

DTC

TC

� �2.3 6 0.25�ar1�3. (20)

Our result Eq. (20) is almost an order of magnitude
larger than what was found in a previous Monte Carlo
calculation [3]. However, this calculation was restricted
to very small particle numbers and it used a problematic
finite-size scaling ansatz, as pointed out. The agreement
of Eq. (20) with the renormalization group calculation [2]
seems to be quite good.

It is very interesting to understand whether the result
Eq. (20) directly applies to the current Bose-Einstein
condensation experiments (cf., e.g., [12,13]). In earlier
papers [8,14], we have pointed out the particularities of
these finite systems in external potentials (cf. [15] for
a general overview). Notwithstanding the differences
between the two systems, a relevant parameter is for both
cases ar1�3, where the maximum density (at the center
of the trap) at the transition point must be taken in the
inhomogeneous case. The experimental value is of the
order ar1�3 � 0.02.

Within our method, we can also study finite values
of the interaction, even though we no longer compute a
correlation function, and also have to introduce interior
time slices. Contributions beyond s-wave scattering need
to be monitored, as we have in [14]. For N � 125 bosons
we have found agreement with the linear response formula
Eq. (16) up to ar1�3 & 0.005, but a 15% decrease for the
full treatment for ar1�3

� 0.023. A detailed investigation
of this question goes beyond the scope of this paper.

In conclusion, it is worth noting that we have encoun-
tered none of the difficulties which usually haunt bo-
son calculations: We work in the canonical ensemble;
therefore, the fluctuation anomaly of the grand-canonical
Bose gas plays no role. The density remains automati-

FIG. 3. Shift of the intersection temperature DTs�

�Ts�0� ar1�3� as a function of N
21�2

1 (N2 � 8N1). The
system sizes are �N1, N2� � �37, 296�, �125, 1000�, �296, 2368�,
�1000, 8000�, and �2368, 18 944�.

cally constant as a function of a so that an expansion
in ar1�3 is well defined. At finite N , we can further-
more prove that the shift in rs�r is linear in the inter-
action parameter. We have also consistently approached
the weakly interacting system from the vantage point of
the ideal gas. This allows us to obtain the crucial infor-
mation on exactly where to do our simulation (cf. Fig. 2).
Finally, our extremely powerful direct sampling algorithm
has allowed us to partially dispel the curse of Monte Carlo
simulations: limitations to small system sizes.
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