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1. Introduction

Modern ab initio simulation methods for systems of electrons and nuclei mostly

rely on Density Function Theory (DFT) for computing the electronic forces acting

on the nuclei, and on Molecular Dynamics (MD) techniques to follow the real-time

evolution of the nuclei. Despite recent progress, DFT suffers from well-known limita-

tions.1,2 As a consequence, current ab initio predictions of metallization transitions

at high pressures, or even the prediction of structural phase transitions, are often

only qualitative. Hydrogen is an extreme case,3–5 but even in silicon, the diamond/β-
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tin transition pressure and the melting temperature are seriously underestimated.6

An alternative route to the ground-state properties of a many electrons system of

is the Quantum Monte Carlo method (QMC).2,7 In QMC, a many-body trial wave

function for the electrons is assumed and the electronic properties are computed

by Monte Carlo methods. For fermions, QMC is a variational method with respect

to the nodes of the trial wave function and a systematic, often unknown, error

remains.2,7 Over the years, the level of accuracy of the fixed-node approximation has

been improved8–11 such that, in most cases, fixed-node QMC methods have proven

to be more accurate than DFT-based methods, on one side, and less computationally

demanding than correlated quantum-chemistry strategies (such as coupled cluster

method)2 on the other side. Computing ionic forces with QMC to replace the DFT

forces in ab initio MD, poses additional problems whose solution has only very

recently been proposed in a consistent way.12,13

In recent years, we have been developing a different strategy, the Coupled

Electron-Ion Monte Carlo (CEIMC) method, based entirely on Monte Carlo al-

gorithms, both for solving the electronic problem and for sampling the ionic config-

uration space.14 The new method relies on the Born-Oppenheimer approximation.

A Metropolis Monte Carlo simulation of the ionic degrees of freedom (represented

either by classical point particles or by path integrals) at fixed temperature is per-

formed based on the electronic energies computed during independent ground state

Quantum Monte Carlo calculations. Application of CEIMC has so far been limited

to high pressure hydrogen for several reasons: a) hydrogen is the simplest element

of the periodic table, and the easiest to cope with since the absence of the addi-

tional separation of energy scales between core and valence electrons as in heavier

elements; b) it is an important element since most of the matter in the universe

consists of hydrogen; c) its phase diagram at high pressure in the interesting region

where the metallization occurs is still largely unknown because present experiments

are not able to reach the relevant pressures. We have investigated the very high

pressure regime where all molecules are dissociated and the system is a plasma

of fully ionized protons and electrons,15 and we have studied the pressure-induced

molecular dissociation transition in the liquid phase.16 In both studies the CEIMC

results were not in agreement with previous Car-Parrinello Molecular Dynamics

(CPMD) calculations.17,18 While we have evidence now that the discrepancy in the

fully ionized case is removed by taking our new more accurate trial wave function, in

the second study more accurate CEIMC calculations predict a continuous molecu-

lar dissociation with increasing pressure at variance with CPMD where a first order

molecular dissociation transition was observed by increasing pressure at constant

temperature. Recently, using constant volume Born-Oppenheimer Molecular Dy-

namics rather then constant pressure CPMD, a continuous dissociation transition

has been reported from DFT-GGA studies19

In the present paper we will discuss in some details the various trial wave func-

tions we have implemented for hydrogen. In Section 2 we briefly review the basic

ingredients of the method. Section 3 will be devoted to describing the different trial
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wave functions and some details on their efficient implementation. In Section 4 we

will report numerical comparisons among the various trial functions. Finally, in

Section 5 we collect our conclusions and perspectives.

2. The CEIMC Method

In this section we briefly outline the basic ingredients of the CEIMC approach.

Further details can be found in several published reviews.14,20,21

CEIMC, in common with the large majority of ab-initio methods, is based on

the Born-Oppenheimer separation of “slow” ionic degrees of freedom and “fast”

electronic degrees of freedom. In addition, the electrons are considered to be in

their ground state which depends on the instantaneous proton positions. Protons,

either considered as classical or quantum particles, are assumed to be at thermal

equilibrium with a heat bath at fixed temperature T . The system of Np protons

and Ne = Np electrons is enclosed in a given volume V which provides a fixed

number density n = Np/V , better expressed in terms of the coupling parameter

rs = (3/4πn)(1/3).

The thermal equilibrium distribution of proton states S, P (S) ∝ e−βEBO(S) is

sampled by a Metropolis Monte Carlo calculation.22 Here S is the 3Np-dimensional

vector of proton positions and EBO(S) the corresponding Born-Oppenheimer en-

ergy defined as EBO(S) =
〈

Φ0(S)
∣

∣

∣
Ĥ

∣

∣

∣
Φ0(S)

〉

where Ĥ is the hamiltonian of the

system and |Φ0(S)〉 its ground state. In order to compute an estimate of EBO(S)

we employ both Variation Monte Carlo (VMC) and Reptation Quantum Monte

Carlo (RQMC)23 methods within the “fixed node” (for real trial functions) or“fixed

phase” (for complex trial functions) approximation.2,14 The bounce algorithm for

sampling the electronic paths within RQMC is implemented.14,24

The estimate of EBO(S) for a given trial function computed by QMC is affected

by statistical noise which, if ignored, will provide a biased sampling. The size of the

bias increases for increasing noise level. A possible solution would be to run very long

QMC calculations in order to get a negligibly small noise level, and thus a negligible

bias. However, for each protonic configuration S, the noise level decreases as the

square root of the number of independent estimates of EBO(S). This means that

in order to decrease the noise level by one order of magnitude we should generate

100 times more uncorrelated samples, an unfavorable scaling especially given that

the process must be repeated for any attempted move of the ions. The less obvious,

but far more efficient, solution is to generalize the Metropolis algorithm to noisy

energies. One such algorithm is the Penalty Method.14,25 The idea is to require

the detailed balance to hold on average (over the noise distribution) and not for a

single energy calculation. Within the Penalty Method the acceptance probability of

a single protonic move S → S′ depends, not only on the energy difference between

the two states β[EBO(S′)−EBO(S)], but also on the noise of the energy difference

(βσ)2. Here β is the inverse physical temperature of the protons. Since (βσ)2 > 0 the

presence of the noise always causes extra rejection of attempted moves with respect
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to the noiseless case. It is clear that the method is successful if one can allow for a

large and cheap noise level still keeping a nonvanishing acceptance probability (≤

0.1). A rule of thumb for maximum efficiency is to have (βσ) ∼ 1.25 An efficient

energy difference method is exploited to compute the energy difference and its

noise.14,20

A well known problem for QMC energies, in particular for metals, is caused by

finite size effects, mainly coming from the discrete nature of the reciprocal space of

finite and, generally small, systems. For a degenerate Fermi liquid, finite-size shell

effects are much reduced if twist averaged boundary conditions (TABC) are used.26

For a given property Â, the TABC is defined as

< Â >=

∫ π

−π

d~θ

(2π)d
< Ψ~θ|Â|Ψ~θ > (1)

where ~θ is a 3D-vector specifying the undetermined phase that the N -body wave

function Ψ~θ(~r1 + L~n,~r2, · · · ) = ei~θΨ~θ(~r1, ~r2, · · · ) picks up when a particle wraps

around the boundary of the simulation box.

TABC is particularly important in computing properties that are sensitive to the

single particle energies, such as the kinetic energy and the magnetic susceptibility.

By reducing shell effects, accurate estimates of the thermodynamic limit for these

properties can be obtained already with a limited number of electrons.

In CEIMC, we can take advantage of twist averaging to reduce the noise in the

energy difference for the acceptance test of the penalty method. Different strategies

can be used to implement the TABC. One possibility is to use a fixed 3D grid in

the twist angle space, at each grid point run independent QMC calculations and

then average the resulting properties. However, the optimal noise level in CEIMC

is βσ ∼ 1 and a limited number of twists are able to satisfy this requirement at

high temperature. At the same time, too coarse a grid introduces a systematic effect

on the energy of the system. To illustrate this fact we report in panel a) of figure

1 for a single pair of configurations of 16 protons at rs = 1 and T = 3000K, the

energy difference as obtained with VMC and the metallic wave function (see Section

3). The energy difference is indeed the key quantity in CEIMC since it guides the

Metropolis sampling of the protonic degrees of freedom. As can be seen, the energy

difference computed over a fixed grid has an oscillating behavior with the number of

twists, which implies that convergence requires a large numbers of twists. Running

that large number of twists will be very time consuming and will provide a noise

level much smaller than the optimal value. To solve this problem of efficiency, we

can think of the twist angle as an additional random variable to be sampled during

the protonic MC simulation. To this aim, we still use a fixed grid in the twist-angle

space, but at each protonic step we sample a value of the twist angle inside the

Wigner-Seitz cell around each grid point. In panel a) of figure 1, we also report

the value of the energy difference obtained sampling the twists for the same pair of

proton configurations. We see that the energy difference converge much more rapidly

with the number of the twists, as expected. The conclusive test on the accuracy of
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Fig. 1. a) Reduced energy difference for a pair of protonic configurations of a 16 protons system at
rs = 1 sampled during a run at T = 3000K versus the number of twist angles. The energy difference
is obtained with the metallic trial function and at the VMC level. Closed circles corresponds to fixed
twists on a Monkhorst-Pack grid with 2x2x2, 4x4x4, 6x6x6, 8x8x8 and 10x10x10 (with inversion
symmetry), while squares corresponds to twists sampled as explained in the text. b) proton-proton
pair correlation function for a system of 54 protons at rs = 1 and T = 1500K with the metallic
trial function at the VMC level. Closed circles are data for fixed twists on a 6x6x6 grid while
squares are for 32 sampled twists.

the twist sampling is, however, provided only by comparing equilibrium CEIMC

calculations with fixed and sampled twists. This is illustrated in panel b) of figure

1 for 54 protons at rs = 1 and T = 1500K, comparing the the proton-proton pair

correlation functions obtained by using 108 fixed twists and 32 sampled twists at

the VMC level and with the metallic wave function (see Section 3).

3. Trial Wave Functions for Hydrogen

In the first implementation of CEIMC,20,21 our goal was to simulate the insulat-

ing phases of molecular hydrogen and, as such, a trial function consisting of a few

optimizable guassian molecular orbitals centered on each molecule was used. Opti-

mization of the variational parameters, in number proportional to the number of

electron in the system, needed to be performed at each ionic configuration and was

a major bottleneck for the efficiency of the method. Subsequently, we have devel-

oped trial functions with a very limited number of variational parameters (even

zero when possible) and therefore reduce the complexity of the optimization step

in the electronic calculation (or to reduce to a linear optimization in the case of

DFT orbitals). In Ref.10 we have shown, as the Feynman-Kac formula suggests, a
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procedure to iteratively improve any initial trial function. If a Hartree-Fock (HF)

determinant is assumed as an initial ansatz, the first iteration generates a bosonic

(symmetric) two-body correlation function (Jastrow) while the next iteration natu-

rally provides the backflow transformation of the orbitals and a three-body bosonic

correlation term. Unfortunately, this is a formal theory which cannot provide, in

general, analytical expressions for the various terms. Nonetheless the general struc-

ture is illuminating in searching for improvements.

3.1. The Metallic Wave Function

At a very high pressure, beyond metallization and molecular dissociation, the elec-

tron liquid is a good Fermi liquid and correlation effects, with protons and among

electrons, can be treated as perturbations. In this case it is natural to assume a deter-

minant of free electron states (plane waves) as an initial ansatz. An accurate and pa-

rameter free Jastrow factor can be obtained within the RPA uRPA
ij (r) (i, j = e, p).27

This simple form satisfies the correct cusp conditions at short particle separations

and the right plasmon behavior (screening) at large distances. It was shown28 to

provide good energies for hydrogen even at intermediate densities if supplemented

by gaussian functions ũij(r) = uRPA
ij (r)−αije

−r2/w2

ij , with the variational parame-

ters αij , wij . The additional term preserves the short- and long-distance behavior of

the RPA function and corrects for possible inaccuracies at intermediate distances.

However, they introduce four variational parameters, namely αee, wee, αep, wep. As

stated above, the next iteration suggests the backflow transformation of the orbitals

and a three-body correlation factor. This is a crucial step for an inhomogeneous

electron system, since the nodal surfaces of the trial wave function will become ex-

plicitely dependent on the proton positions and will provide a more accurate energy

even at the RQMC level. Similar to the case of the homogeneous electron gas,9

the backflow and three-body functions were at first parametrized as gaussians.20

This trial function has a total of 10 free parameters to be variationally optimized

and has been used in a first CEIMC study of the melting transition of the proton

crystal in hydrogen at rs = 1.20 Next, we were able to derive approximate analyt-

ical expressions for the backflow and the three-body functions, as well as for the

two-body correlation factor, in the Bohm-Pines collective coordinates approach.10

This form is particularly suitable for the CEIMC because it is parameter-free. At

the same time, it provides comparable accuracy to the numerically optimized wave

function, both in the crystal configuration and for disordered protons (see Section

3.2). Explicit forms of the various terms can be found in the appendix of Ref.10

With this kind of wave function we have investigated the melting at three densities

(rs = 0.8, 1.0, 1.2) including quantum effects for protons.14,15

3.2. Band-structure-based Wave Functions (IPP/LDA)

The metallic wave function is expected to provide an accurate description of the

electronic ground state at high density, well beyond molecular dissociation and
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metallization. On the other hand we expect it to be a poor representation of the

true ground state at lower densities where molecules appear and plane-wave single-

electron orbitals (although in terms of backflow coordinates) are certainly not a

good representation. Natoli et al.
29,30 have previously used a Slater determinant of

Kohn-Sham self consistent orbitals to study the solid phases of atomic hydrogen

at rs = 1.31 and T = 0, and of molecular hydrogen at lower densities. They have

found a typical energy gain of 0.5eV/electron by replacing the plane-wave with the

self consistent orbitals in the Slater determinant. Here we have implemented similar

ideas. The single-particle orbitals, {φn}, that comprise the Slater determinant are

computed on-the-fly during the CEIMC calculation as the eigenstates of some single-

particle Hamiltonian,

ĥφn (r) =

[

−
1

2
∇2 + Veff (r; S)

]

φn (r) = εnφn (r) , (2)

where the N/2 orbitals with the lowest eigenvalue, εn, are selected to fill the deter-

minants. The single-particle Hamiltonian ĥ describes electron-nuclear interactions

and approximates electron-electron interactions through an effective potential.

To solve the eigenvalue problem we use an iterative, conjugate-gradients band-

by-band minimization scheme.31 The method employs the variational principle to

minimize residuals, and the Gram-Schmidt scheme to preserve orthogonalization of

the eigenstates.

In our studies, we assume either Veff = Ve−n, the bare electron-nuclear interac-

tion (IPP independent particle potential), or Veff = VLDA, the Kohn-Sham effective

potential within the local density approximation (LDA) with the Perdew-Zunger32

parameterization of Ceperley-Alder33 electron-gas data. In both cases, the wave

functions are eigenstates of a Hamiltonian which contains a bare Coulomb inter-

action between electrons and protons. The singularity in the potential results in

a derivative cusp in the orbitals −∂ln[φ (r)]/∂r = 1 for r = RI . This cusp is im-

portant for obtaining good energies or short projection times for QMC algorithms.

Representing this cusp on a plane wave basis is challenging due to the slow algebraic

decay of k−4. For this reason, we implement a cusp-removal method by dividing the

orbitals by a function that satisfies the cusp condition exactly (in this case, the RPA

ep Jastow function discussed earlier), before reverse Fourier transforming to retreive

the plane wave coefficients of the orbitals used to build the Slater determinant. The

proper electron-proton cusp is later reintroduced using the same RPA Jastrow func-

tion. This procedure greatly enhances the convergence of the Slater-Jastrow wave

function with respect to the size of the plane-wave basis set used to represent the

orbitals

3.3. Backflow Transformations of IPP/LDA Orbitals

Further complexity may be introduced into these trial functions through the use

of a backflow transformation which introduces correlations into the fermionic part

of a Slater-Jastrow wave function, with the advantage that modifications of the
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nodal surface are possible. As previously discussed, analytic forms for the backflow

function have been derived using the Bohm-Pines collective coordinates approach.10

While this form is strictly valid for plane-wave states in a determinant, we could

think of applying the Feynman-Kac iteration to generate a backflow transformation

even for IPP or LDA orbitals. The specific form for the transformation is unknown,

but as a first ansatz we can use the same expressions we have developed in the

metallic case. The obtained trial functions will be denoted IPPBF and LDABF

respectively. As we will show in the next section, this procedure is found always to

improve the total energy and its variance, providing therefore a better representation

of the ground state of the system.

4. Comparisons of Wave Functions

4.1. Fixed protons configurations

In this section we consider fixed proton configurations and we compare the quality of

the various wave functions at two densities, corresponding to rs = 1.0 and rs = 1.4.

Results for hydrogen at rs = 1.31 in the BCC structure obtained from various

improvements of the metallic wave function are reported in Table III of Ref.10

where they are also compared to the results obtained with self-consistent Kohn-

Sham orbitals.29 There we have shown that the quality of the analytical form of

the metallic wave function is superior to its numerically optimized version and

comparable to that of the LDA orbitals for hydrogen in the BCC structure and for

various system sizes. Our present implementation of LDA orbitals provides results

in agreement with previous estimates.34

In Table 1 we report QMC energies for hydrogen in several crystal structures

and for various system sizes. A complete study of the size dependence and the

relative stability of those structure is not our concern here and will be reported

elsewhere.34 From Table 1 we observe that LDA always provides a small or neglible

improvement over IPP, while IPP is significantly cheaper through the lack of the self-

consistent requirement. Comparing various structures and system sizes, we observe

that the best wave function depends on the structure: for BCC, FCC structures

and the diamond structure with N=8, the metallic wave function is superior to

the others. The opposite is true for the diamond structure with N=64, where IPP

and LDA provide lower energies at all densities. We also observe that the ordering

of wave functions does not appear to depend on density, at least in the limited

range investigated. Note that rs = 1.31 corresponds to the density predicted by

ground state QMC calculations28 for the molecular dissociation to occur. Another

important test is the effect of backflow (BF) on the band orbitals. We see that both

at the variational and at the reptation level the energy is slightly improved and at

the same time the variational variance is halved by the backflow, which means a

net improvement of the variational function and the need of a shorter projection in

imaginary time to reach the ground state. The high level of accuracy observed for

the metallic wave function induced us to perform a detailed study of liquid hydrogen
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Table 1. The energy and variance of hydrogen in various structures with different trial functions. All results are obtained averaging
over a 6x6x6 fixed grid of twist angles. Ev and σ

2
v

represent, respectively, energy and variance at the variational level while Er and
σ

2
r

are the energy and the mixed estimator for the variance obtained with RQMC. Units are Hartree/atom.

rs = 1.0 rs = 1.4

WFS Ev σ
2
v

Er σ
2
r

Ev σ
2
v

Er σ
2
r

Met -0.36931(1) 0.0279(2) -0.3721(1) 0.0182(7) -0.5203(2) 0.036(2) -0.5224(1) 0.01008(4)

BCC IPP -0.3681(3) 0.0765(3) -0.5139(1) 0.0887(2) -0.5209(2) 0.0284(1)

(Np = 54) LDA -0.3681(2) 0.0765(2) -0.5145(1) 0.0869(3) -0.5210(2) 0.0286(1)

IPP+BF -0.3705(1) 0.0359(1) -0.5228(1) 0.01413(7)

LDA+BF -0.36805(2) 0.04636(4) -0.3705(1) 0.0357(1)

Met -0.3792(1) 0.01543(4) -0.5272(1) 0.00872(3)

FCC IPP -0.3756(2) 0.0756(2) -0.5210(1) 0.0835(3) -0.5256(1) 0.0276(1)

(Np = 32) LDA -0.3757(2) 0.0753(2) -0.5212(1) 0.0828(3) -0.5259(1) 0.02724(9)

IPP+BF -0.3779(1) 0.03550(9) -0.5280(1) 0.01352(5)

LDA+BF -0.3779(1) 0.0351(1)

Met -0.3477(2) 0.0268(1) -0.5168(1) 0.01656(8)

DIAM IPP -0.3621(2) 0.0830(4) -0.5189(2) 0.1027(8) -0.5321(5) 0.0339(3)

(Np = 64) LDA -0.3613(2) 0.0823(3) -0.5323(1) 0.0331(2)

IPP+BF -0.3637(1) 0.0404(1) -0.5346(1) 0.01740(7)

LDA+BF -0.3635(1) 0.0406(1)

Met -0.41060(4) 0.02136(4) -0.41368(6) 0.01032(2)

IPP -0.40198(8) 0.0863(1) -0.4094(1) 0.04342(8)

DIAM LDA -0.40206(8) 0.0865(1) -0.4098(1) 0.04356(6)

(Np = 8) IPP+BF -0.40632(6) 0.04958(8) -0.41070(6) 0.02382(4)

LDA+BF -0.40638(6) 0.04958(8) -0.4107(1) 0.02382(6)
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Fig. 2. Total energy (left panel) and quality parameter (right panel) for a number of static proton
configurations as obtained with the metallic and the LDABF trial functions at rs = 1. TABC with
a 6x6x6 fixed grid in the twist space is performed. Energies are in h/atom.

at finite temperature.15

Next, we consider how the various wave functions perform on disordered pro-

tonic configurations representative of atomic hydrogen in the liquid state. As before,

all results reported here are averaged over a 6x6x6 fixed grid in the twist space. At

rs = 1 we compare the Metallic wave function with the LDABF wave function,

while at lower density we report data for the IPP, IPPBF and the LDABF wave

functions. Data for configurations at rs = 1 are presented in Figure 2. We display

on the left panel VMC and RQMC energies for 18 protonic configurations obtained

with the metalllic and the LDABF wave functions. Configuration 0 is a 32 protons

warm crystal near melting (FCC), configuration 1 is the perfect BCC crystal with

54 protons, configurations 2 to 12 are statistically independent configurations of 54

protons obtained during a CEIMC run at T=2000K performed with the LDABF

trial function, while the remaining 5 configurations have been obtained during a

CEIMC run at the same temperature performed with the metallic trial function.

The panel on the right reports the values of the quality parameter a. Several inter-

esting facts can be inferred from this figure. With the noticeable exception of the

aThe quality parameter of a trial function is defined as the negative logarithm of the overlap of the

trial state onto its fully projected state. It is easy to prove that it reduces to the integral over the
positive imaginary time axis of the difference between the energy and its extrapolation at infinite
time. The smaller the quality parameter the better the trial function is.
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perfect BCC crystal, energies from LDABF wave function are always lower than

energies from the metallic wave function. In particular, the fully converged RQMC

energies from the metallic wave functions are above the VMC energies from LDABF.

This implies that changing the form of the nodes provides more energy than fully

projecting the initial state. Why the excellent quality of the metallic wave function

observed in perfect crystals is deteriorated by disordered remains unclear to us,

but as a matter of fact it appears that LDA nodes supplemented by e-e backflow

perform much better both in the liquid state and in the crystal state with thermal

fluctuations. Another interesting observation concerns the dispersion of the energies

over a set of configurations. Let us consider the first 11 liquid configurations (from

2 to 13) generated during a run with the LDABF trial function. Considering the

RQMC energies, the dispersion is 4.68(4) mH/atom with the metallic wave function

but only 2.54(4) mH/atom with the LDABF wave function (see horizontal dashed

lines in the left panel of Figure 2), that is the BO surface with LDABF is smoother

than the other and the liquid will be less structured (see the next section). Finally,

it is interesting to compare the dispersion of the VMC and the RQMC energies for

a given trial function and a given set of configurations. Always for the first 11 liquid

configurations and for the LDABF wave function we have 2.88(4) mH/atom at the

VMC level versus 2.54(2) mH/atom at RQMC level. This implies that projecting

the trial wave function will only provide a tiny difference in the roughness of the BO

energy surface (corresponding to a temperature effect of ∼ 0.34mH/atom = 100K).

As for the quality parameter, we similarly observe that, with the exception of the

BCC crystal, the metallic wave function has larger values, which means that it is

less accurate than the LDABF wave function. Note also, how the quality of the

LDABF wave function is uniform (at fixed number of particles) through the perfect

crystal and the disordered configurations, no matter how these configurations have

been generated. This is an important requirement to accurately predict phase tran-

sitions. On the other hand, the quality of the metallic wave function on the 5 liquid

configurations generated with this wave function is higher than on the remaining

10 liquid configurations generated in a LDABF run. A good trial function should

have a uniform quality throughout the entire proton configurational space in order

to provide an unbiased sampling. A similar analysis has been performed at rs = 1.4

considering 5 uncorrelated liquid configurations generated during a CEIMC run at

T = 2000K wih the LDABF trial function. Results are displayed in Figure 3. Since

the metallic wave function is certainly not accurate at this density, we compare

the IPP and LDABF wave functions only. Again, the quality of LDABF is supe-

rior to the quality of the other wave function because it has a lower energy (its

VMC energy is very close the RQMC-IPP energy) and a smaller and more uni-

form quality parameter. As for the dispersion of the energy at the RQMC level

we obtain 10.9(2) mH/atom for LDABF and 13.3(2) mH/atom for IPP suggesting

that the liquid structure at a given temperature (and in particular the molecular

fraction) could depend considerably on the trial functions. Finally the VMC and

RQMC energy dispersions for LDABF are 11.1(1)mH/atom and 10.9(2)mH/atom



September 20, 2007 10:41 WSPC - Proceedings Trim Size: 9.75in x 6.5in rpmbt14V3

12

0 1 2 3 4
 # conf

-0.53

-0.525

-0.52

-0.515

-0.51

-0.505

-0.5

 E
to

t (
h/

at
om

)

 IPP VMC
 IPP RQMC
 LDABF VMC
 LDABF RQMC

0 1 2 3 4
 # conf

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

 IPP
 LDABF

Fig. 3. Total energy (left panel) and quality parameter (right panel) for a number of static proton
configurations as obtained with the metallic and the LDABF trial functions at rs = 1.4. TABC
with a 6x6x6 fixed grid in the twist space is performed. Energies are in h/atom.

respectively, suggesting, as before, that projecting the trial wave function will only

slightly change the protonic structure, the larger effect being in changing the nodal

structure.

4.2. Liquid-State Simulations

After the validation of LDABF trial function of the previous section, we report here

results for the liquid structure of hydrogen at the same densities. We have simulated

systems of 54 protons. The TABC is performed here using twist sampling around

the nodes of a 4x4x4 grid in twist space at each protonic step. In the left panel of

Figure 4 we report a comparison of proton-proton pair correlation functions gpp(r)

at rs = 1 and T = 1500K as obtained from the metallic and LDABF trial functions

at the VMC level. As expected from the results of the previous section, we observe

considerably more structure with the metallic trial function than with the LDABF

one, which indeed would correspond to having an effective lower temperature. On

the same figure we report results from a CPMD simulation17 performed within the

LDA approximation. The agreement between CPMD data and our present CEIMC

data from LDABF trial function is striking and somehow unexpected. Indeed our

representation of the electronic ground state is much more accurate than the simpler

LDA one. Also the finite size effect in the CPMD calculation was addressed only

partially by using only closed shells systems at the Γ point. Nonetheless the observed
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Fig. 4. Left panel: rs = 1, T = 1500K, Np = 54. Proton-proton pair correlation functions as
obtained with LDABF and metallic wave functions. Results are obtained with TABC by using twist
sampling around a 4x4x4 grid. CPMD data from ref.17 are also represented by a thick dashed line.
Right panel: rs = 1.4, T = 2000K, Np = 54. Proton-proton pair correlation functions as obtained
with IPP and LDABF wave functions. Results are obtained with TABC by using a 6x6x6 fixed
grid (IPP) and by twist sampling around a 4x4x4 grid (LDABF).

agreement testify that the structure of the proton liquid is not very sensitive to

details of the ground state representation. Finally, in the right panel of Figure 4 we

report preliminary data for gpp(r) of 54 protons at rs = 1.4 and T = 2000K. We

compare IPP and LDABF trial functions at the VMC level. The statistical noise is

still large but it seems that the overall behavior does not depend too much on the

kind of trial functions, although small details could still be different. Note, however,

that the liquid has little structure. More investigations of the influence of the trial

function on the liquid structure is certainly needed, in particular, in the molecular

dissociation region.

5. Conclusions

We have reported important progress in CEIMC, an efficient and accurate method

to perform ab-initio simulations of condensed system with QMC energies. We have

shown how the method performs in the case of hydrogen at high pressure, the

simplest, but yet not understood, system.The new method allows us to cover a

range of temperatures inaccessible to previous QMC methods for hydrogen, a range

where most of the interesting physics of hydrogen occurs, including the melting of

the molecular and proton crystals, the molecular dissociation both in the liquid and
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in the crystal and the metallization of the system.

A key ingredient in CEIMC is the trial function used to represent the electronic

ground state. Even when a projection technique such as Reptation QMC is exploited

to improve the bosonic part of the trial many-body wave function, its fermionic part,

that is its nodal surface, is still playing a very crucial role in determining the elec-

tronic energies and therefore the overall thermal behavior of the system. In the

present paper, we have reported a detailed investigation of these effects for hydro-

gen by comparing a number of different trial wave functions at two densities. We

have shown as a fully analytical trial wave function, that is optimal in terms of

computational efficiency in CEIMC, and which has been previously demonstrated

to provide excellent accuracy for crystalline states, degrades as soon as some dis-

order is introduced in the protonic configurations. This result has been established

by comparing with results for new trial functions obtained from a Slater determi-

nant of IPP/LDA orbitals together with a two-body Jastrow correlation factor. A

further backflow transformation of these orbitals has been introduced and charac-

terized. The new trial functions provide lower energies and more uniform overlap

over a number of fixed representative configurations, which we use as an indication

of the overall quality of the trial function. The most striking result on disordered

configurations is that the LDABF energies at the VMC level are lower than the

fully projected energies from the metallic trial function. This indicates that the

improvement of performance comes mainly from the different nodal surfaces, while

the bosonic part is responsible only for smaller improvements. The failure of the

metallic wave function is most probably due to the presence of some degeneracy of

its orbital structure around the Fermi surface which is removed by solving the in-

stantaneous band structure. On the other hand, the use of complex wave functions

and twist averaged boundary conditions in connection with the metallic trial func-

tion was expected to remove most of these degeneracies. A better understanding of

this failure is desirable and deserves more investigation.

The difference in energies for different trial functions, or more precisely the dis-

persions of the energies from different wave functions, translates in a overall temper-

ature factor at thermal equilibrium. The metallic trial function provides a dispersion

which is roughly twice that of the corresponding dispersion from the LDABF trial

function. Therefore the metallic gpp(r) at temperature T should correspond to the

LDABF gpp(r) at ∼ T/2. This is indeed observed and the new gpp(r)’s from LD-

ABF are in fair agreement with predictions of Car-Parrinello MD.17 This agreement

remains somehow surprising since, beyond the different methods of sampling pro-

tonic configurational space, the electronic description in the two methods is quite

different. We use LDA orbitals with a backflow transformation and a two body

RPA Jastrow while in CPMD, only LDA orbitals are employed. Adding the back-

flow and the Jastrow we obtain a fair gain of energy and moreover we can improve

the bosonic part of the trial function by projecting in imaginary time. Further we

strongly reduce the finite size effects by averaging over the undetermined phase of

the wave function, while CPMD calculations are performed at the Γ point only for
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closed shell systems (Np = 54 and 162). However the final agreement between the

two methods indicated that the effects of these improvements on the energy differ-

ence is only minor. On the other hand, it is well known in simple liquids that g(r)

is not very sensitive to changes of the interaction potential and this might explain

the observed agreement.

At lower densities, employing IPP orbitals and RPA Jastrow, we have recently

found16 a continuous molecular dissociation with density, at variance with CPMD

which has predicted a first order molecular dissociation transition.18 The reliability

of IPP trial function was only tested on crystal structures and should be further

investigated for disordered configurations along the lines shown here. This study is

in progress. A recent BOMD study19 within DFT/GGA has reported a continuos

molecular dissociation in agreement with our findings. This agreement suggests that

improving the trial functions from IPP to LDABF might change the details of the

results but not the overall picture. This confirms that our present method can be

most useful in condition where new interesting physics is happening, such as near

a liquid-liquid phase transitions or a metallization transition.
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