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S1. DEVICE FABRICATION AND METHODS

The non-migrated junctions, consisting of a gold
nanowire on an Au/HfO2 gate, were prepared by clean-
ing them with acetone, ethanol, isopropanol and oxygen
plasma. To transfer the molecules onto the junctions, we
disolved 0.3 mg of a crystalized TbPc2 molecules in 0.1
mol of dichloromethane, drop casted the solution on the
chip, and blow-dryed it with N2. The sample was then
mounted on the mixing chamber of a dilution refrigera-
tor, equipped with high-frequency attenuators (thermo-
coax microwave filter and π-filters). The molecule-coated
nanowire was then broken by electromigration at 4 K,
using a voltage ramp with a fast feed back loop in or-
der to stop the current after the opening of the junction.
Electric transport measurements were taken using a lock-
in amplifier with excitation voltages of 300V. During the
presented measurements, the dilution refrigerator had an
electronic temperature of about 0.15 K. The refrigera-
tor was equipped with a home-made three-dimensional
vector magnet, allowing magnetic field sweeps in three
dimensions at field sweep rates up to 0.2 T/s.

S2. TERBIUM DOUBLE-DECKER

We used a Terbium (III) bis-phthalocyanine single
molecule magnet (SMM), which is a metal-organic com-
plex often called TbPc2. Its magnetism originates from
the eight 4f electrons of the Tb3+ ion, which is situated
in the coordination center of the complex. The 4f shell
is filled according to the Hund’s rules, yielding a total
orbital momentum of L = 3 and a total spin of S = 3.
Due to a large spin-orbit interaction (≈ 3000 K) the spin
and orbital motion are strongly coupled, leading to the
total angular moment quantum number J . According to
the third Hund’s rule, the new ground-state of the sys-
tem is given by J = L + S = 6. Inside the complex the
terbium ion is 8-fold coordinate to the nitrogen atoms of
the two phthalocyanine ligands, which are stacked below
and above the Tb ion. They are not only encapsulating
the terbium and thus preserving its magnetic properties
but also enhancing them by means of a ligand field. The
Hamiltonian describing this ligand field interaction was
found to be [1]:
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TABLE S1. Ligand Field parameters of TbPc2

Additionally an external magnetic field can be applied
to the single-molecule magnet. The effect on the energy
levels is described by the Zeeman Hamiltonian HZ:

HZ = gJµBJ ·B, (2)
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The Zeeman diagram obtained by diagonalizing HLF +
HZ for different magnetic fields is shown in Fig. S1(a).
The ground state doublet mJ = ±6 is separated from
the first excited state mJ = ±5 by several hundreds of
Kelvin, leading to an Ising type spin system at low tem-
peratures. Furthermore the term A4

4

〈
r4
〉
u4O

4
4 in HLF is

mixing the mJ = +6 and mJ = −6 state in third order
of perturbation, resulting in an anti-crossing in the µK
range (see Fig. S1(b)) and thus giving rise to quantum
tunneling of magnetization.

FIG. S1. (a) Zeeman diagram for the TbPc2. The ground
state doublet is separated by 600 K from the first excited
state. (b) Zoom on the ground state doublet. Off-diagonal
terms in the ligand field Hamiltonian give rise to an avoided
level crossing with a ∆ of ≈ 1µK

In addition the hyperfine interaction, coupling the elec-
tronic spin J with the nuclear spin I and the nuclear
anisotropy, has to be included. The Hamiltonian HHF

accounting for this interaction is [4]:

HHF = AI · J + P

(
I2
z −

1
3
I(I + 1)

)
, (3)

I · J = IzJz +
1
2

(I+J− + I−J+), (4)

with A = 24.9 mK being the hyperfine coupling con-
stant and P = 14.4 mK being the quadrupole interaction
constant arising from non-perfectly spherical shape of the
nucleus. The exact numerical diagonalization of the full
Hamiltonian H = HLF + HHF + HZ results in Fig. 1b of
the article.

S3. NUCLEAR SPIN READ-OUT
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FIG. S2. (a) Simplified model of the single molecule transis-
tor, showing the read-out dot which is electrically coupled to
source and drain and the spin dot which is exchange coupled
to the read-out dot. The chemical potential of the read-out
dot is shifted slightly depending on whether the terbium’s
electronic spin points up or down. (b) Conductance jumps
due to the terbium’s electronic spin reversal. The position of
the jump depends on the nuclear spin state. (c) Output of
the algorithm showing single large peaks at the position of
the conductance jumps and many smaller peaks if no jump
occurred. (d) Histogram of the amplitude of the signals from
(c). Only events on the right of the dotted line are attributed
to spin reversals. The events with smaller amplitude are not
considered as spin flips and excluded from further treatment.
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The single-molecule transistor consists of a source,
drain and gated electrodes connected to a read-out dot
plus an isolated spin-dot (Tb electronic and nuclear spin)
which is exchange coupled to the latter. The electronic
transport through the device occurs only inside the read-
out dot, leaving the spin-dot protected. However, the
exchange coupling which is the link between the two sys-
tems is able to slightly change the chemical potential of
the read-out dot depending on the orientation of the ter-
bium’s electronic spin (Fig. S2(a)). The magnitude of
the ferromagnetic coupling was obtained by analyzing
the magnetic field behavior of the read-out dot’s Kondo-
ridge, as presented in Ref. [5]. The lower boundary was
estimated to be 200 mT and suggests that the read-out
dot is created by the two Pc ligands. As explained in the
main article the electronic spin reversal is governed by
the quantum tunneling of magnetization (QTM), which
happens only at effective zero field. Due to the hyperfine
coupling the position of having effective zero magnetic
field depends on the orientation of the nuclear spin and
thus opens a way to read-out the nuclear spin state.

For the configuration shown in Fig. S2(b) the conduc-
tance through the read-out dot is smaller if the terbium’s
electronic spin is in the |+6〉 state. Flipping the spin due
to a QTM transition changes the conductance by around
3% (Fig. S2(b)). The smear-out effect originates from the
finite response time of the lock-in amplifier. What is left
to identify the state of the nuclear spin is the determina-
tion of the conductance jump position. Due to the large
amout of data this is done by an algorithm [6], which
calculates in essence the square of the first derivative
(Fig. S2(c)) yielding a peak whose maximum indicates
the switching field. If no switching occurs the height of
the peaks determined by the algorithm is in average more
than forty times smaller. Possible spin flips are up-down
or down-up resulting in positive or negative peaks after
applying the algorithm, respectively. The actual state of
the electronic spin prior to the measurement is not de-
termined and therefore both spin reversal are possible.
Thus the position and amplitude of the largest positive
and negative peak are computed for every measurement.

In order to sort out the spin-flips from measurements
with on event the amplitudes of all detected maxima and
minima are plotted in a histogram (Fig. S2(d)). Measure-
ments without a spin-flip event yield the Gaussian-like
distribution at the left (small peak amplitude) whereas
the peaks due to a spin reversal yield the Gaussian-like
distribution on the right (large peak amplitudes). The
area under the left Gaussian is roughly 3 times larger
than the area under the right Gaussian. The explana-
tion comes from the QTM transition, occuring with a
probability of 50% in our experiment and from the fact
that every measurement yields two peaks (positive and
negative) but only one can be a spin-flip. Therefore 25%
of all the events plotted in Fig. S2(d) are spin-reversals.
To separate them from the rest of the data a thresh-
old (red dotted line) is introduced. Peaks with an am-
plitude larger than the threshold are considered to be

spin-reversals. The overlap with the left Gaussian in
Fig. S2(d) is around 4%. In a second step we check
the magnetic field of the remaining events. All jumps
occurring outside a window of 6 mT ( 5%) around the
theoretical QTM transition are ambiguous and excluded
from further treatment. They appear mainly due to the
tail of the left peak in Fig. S2(d). Afterwards the re-
maining data points are attributed to the corresponding
nuclear spin state resulting in the time trajectory (black
curve Fig.S3).

S4. QUANTUM TUNNELLING OF
MAGNETIZATION

The magnetization reversal of the terbium electron
spin around zero magnetic field is governed by the
quantum tunneling of magnetization. It is a quantum-
mechanical process and arises from a finite overlap be-
tween different spin states. The probability of having
such a transition is given by the Landau-Zener (LZ) for-
mula [7]:

PLZ = 1− exp
[
− π∆2

2h̄gJµB∆mJµ0dHz/dt

]
. (5)

It depends on the energy gap ∆ of the avoided level
crossing and the magnetic field sweep rate (dHz/dt).
Since there are four anti-crossings, one for each nuclear
spin state, we observed four different QTM transitions.
To show that the energy gap is nuclear spin indepen-
dent, we measured the tunnel probabilities for each of
the anti-crossing (Fig. S4). We found that for a sweep
rate of 50 mT/s the average PLZ ≈ 51%. The experimen-
tal deviation from this value is very small and within the
experimental error.

S5. QUANTUM MONTE CARLO ALGORITHM

The nuclear spin trajectories were obtained under non-
thermal equilibrium conditions. In order to separate the
dynamical processes caused by sweeping the magnetic
field from the relaxation and excitation processes causes
by coupling the nuclear spin to a thermal bath, we chose
a computational approach. A suited algorithm to handle
this problem is the quantum Monte Carlo wave function
method [8–10]. It divides the simulation into finite time
steps dt and iteratively calculates the stochastic evolu-
tion of the atomic wave function and hence the nuclear
spin trajectory. To do so we supposed the wave function
of the isolated system |Ψ〉 is entirely described by the
Hamiltonian H0 and all environmental contributions are
combined in a perturbation Hamiltonian H1. To calcu-
late the unnormalized wave function Ψ̃ after a small time
step we first apply the usual Schrödinger equation:
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FIG. S3. Trajectory of the nuclear spin (black line) for a time interval of 2000 s. The grey dots are the conductance jump
positions and are used to identify the nuclear spin state. If the jump appears within the colored zone it was attributed to the
corresponding state otherwise it was considered as noise

FIG. S4. (a) Nuclear spin trajectory (black line) obtained by
different conductance jumps (red dots). Since the tunnelling
of the electron spin is a probabilistic event, not every measure-
ment shows a QTM jump (white dots). If we missed a QTM
transition, but the nuclear spin did not change between two
conductance jumps, we attributed this to the particular spin
state. If, however, we missed a tunnel event and the nuclear
spin did change, we added a missed event to the state before
and after the jump. (b) Histograms of all measured (coloured
bars) and missed (white bars) tunnel events for each nuclear
spin state, obtaining the individual QTM probabilities.

dΨ̃
dt

= − i
h̄

(H0 + H1)Ψ. (6)

If we assume that H1 and H0 commutate, which is
true up to an error of dt2 we get:

Ψ̃(t+ dt) = exp

(
− i
h̄
H1dt

)
exp

(
− i
h̄
H0dt

)
Ψ(t).(7)

Furthermore we can choose dt in a way that
∣∣ i
h̄H1dt

∣∣�
1, then the term exp(− i

h̄H1dt) can be written in a first

order Taylor series expansion exp(− i
h̄H1dt) ≈ 1− i

h̄H1dt.
Since we are only interested in the amplitude of the wave
function the term exp

(
− i

h̄H0dt
)

will be neglected in the
following. It adds only a phase term to the wave function
and can be reintroduced at any point if necessary. The
amplitude of the wave function after a time step dt is
therefore:

Ψ̃(t+ dt) =
(

1− i

h̄
H1dt

)
Ψ(t). (8)

We can define the Hamiltonian H1 as a sum of the
relaxation operator C1 and the excitation operator C2:

H1 = − ih̄
2

∑
m

C†mCm. (9)

By expanding Eqs. 2,3 and writing them in a matrix
form we get:

C1 =

0BBB@
0 0 0 0p

Γ0,1(1 + n0,1) 0 0 0

0
p

Γ1,2(1 + n1,2) 0 0

0 0
p

Γ2,3(1 + n2,3) 0

1CCCA ,

C2 =

0BBB@
0
p

Γ0,1 · n0,1 0 0

0 0
p

Γ1,2 · n1,2 0

0 0 0
p

Γ2,3 · n2,3

0 0 0 0

1CCCA .

Note that only transitions with ∆mJ = ±1 are con-
sidered. The term n(ωi,j , T ) = [exp(h̄ωi,j/kBT ) − 1]−1

is the Bose-Einstein distribution function and Γi,j is the
transition rate between the ith and the jth nuclear spin
state. Since H1 has imaginary eigenvalues the wave func-
tion Ψ̃(t + dt) is not normalized. Up to an error of dt2
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FIG. S5. Simulated time-average occupation probabilities of
the four nuclear spin states. The increase in probability for
mI = ±1/2 with respect to mI = ±3/2 originates from the
asymmetric transition rates Γi,j in combination with periodic
repetitions of the measurement. Thus instead of having an
equal probability for each nuclear spin state we actively pump
the population into mI = ±1/2.

we can write:

〈Ψ(t+ dt)|Ψ̃(t+ dt)〉 = 1− δp, (10)

with

δp =
i

h̄
dt 〈Ψ(t)|

(
H1 −H†1

)
|Ψ(t)〉 , (11)

being the transition probability per time step dt. Insert-
ing Eq. 9 into Eq. 11 allows for the calculation of the
excitation and relaxation probabilities δprel and δpex, re-
spectively:

δprel = dt 〈Ψ(t)|C†1C1 |Ψ(t)〉 , (12)

δpex = dt 〈Ψ(t)|C†2C2 |Ψ(t)〉 . (13)

The non-reversibility of the transition is introduced by
a pseudo random variable ε. If ε > δp the systems stays
in the same state and nothing happens. If however ε < δp
the nuclear spin undergoes a quantum jump and the new
wave function is calculated as:

ε < δprel
relaxation−−−−−−−→ Ψ(t+ dt) =

C1Ψ̃(t)√
dt/δp

, (14)

ε > δprel
excitation−−−−−−−→ Ψ(t+ dt) =

C2Ψ̃(t)√
dt/δp

. (15)

The denominator in Eqs. 14 and 15 accounts for the
re-normalization of the wave function. To simulate the
sweeping of the magnetic field we group the simulation
into intervals of ∆t = 2.5 s. Within each interval we allow

FIG. S6. The experimental distribution (red bars) of ∆mI

is compared with the computed one (grey bars). Since the
computer model only allows for transitions with ∆mI = ±1
we concluded that all higher order transitions are just two or
three subsequent transitions with ∆mI ± 1, which could not
be resolved due to finite time sampling ∆t.

for the electron spin reversal according to the Landau-
Zener probability at four different instants. Therefore we
introduced an additional pseudo random number ξ. If we
reached the instant corresponding to the current nuclear
spin and ξ < PLZ we inverted all nuclear energy levels.
Since the Landau-Zener probability is roughly 0.5 the
energy level are inverted every 5 s in average. Within this
5 s the nuclear spin constantly tries to exchange energy
with the thermal bath. A several days long nuclear spin
trajectory could be calculated within few minutes on a
standard PC.

S6. DYNAMICAL EQUILIBRIUM

Every time we reverse the electron spin due to a QTM
transition the ground state and the excited states are
swapped. Since the swapping period is smaller than T1,
the time-average population of the nuclear spin converges
to a dynamical equilibrium which is far from the Boltz-
mann distribution. We realized that the probability for
mI = ±1/2 is higher than the probability for mI = ±3/2
(see Fig. 3b of the main text). The QMC simulations
allowed us to explain this effect. Indeed, the shape of the
time-average population in the case where the sweeping
period ∆t is smaller than T1 is mainly governed by the
individual transition rates Γi,j . As shown in Fig.5 of the
main article, Γ0,1 is smaller than Γ2,3, which means that
it is faster to get from the most excited state into the
mI = ±1/2 than from the latter into the ground state.
Due to this asymmetry and the periodic repetition of
the measurement we are actively pumping the popula-
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tion into mI = ±1/2 states. This result could be nicely
reproduced by simulations (see Fig. S5). Notice that for
equal Γi,j ’s the time-average population would be flat,
i.e. every state is occupied 25% of the time.

S7. SELECTION RULES

When we recorded the nuclear spin trajectory we ob-
served sometimes transitions with ∆mI 6= ±1. Therefore
we were wondering if this effect arises from a finite time
resolution, i.e. subsequent ∆mI = ±1 between two sub-
sequent measurements or an additional transition path
which allows for ∆mI 6= ±1. To answer this question we
compared experimental and simulated data (see Fig. S6).
In the latter we took only ∆mI = ±1 transitions into
consideration. The perfect agreement supports our as-
sumption that the nuclear spin can only perform quan-
tum jumps which change its quantum number by one.
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