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Summary

In this thesis we develop a mathematical model that describes the propaga-
tion of waves through anisotropic disordered matter. There are many wave
phenomena which can all be described by comparable mathematical equa-
tions, such as sound waves, water waves, and electromagnetic waves. The
model we study is aimed at electromagnetic waves and classical scalar waves.
Light is an example of an electromagnetic wave, and we often employ the word
“light” instead of the much longer “classical scalar wave or electromagnetic
wave”.

Multiple scattered light for isotropic disordered media has been studied ex-
tensively, and it is well known that there are three energy transport regimes
in multiple scattering. Which regime to expect in a material depends on the
scattering strength of the material. Ballistic transport of energy occurs when
there are hardly any scatterers, i.e. low scattering strength, and light prop-
agates approximately undisturbed through a material. Diffuse transport of
the radiative energy occurs at intermediate scattering strengths, and interfer-
ence effects are negligible. Diffuse transport is most often observed, this is
when the light scatters multiple times, such as in the clouds in the sky, milk
or white paper. The light behaves as if it were milk diffusing through tea and
the radiation energy is distributed smoothly through the medium. The third
regime, Anderson localization of light, is hardly ever observed in three dimen-
sional media, but is relatively easy to find in one and two dimensional me-
dia. The minimal scattering strength at which the transition should happen is
predicted by the Ioffe-Regel criterion for Anderson localization. If the scatter-
ing cross section and the density of the atoms is high, the scattering strength
is high and interference effects between the incident and the multiple scat-
tered waves dominate transport in such a way that localized states appear
inside the disordered material. Anderson localization of energy is described
by a generalized Boltzmann equation containing all interference effects. This
equation has never been solved analytically. It is usually approximated by the
well known radiative transfer equation, but then all interference effects, and
therefore Anderson localization, are neglected. The Ioffe-Regel criterion is ob-
tained by correcting the diffusion equation with interference effects. The dif-
fusion equation is an approximation to the radiative transfer equation, and
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Summary

there are many analytic solutions known for the diffusion equation.

There exists no theory which is fully developed to encompass anisotropic
multiple scattering of light. In the real world there are many media, such as
teeth, muscle, bone and the white matter in the brain, in which propagation
of light is governed by an anisotropic diffusion equation. Therefore we need to
develop such a theory, e.g. to understand if the energy of the electromagnetic
waves emanating from a mobile phone can cause brain damage, or if aniso-
tropy influences the scattering strength at which Anderson localization takes
place. Currently in biology and medicine often the radiative transfer equa-
tion is employed to describe anisotropic media and is supplied with incorrect
anisotropy corrections. Sometimes numerical simulation of such an incorrect
anisotropic radiative transfer equation even leads to the conclusion that ani-
sotropic diffusion does not exist, a statement in conflict with observations in
physical experiments.

The model we developed for multiple scattered waves in anisotropic dis-
ordered matter is based on the smallest scattering particles in the material,
the atoms. These atoms are treated as classical scatterers, and are described
by their scattering potential or by their (differential) scattering or extinction
cross section. We present purely dielectric anisotropy, and show the changes
required for a description of disordered materials with the anisotropy in the
magnetic permeability.

After introductory chapter 1, we start in chapter 2 from a classical wave
equation for the amplitude provided with scatterers. For anisotropic disor-
dered media we derive a generalized Boltzmann transport equation which
contains all interference effects. Since this equation has never been solved
analytically, not even for isotropic media, we proceed by neglecting the in-
terference effects, and derive an anisotropic radiative transfer equation. The
radiative transfer equation is extremely hard, if not impossible, to solve an-
alytically without additional approximations. Usually the isotropic radiative
transfer equations is solved numerically, and therefore we provide a recipe for
a Monte Carlo simulation of the anisotropic radiative transfer equation. In ad-
dition we provide some examples of the effects of anisotropy on the radiative
transfer equation.

From the anisotropic radiative transfer equation we derive in chapter 3 an
anisotropic diffusion equation. Examples of the effects of anisotropy on dif-
fusion are provided, and we can take limits of extreme anisotropy and obtain
either one or two dimensional diffusion. The anisotropic diffusion equation
is supplied with interference corrections, and we obtain the Ioffe-Regel crite-
rion for Anderson localization in anisotropic media. Our criterion is the first
criterion indicating that anisotropy in a disordered material is favorable for

xii



Anderson localization.
In chapter 4 the boundary conditions for our model are derived from the

Maxwell equations, and applied to the anisotropic diffusion equation. We
identify the transport mean free path and energy velocity in anisotropic me-
dia, and these quantities turn out to be vectors. Internal reflections are also
in the model, and we express the reflectivity and transmissivity of anisotro-
pic disordered media in Fresnel coefficients for anisotropic disordered me-
dia. The angular redistribution of light due to diffusion through an anisotro-
pic material is calculated, and we find non-Lambertian behavior. For aniso-
tropic disordered semi-infinite and slab geometries we calculate the bistatic
coefficients. We partition the bistatic coefficient in three contributions, the
contribution of single scattering, of diffuse multiple scattering, and of maxi-
mally crossed multiple scattering, i.e. the enhanced backscattering cone. In
all of these bistatic coefficients we observe an effect of anisotropy.

Finally, in chapter 5, we present the key results of our model.
The work presented in this thesis is theory. The theory is often compared

to results for isotropic media which are well known in the literature. Our the-
ory is very well suited for predictions and descriptions of experiments. Our
model allows us to predict the behavior of the energy density and flux requir-
ing only little knowledge of the anisotropic multiple scattering material. The
input parameters for the model are the typical scatterer, the average refrac-
tive index along the principal axes of the anisotropy, and the geometry of the
sample. With only this information we can calculate every observable quan-
tity described above. If we are only interested in anisotropic diffusion of the
energy density, then the information is contained in the transport mean free
path and in the energy velocity, which together determine the diffusion con-
stant.

To conclude, we present a model which can straightforwardly be applied in
all fields where anisotropic multiple scattering of classical or electromagnetic
waves occurs.

xiii
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Samenvatting

In dit proefschrift ontwikkelen we een wiskundig model dat het voortbewe-
gen van golven door anisotrope wanordelijke materie beschrijft. Er zijn veel
golfverschijnselen, die allemaal door vergelijkbare mathematische modellen
te beschrijven zijn. Voorbeelden van golfverschijnselen zijn geluidsgolven,
watergolven, en elektromagnetische golven. Het model dat wij bestuderen is
gericht op elektromagnetische golven en klassieke golven. Licht is een voor-
beeld van een elektromagnetische golf, en we zullen vaak het woord “licht”
gebruiken in plaats van “klassieke golf of elektromagnetische golf”.

Veelvuldig verstrooide golven in isotrope wanordelijke materialen zijn uit-
gebreid bestudeerd, en het is inmiddels goed bekend dat er drie manieren zijn
waarop de energie van licht getransporteerd wordt door wanordelijke mate-
rialen. Welke manier we moeten verwachten hangt af van hoe sterk het ma-
teriaal verstrooid. Ballistisch transport van energie vindt plaats als er nau-
welijks verstrooiers aanwezig zijn, dat wil zeggen wanneer de verstrooiings-
sterkte van het materiaal laag is, en het licht praktisch ongehinderd door het
materiaal voortbeweegt. Diffuus transport van stralingsenergie vindt plaats
wanneer het materiaal de verstrooiingssterkte van een materiaal niet heel erg
zwak, maar ook niet heel er sterk is, en interferentieverschijnselen verwaar-
loosbaar zijn. Diffuus transport wordt het meest waargenomen, dit gebeurt
als het licht veelvuldig verstrooit, zoals in de wolken in de lucht of in wit pa-
pier. Het licht gedraagt zich dan alsof het melk is die in de thee diffundeert,
en de stralingsenergie is glad verdeeld over het medium. De derde manier
waarop licht zich voortbeweegt, Anderson lokalisatie, wordt bijna nooit waar-
genomen in drie dimensionale materialen, maar is relatief eenvoudig waar te
nemen in een en twee dimensionale media. De minimale verstrooiingssterk-
te waarop de overgang naar Anderson lokalisatie zou moeten plaatsvinden
wordt voorspeld door het Ioffe-Regel criterium. Als de verstrooiings werkza-
me doorsnede en de dichtheid van atomen hoog is, dan zullen de inkomende
en de veelvuldig verstrooide golven interfereren op een manier die er toe leidt
dat er op willekeurige plaatsen in het wanordelijke materiaal energieopho-
pingen ontstaan. Anderson lokalisatie van licht wordt beschreven door een
gegeneraliseerde Boltzmann vergelijking, die alle interferentie effecten om-
vat. Deze vergelijking is nog nooit analytisch opgelost. Normaliter wordt deze
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Samenvatting

vergelijking benaderd door de bekende stralingstransportvergelijking, maar
dan worden alle interferentie effecten verwaarloosd. Het Ioffe-Regel criteri-
um wordt gevonden door middel van het toevoegen van interferentie effecten
de diffusie vergelijking. De diffusie vergelijking zelf is een benadering van de
stralingstransportvergelijking, en er zijn veel analytische oplossingen bekend
voor de diffusievergelijking.

Er bestaat geen theorie die volledig ontwikkeld is en anisotrope veelvuldi-
ge verstrooiing van licht omvat. In de werkelijke wereld zijn er veel materia-
len, zoals tanden, spieren, bot, en de witte materie in de hersenen, waarin de
voortbeweging van licht beschreven wordt door een anisotrope diffusieverge-
lijking. Daarom moeten we deze theorie zelf ontwikkelen, bijvoorbeeld om
te begrijpen of de elektromagnetische golven veroorzaakt door mobiele tele-
foons hersenschade kunnen veroorzaken, of misschien beïnvloed anisotropie
de verstrooiingssterkte waarbij Anderson lokalisatie plaatsvindt. Momenteel
wordt in biologie en geneeskunde vaak een stralingstransportvergelijking ge-
bruikt waarin anisotropie incorrect wordt meegenomen. Soms leiden nume-
rieke simulaties van deze incorrecte vergelijkingen zelfs tot de conclusie dat
anisotrope diffusie niet bestaat, een stelling die strijdig is met waarnemingen
in fysische experimenten.

Het model dat we ontwikkelen voor veelvuldige verstrooiing van golven in
wanordelijke materie is gebaseerd op de kleinste verstrooiers in het materi-
aal, de atomen. Deze atomen worden behandeld als klassieke verstrooiers,
en worden beschreven door hun verstrooiingspotentiaal of (differentiële) ver-
strooiings of extinctie werkzame doorsnede. We presenteren puur diëlektri-
sche anisotropie, laten zien welke veranderingen nodig zijn om materie te be-
schrijven die anisotropie in de magnetische permeabiliteit bevat.

Na het inleidends hoofdstuk 1 beginnen we in hoofdstuk 2 met een klassie-
ke golfvergelijking voor de amplitude, en we voegen verstrooiers toe aan de
vergelijking. Voor anisotrope wanordelijke materialen leiden we een gegene-
raliseerde Boltzmann transport vergelijking af, die alle interferentie effecten
omvat. Aangezien deze vergelijking nog nooit analytisch is opgelost, ook niet
voor isotrope materie, verwaarlozen we interferentie effecten en leiden een
anisotropie stralingstransportvergelijking af. Het is ook zeer moeilijk, zo niet
onmogelijk, om de stralingstransportvergelijking analytisch op te lossen zon-
der extra aannames te doen. Meestal wordt de isotrope stralingstransportver-
gelijking numeriek opgelost, en daarom presenteren we een recept voor een
Monte Carlo simulatie van de anisotrope stralingstransportvergelijking. Daar-
bij geven we enkele voorbeelden van het effect van anisotropie op de stra-
lingstransportvergelijking.

Van de anisotrope stralingstransportvergelijking leiden we een anisotrope
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diffusievergelijking af in hoofdstuk 3. Er worden voorbeelden gegeven van het
effect van anisotropie op diffusie. We nemen limieten met extreme anisotro-
pie, en kunnen op die manier een of twee dimensionale diffusie verkrijgen.
Aan de anisotrope diffusievergelijking voegen we interferentiecorrecties toe,
en we vinden het Ioffe-Regel criterium voor Anderson lokalisatie. Ons crite-
rium is het eerste criterium dat aangeeft dat anisotropie in een wanordelijk
materiaal helpt om Anderson lokalisatie te vinden.

In hoofdstuk 4 leiden we randvoorwaarden voor ons model af van de Max-
well vergelijkingen, en passen deze toe op de anisotrope diffusie vergelijking.
We identificeren de gemiddelde vrije weglengte voor energietransport, en de
energiesnelheid, en beide blijken vectoren te zijn. Interne reflecties zitten ook
in het model, en de reflectiviteit en transmissiviteit drukken we uit in termen
van de Fresnel coëfficiënten voor anisotrope wanordelijke materialen. De her-
distribuering van licht over hoeken wegens diffusie door een wanordelijk ma-
teriaal wordt uitgerekend, en we vinden niet-Lambertiaans gedrag. Voor ani-
sotrope half oneindige media en plakken berekenen we de bistatische coëffi-
ciënt. Deze coëfficiënt delen we op in drie bijdragen, enkelvoudige verstrooi-
ing, diffuse veelvuldige verstrooiing, en voor maximaal gekruiste verstrooiing,
ofwel de terugstrooikegel. In alle bistatische coëfficiënten zijn we het effect
van anisotropie.

Uiteindelijk sluiten we af in hoofdstuk 5 met de belangrijkste resultaten die
volgen uit ons model.

Het gepresenteerde werk in dit proefschrift is theorie. De theorie wordt vaak
vergeleken met resultaten voor isotrope wanordelijke materialen, die welbe-
kend zijn uit de literatuur. Onze theorie is zeer geschikt voor voorspellingen
en beschrijvingen van experimenten. Ons model staat ons toe het gedrag te
voorspellen van de energiedichtheid en de flux van de energiedichtheid, met
slechts weinig kennis van het anisotrope wanordelijke materiaal. De parame-
ters die nodig zijn voor het model zijn de typische verstrooier, de brekings-
index langs iedere hoofdas van de anisotropie, en de geometrie van het ma-
teriaal. Met deze parameters kunnen we alle hierboven beschreven fysische
grootheden bepalen. Als we enkel geïnteresseerd zijn in de anisotrope diffu-
sie van de energiedichtheid, dan de informatie is bevat in de gemiddelde vrije
weglengte voor transport, en de energiesnelheid, die samen de diffusietensor
vastleggen.

Tot slot, wij presenteren een model dat rechttoe rechtaan toegepast kan
worden in ieder gebied waarin anisotrope veelvuldige verstrooiing van klas-
sieke of elektromagnetische golven voorkomen.
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Chapter 1

General introduction

The relevant concepts in multiple scattering of waves through
anisotropic disordered media are introduced through every-
day life examples. The basic equations describing propaga-
tion of electromagnetic waves through matter are introduced
and a short history of the scalar model which we use for light
is presented. The general introduction concludes with an
overview of this thesis.

1.1 Waves, disorder, and anisotropy

Exchange of information is an important part of everyday life. At the super-
market we talk about the price of the goods we wish to buy, with a colleague
about our work, family life, the latest news or the heat wave in the weather
report for your next holiday destination. This news we have either read in a
newspaper or magazine, we heard it on the radio, saw it on television or on the
internet. In all of these examples waves were used to transmit the information.
Sound waves inform the ears, electromagnetic waves inform the eyes. Out in
the open the waves travel in a straight line from a sender to a receiver. In build-
ings there is usually a large number of obstacles which can reflect, absorb,
or produce waves, such as walls, people, desks, filing cabinets, doors, which
open and close intermittently, etc. Many obstacles can be avoided when we
want to exchange information, by shutting the door of our office, by using a
wired connection, by moving closer to the sender or the receiver, or by moving
both sender and receiver out of the building into the open.

Avoiding obstacles is very often impossible, and there is no choice but to
deal with the effects of interference with the scattered waves. For example
when we want to setup a wireless connection from our laptop to the internet
in a building, it is not always possible to move closer to the wireless router, or
move the wireless router into the open. It can very well happen that the signal
from the wireless router is extinguished so much by the obstacles that only a
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Chapter 1 General introduction

diffuse signal and a much smaller ballistic signal reaches our network card.
The network card will tell us it has a bad reception, and is usually unable to
recover enough information from the faint ballistic signal nor can it translate
the diffuse signal into coherent information. Our internet browser will pre-
sent us an error message informing us that the server is unavailable. It would
be very nice if the network card could also recover information from the dif-
fuse signal, as that would increase the range of wireless networks in buildings,
especially if the obstacles predominantly scatter without absorbing the signal.

Many multistory office buildings look like huge concrete slabs, and inside
these slabs the hallways are usually all aligned. The aligned hallways can
waveguide signals, thus allowing signals to propagate longer distances along
the hallways, and shorter distances sideways. In both directions obstacles are
encountered. If we assume that the density and the strength of the scatterers
is similar in all directions, then averaging over realizations of this disorder in
our multistory office buildings will lead to anisotropic diffusion of both sound
and electromagnetic waves. This wave diffusion is described by a diffusion
tensor with the component along the hallways larger than the other compo-
nents. The above example might seem two dimensional for sound, but every-
one who has lived in such a building and has heard one of their neighbors drill
a hole in the concrete wall knows otherwise. It also seems that the structure of
the building is the sole cause of the anisotropy, but that is not necessarily true.
The obstacles blocking the waves hardly ever have spherical symmetry, and
give rise to a directionality in the scattered waves. In office buildings, walls,
filing cabinets, and doors mainly reflect sound moving along a floor. For the
other direction the floor, ceiling, desks and tables are the main scatterers, and
we have to take into account the distribution of the orientation of the scatter-
ing cross sections to be able to tell what caused the anisotropy.

Most people will be familiar with the phenomena described above where
the scatterers or reflecting surfaces are visible by eye. In fact such events can
occur for any type of wave, only the length scales and obstacles differ for dif-
ferent waves. Water waves could scatter from a piece of wood, seismic waves
can scatter from different types of rock embedded in Earth’s crust. In a more
abstract setting we can consider a probability density or Schrödinger wave for
some elementary particle, which scatters from inhomogeneities in the energy
density landscape. The picture of scatterers as inhomogeneities in the en-
ergy density landscape through which a wave propagates is best known from
quantum mechanics, but it is very general and applies to classical waves as
well. This thesis will focus on the theory of multiple scattering of classical
electromagnetic waves of arbitrary wavelength in anisotropic disordered me-
dia. For these waves the scatterers discussed in this thesis are mainly much

2



1.1 Waves, disorder, and anisotropy

smaller than the wavelength of the electromagnetic waves. The wavelengths
visible by eye are in the range 350nm−750nm, and typically these waves are
scattered by the dipole moment of the electron clouds of atoms, which have
diameters of the order of 0.1nm. Due to the difference in scale it is often cor-
rect to approximate the scattering dipoles by point scatterers. Although we
do not limit ourselves to the visible wavelengths, we use the term light inter-
changeably with the term electromagnetic wave, and all results are valid at any
wavelength, provided we identify the correct scatterers at these wavelengths.

At optical wavelengths we do not consider the disorder in multistory of-
fice buildings, as the size of the mentioned obstacles is orders of magnitude
larger than the wavelength. Instead we can think of infrared light propagating
through human tissue, such as teeth, bone, muscle and even the human brain,
which all exhibit anisotropic diffusion of light, albeit sometimes obscured by
boundary effects [1–5]. In this thesis we develop a model which has the po-
tential to accurately describe the energy density and flux of multiple scattered
waves in anisotropic disordered media.

From a theoretical viewpoint tissue samples are way too complicated as
these consists of many layers all with different scattering properties and differ-
ent anisotropy. If the sample is studied in vivo moving scatterers complicate
matters even more. It is well known that homogeneous isotropic media are
easiest to understand and easiest to describe mathematically. It is also feasi-
ble to analytically calculate simple scattering problems, but scattering from
small clusters of particles already requires approximations, and calculations
are usually performed numerically. It is no surprise that for materials which
consists of 1023 scatterers nobody has succeeded nor tried to obtain exact an-
alytic solutions for each particular realization of the medium.

If averages over all possible realizations of scatterers are considered, then
we can obtain analytic solutions. For the radiance such a procedure eventu-
ally leads to the well known equation of radiative transfer, an equation which
was first derived heuristically using arguments based on the physical proper-
ties of single scatterers and statistical mechanics [6, 7]. Media averaged over
the disorder can be described by the density of the scatterers and their cross
sections, provided the wavelength under consideration is much smaller than
the transport mean free path. The radiative transfer equation is a Boltzmann
transport equation for waves, and it does not contain interference effects.

The radiative transfer equation is very general, and in general impossible
to solve analytically. Numerical simulations can be performed, but these cost
a lot of time. The radiative transfer equation can be approximated by a dif-
fusion equation up to very good agreement [6, 8]. The diffusion can often be
solved analytically [9] and results are therefore obtained much quicker [8, 10–
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Chapter 1 General introduction

12]. Only for media smaller than two mean free path the accuracy of the dif-
fusion equation becomes less accurate [8], as single scattering and ballistic
propagation start to dominate transport of light. The diffusion equation mea-
sures up so well to the radiative transfer equation due to the fact that both
equations neglect all interference effects.

Photonic crystals are periodic structures which could change the optical
density of states and localize light in certain frequency bands if they exhibit a
full band gap [13, 14]. In these periodic structures it turns out that wave dif-
fusion also occurs[15–18]. The reason for the disorder in photonic crystals is
the second law of thermodynamics, which states that in a closed system the
entropy increases over time. To reduce the entropy a such that all disorder is
removed from a crystal takes a lot of energy, and the current state of the art
crystals are not free from disorder. The band gap could be destroyed by the
disorder thus hampering their wave guiding abilities used for photonic inte-
grated circuits [19, 20]. However the disorder in the crystals was found to be
useful for the determination of photonic crystal properties, such as the deter-
mination of the with of the stop-band through speckle measurements [21]. In
this thesis a photonic crystal can be incorporated as the effective medium in
our model for multiple scattering of light in anisotropic disordered media.

Although naively one might expect all interference effects to wash out when
the waves are multiple scattered, it has been demonstrated through the en-
hanced backscattering phenomenon [22–26] that interference effects can sur-
vive scattering, and exhibit anisotropy [27–29]. There even exists a regime
known as the Anderson localization regime [30], where interference effects
dominate, and the waves form localized states inside the disordered medium.

The search for Anderson localization of classical scalar waves, used for de-
scriptions of light and sound, picked up momentum in the 1980’s [14, 31–33].
Direct observation of Anderson localization of light is very hard to achieve,
but indirect methods can also be used to establish if a material Anderson lo-
calizes [34]. Moreover it possible to obtain a state in which only the directions
transverse to to the propagation direction Anderson localize [33], which has
recently been observed experimentally [35]. The search for Anderson local-
ization, both theoretically and experimentally, is still going on for several wave
phenomena [36–41] and also anisotropic media are studied [42, 43]. Currently
many articles focus on Anderson localization of matter waves, i.e. cold atoms
in one and two dimensional disordered optical lattices [44–49].

Especially in three dimensional media Anderson localization remains elu-
sive for wave phenomena. One of our reasons for studying anisotropic three
dimensional media is that strongly anisotropic media could resemble lower
dimensional media, possible facilitating a transition to Anderson localization.
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1.2 Electromagnetic fields in matter

Classical waves in three dimensional media are the subject of this thesis, and
we will explore the possibility of a transition to lower dimensional media. Our
model predicts indeed that Anderson localization is facilitated by anisotropy
[50]. Considering the journals in which recent publications on Anderson lo-
calization have appeared [35, 48, 49, 51, 52], we expect it will remain a hot
topic in the foreseeable future.

1.2 Electromagnetic fields in matter

This thesis is about a model for electromagnetic radiation in disordered me-
dia. The Maxwell equations, are the key ingredient from which we will derive
our results. In SI units the Maxwell equations in material media are [53]

∇ ·D(x, t ) = ρ(x, t ), (1.1a)

∇ ·B(x, t ) = 0, (1.1b)

∇×E(x, t ) = −∂B(x, t )

∂t
, (1.1c)

∇×H(x, t ) = J (x, t )+ ∂D(x, t )

∂t
. (1.1d)

Here D is the electric displacement, B is the magnetic flux, E the electric
field, H is the magnetic field, ρ is the free charge density, and J is the elec-
tric current density [54]. The Maxwell equations have been combined and
improved by Maxwell, but each individual equation also has a name, i.e. Eq.
(1.1a) is Gauss’s law of which (1.1b) can be considered a special case, Eq. (1.1c)
is Faraday’s law, and Eq. (1.1d) is Ampères law corrected by Maxwell with the
additional term ∂D/∂t .

The divergence of equation (1.1d) and application of (1.1a) leads to a con-
tinuity equation for the free electric charge. In optics the electromagnetic
waves scatter from electron clouds bound to atoms. Throughout this thesis
we assume that there are neither free charges, nor free currents, i.e.

ρ(x, t ) ≡ 0, (1.2a)

J (x, t ) ≡ 0. (1.2b)

To uniquely determine the electric and magnetic fields we supplement the
Maxwell equations with constitutive relations. These relations are also known
as material equations, and describe the behavior of the material under the in-
fluence of the electric and magnetic fields. We introduce the electric permit-
tivity tensor ε(x,x0) ≡ ε(x)δ3(x−x0) and the magnetic permeability tensor
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Chapter 1 General introduction

µ(x,x0) ≡ µ(x)δ3(x−x0), such that they are constant in time, and inhomo-
geneous and anisotropic in space. The constitutive relations we impose are

D(x, t ) ≡ ε(x) ·E(x, t ), (1.3a)

B(x, t ) ≡ µ(x) ·H(x, t ). (1.3b)

Our permittivity and permeability are anisotropic, but there are more general
constitutive relations in which the electric and magnetic fields are mixed by
the material. Constitutive relations (1.3) are valid for media which do neither
have temporal nor spatial memory. In such media it is not possible to extract
a Dirac delta from ε(x,x0) and µ(x,x0), and there is an additional convolu-
tion integral over all coordinates x0, and also a time integral if there is a time
dependence.

The disorder is usually confined to some volume, and we consider the aver-
age of the permittivity and permeability over the volume as the host medium
in which the disorder resides, and write

ε(x) = ε+δε(x), (1.4a)

µ(x) = µ+δµ(x). (1.4b)

Here ε and µ are the host permittivity and permeability tensors and δε(x) and
δµ(x) are the electric and magnetic disorder respectively. In many optical ex-
periments the magnetic disorder is negligible, but we keep track of it as it will
be relevant for this thesis. The ensemble average of the permittivity and per-
meability over all realizations of the disorder restores homogeneity,

〈〈ε(x)〉〉 = ε, (1.5a)

〈〈µ(x)〉〉 = µ. (1.5b)

Isotropy is only restored when we also average over all possible orientations
of the inhomogeneities, and then the average permittivity and permeability
tensors of the host medium become proportional to the unit tensor. If we
have an ensemble of slabs all with pores running from the front interface to
the back interface, we can imagine that averaging over the realizations of the
disorder will not remove the anisotropy created by the pores.

Obtaining exact solutions to the Maxwell equations in media with arbitrary
anisotropy and disorder is a complicated matter. The components of the elec-
tromagnetic fields are not independent quantities, and several methods are
available to reduce the number of field components. It is well known that
equations (1.1b) and (1.1c) allow the introduction a magnetic vector potential
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1.2 Electromagnetic fields in matter

A and an electric scalar potential φ according to

B ≡ ∇×A, (1.6a)

E ≡ −∂A
∂t

−∇φ. (1.6b)

Together with the constitutive relations (1.3) the potentials (1.6) fully specify
the four field vectors appearing in the Maxwell equations. The magnetic vec-
tor potential and electric scalar potential are not unique, and we can supply
them with an equation of constraint such as the Lorentz gauge ∇·A+∂φ/∂t =
0 or the Coulomb gauge ∇ ·A= 0 [54]. We observe that in media where there
are no free charges and no free currents Eqs. (1.2) hold, and we can introduce
an electric vector potentialW , and a magnetic scalar potential χ, by

D ≡ ∇×W , (1.7a)

H ≡ ∂W

∂t
+∇χ. (1.7b)

Also by means ofW and χ we can fully specify the four electromagnetic field
vectors, and these potentials are not unique either. The potentials W and χ

can only be used in the absence of free charges and currents, but for a descrip-
tion of scattering of light this is not a problem.

The Maxwell equations give rise to an energy balance equation. Using the
absence of free charges and free currents (1.2) and constitutive relations (1.3),
the continuity equation for the energy density follows from the inner prod-
uct ofH with (1.1c) subtracted from the inner product ofE with (1.1d). The
energy density Hem and energy density flux or Poynting vector Sem of the
electromagnetic fields are identified by

Hem ≡ 1

2

[
E∗ ·D+B∗ ·H +c.c.

]
, (1.8a)

Sem ≡ E×H∗+c.c.. (1.8b)

The energy density contains contributions of the permittivity and permeabil-
ity of the disordered medium, and therefore consists of a radiative and a ma-
terial contribution. The disorder term represents the interaction of the elec-
tromagnetic waves with the medium.

Very often we are not interested in the electric and magnetic fields them-
selves, but only in the conserved quantities in the problem at hand. For elas-
tic scattering of light the energy is the conserved quantity. There are many
polarization states of light which give rise to the same energy density and
energy density flux, and we can wonder if instead of the magnetic potential
vector and the electric scalar potential, there exists a single scalar wave field
which correctly predicts the energy density and energy density flux, but does
not necessarily predict the polarization.
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Chapter 1 General introduction

1.3 A history of scalar models for light

The acceptance of light as a wave phenomenon has had a long history, and
was refueled by the advent of quantum theory around 1900, with the intro-
duction of the photon to explain the quantization of the electromagnetic en-
ergy emitted by an oscillating electric system. We discuss classical electro-
magnetism, and therefore in this thesis light is a wave. Here we present two
key ideas in the development of the wave theory. Huygens advocated a wave
model for light [55], and stated the principle that each element of a wave sur-
face may be regarded as the center of a secondary disturbance which gives rise
to spherical wavelets, and the position of the wave surface at any later time is
the envelope of all such wavelets, which is now known as Huygens’ princi-
ple or Huygens’ construction [54]. More than a hundred years later Fresnel
improved on Huygens’ principle by allowing the wavelets to interfere, thus
accounting for diffraction, which naturally became known as the Huygens-
Fresnel principle.

The Huygens-Fresnel principle can be regarded as a special form of Kirch-
hoff’s integral theorem [54], which is the basis of Kirchhoff’s diffraction theory
for scalar waves diffracting through a hole in a screen. As long as the diffract-
ing objects are large compared to the wavelength, and the light is observed in
the far field, Kirchhoff’s diffraction theory works very well [54]. The simplest
model, used by Kirchhoff, to describe freely propagating waves at velocity v is
a scalar field which satisfies a wave equation

∆ψ(x, t )− 1

v2

∂2ψ(x, t )

∂t 2 = 0. (1.9)

It is very convenient to Fourier transform the time coordinate of the wave
equation to frequency space, which yields the Helmholtz equation, which de-
scribes monochromatic waves of angular frequency ω

∆ψω(x)+ ω2

v2 ψω(x) = 0. (1.10)

The waves in Eq. (1.10) have wavelength λ = k/(2π) = ω/(2πv), and k is the
wavenumber. The wavelength is the same for every propagation direction.
Even though the scalar wave equation has been studied for such a long time,
it is still actively studied, not only for light [56, 57].

The Helmholtz equation, Eq. (1.10), resembles the Schrödinger equation
for electrons if we map ω2/v2 →ħω/me. In condensed matter theory the ef-
fect of disorder on the conductivity of electrons has been studied intensively
in the 1980’s [58–62] and this analogy has been used when it was found that
interference effects survive for multiple scattered light in disordered media
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[22–26]. In isotropic media each component of the electromagnetic wave vec-
tor satisfies the Helmholtz equation (1.10), and it is tempting to replace the
electromagnetic field vector according to E → ψ [63, 64], but this leads to a
wrong energy density for the electromagnetic waves.

For homogeneous isotropic media a mapping of electromagnetic fields on
a single complex scalar fields has been introduced in the 1950’s and it was
shown that both the time averaged energy density and energy density flux or
Poynting vector of quasi monochromatic natural light can be represented by a
single complex scalar field [65–67], and the scalar model describes diffraction
phenomena very well. In the 1990’s the model was reinvented and disorder
has since been added [68], resulting in a generalized radiative transfer equa-
tion incorporating interference and the microscopic scatterers. One of the
important contributions of the scalar model to the understanding of multiple
scattering of light in disordered media is a scattering delay correction to the
energy velocity of light due to frequency dependent scattering potentials. In
this thesis we improve on that model by incorporating the effects of polariza-
tion anisotropy. The main limitation of the scalar model to be introduced lies
in the fact that it does not predict the orientation of the electric and magnetic
field vectors themselves.

1.4 Overview of this thesis

This thesis presents a scalar model for electromagnetic waves in anisotropic
disordered media. We tried to keep each chapter as self-contained as possible,
at the cost of occasional repetition of earlier results.

In chapter 2 we introduce the mapping of the electromagnetic fields on a
scalar model, and study the amplitude of scalar waves in homogeneous and
in disordered anisotropic infinite media. From the Bethe-Salpeter equation,
which is related to the energy density, we derived a generalized Boltzmann
transport equation, incorporating interference effects and anisotropy. An ani-
sotropic radiative transfer equation is derived, and some ideas are presented
to numerically model the radiative transfer equation. To get a grasp of the ef-
fect of anisotropy we present some explicit examples. Appendix A contains the
derivation of the Ward identity in anisotropic media, used to establish energy
conservation in this chapter.

In chapter 3 we derive an anisotropic diffusion equation for infinite media
starting from the anisotropic radiative transfer equation. Some examples of
anisotropic diffusion are presented and potential dimensional cross overs are
studied. Interference corrections are added and we explore the location of
the transition to Anderson localization in anisotropic media, and find that in
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Chapter 1 General introduction

anisotropic media the transition occurs at larger mean free path. Appendix B
presents a justification of the self consistent radiance expansion used in this
chapter.

In chapter 4 we incorporate the effects of boundaries in the model, start-
ing from the Maxwell equations. Snell’s law and the Fresnel reflection and
transmission coefficients for planar waves in the anisotropic scalar model are
derived, and the Brewster angle is determined. For the energy density flux we
derive the reflectivity and transmissivity. Also for the radiance and the diffuse
energy density the conditions at the interface are established. The angle and
polarization averaged reflectivity for the diffuse energy density is related to
the reflectivity for the individual plane waves. The boundary conditions give
rise to a transport mean free path and an energy velocity, and both turn out
to be vector quantities. Green functions for the amplitude and the diffuse en-
ergy density are calculated. These Green functions are used to calculate the
angular redistribution of light by anisotropic disordered semi-infinite media
and slabs and also the bistatic coefficients, which describe angular resolved
reflection and transmission for disordered samples, are calculated. The en-
hanced backscattering cone is affected by the anisotropy.

Finally in chapter 5 we discuss the collection of all the obtained results and
implications for future experimental and theoretical studies of light in aniso-
tropic disordered media.
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Chapter 2

Anisotropic radiative transfer in
infinite media

We set up a theory for multiple scattering of scalar waves in
anisotropic disordered media, with anisotropy present in the
scatterers or in the host medium. We analytically derive a
radiative transfer equation valid in anisotropic host media,
and we present a Monte Carlo method for modeling the ani-
sotropic radiative transfer equation. Our radiative transfer
equation is able to model either the radiance of ordinary or of
extraordinary waves. In addition the well known relation be-
tween extinction mean free path and scattering cross section
is generalized to anisotropic media. Finally some examples
of disordered media illustrate the effect of anisotropy in the
radiative transfer equation.

2.1 Introduction

When we send a wave into some arbitrary material, the wave encounters in-
homogeneities from which it scatters. If there is not too much absorption in
the material, we can use the wave intensity to probe the internal structure of
the material by comparing it to the incident intensity. The potential applica-
tions of such a procedure are numerous. In biological tissue we could non-
invasively image the brain, look for cancer cells, or the orientation and defor-
mation of blood cells [5, 69–71]. We could use coda interferometry of seismic
waves to detect temporal changes in Earth’s crust or we can use electromag-
netic waves to diagnose the organic content of oil shales [72–74]. Whether
acoustic, electromagnetic, or seismic waves are used depends of course on
the setting of the problem. Often the propagation of waves through scatter-
ing materials is described extremely well by the radiative transfer equation
for an isotropic medium, supplied with some phase function of the scatterer
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[75]. The radiative transfer equation describes everything from ballistic prop-
agation to diffuse propagation, but can in general only be solved numerically.
Anisotropic disordered media can not be treated by the standard isotropic ra-
diative transfer equation. Statistically anisotropic media are encountered in
many fields, such as in optics [27, 28, 76], in seismology [72, 73, 77], in quan-
tum theory, [78], and in medicine and biology [2, 3, 5, 79–82].

In this chapter, we present a model for scalar waves in a random medium
with anisotropy, and introduce two mappings of electromagnetic waves on
scalar waves. New in our model as compared to other scalar wave models, see
e.g. [68, 77] is the incorporation of an anisotropic host medium. We introduce
scattering, extinction and momentum transfer cross sections for the wave am-
plitude and establish the optical theorem in an anisotropic host medium. We
transform the exact Bethe-Salpeter equation for scalar waves in anisotropic
media into a generalized Boltzmann transport equation. We obtain the Ward
identity and a continuity equation for the wave energy density. Then we derive
from the generalized Boltzmann transport equation an equation of radiative
transfer with anisotropy, and we present some ideas that may help to create a
Monte Carlo simulation of waves in anisotropic media.

We present the scalar wave theory in detail in sections 2.2 through 2.4, with
a technical derivation of the Ward identity in appendix A. In section 2.5 we
summarize the main results, and we present some examples of the effect of
anisotropy in section 2.7.

2.2 Mapping vectors to scalars

In this section, we map the Maxwell equations to a scalar model in order to
simplify future calculations for random multiple scattering media. In the ab-
sence of free electric charges and currents, the Maxwell equations, in an oth-
erwise arbitrary medium, give rise to energy densityHem and fluxSem,

Hem = 1

2

[
E∗ ·D+B∗ ·H +c.c.

]
, (2.1a)

Sem = E×H∗+c.c.. (2.1b)

Employing the constitutive relations D = ε ·E and B = µ ·H , in media with
dielectric permittivity tensor ε and permeability tensor µ, both constant in
time, we find closed anisotropic wave equations forE andH ,

∇×µ−1 · (∇×E)+ε · ∂
2E

∂t 2 = 0, (2.2a)

∇×ε−1 · (∇×H)+µ · ∂
2H

∂t 2 = 0. (2.2b)
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We identify (2.1a) and (2.1b) with the HamiltonianH and flux S for a scalar
field ψ in a homogeneous anisotropic medium,

H = 1

2

[
1

ci
2

∂ψ∗

∂t

∂ψ

∂t
+∇ψ∗ ·A ·∇ψ+c.c.

]
, (2.3a)

S = −∂ψ
∂t

A ·∇ψ∗+c.c.. (2.3b)

Here A is a dimensionless tensor representing the anisotropy of the medium,
and ci is a velocity. The scalar field ψ satisfies an anisotropic wave equation

∇ ·A ·∇ψ− 1

ci
2

∂2ψ

∂t 2 = 0. (2.4)

Our mapping of the vector fields on a scalar field is neither bijective, nor
unique. The disadvantage of having lost an exact description of polarization
effects in multiple scattering of light is far outweighed by the numerous ad-
vantages. To solve for the electromagnetic fields we would require tensorial
Green functions, which can have up to 6 independent components, whereas
for ψ we need only one scalar Green function. For the average wave intensity,
which is governed by the exact Bethe-Salpeter equation, we would need the
product of two Green tensors, and, in the worst case, would have to solve up
to 36 coupled equations. The actual number of independent equations could
reduce to 4 in situations of high symmetry [83]. Interference effects in mul-
tiple scattering of light are often of greater importance than polarization. In
isotropic media, polarization is washed out after less than 20 scattering events
for Rayleigh scatterers [84], whereas interference effects could survive even af-
ter an infinite number of scattering events, such as in the cone of enhanced
backscattering.

When we choose a mapping, we could follow [68] and interpret the scalar
field ψ as a potential for the electromagnetic fields by mapping (2.1a) and
(2.2a) to (2.3a) and (2.4) respectively, identifying in anisotropic media

µ−1

1
3 Tr

(
µ−1

) → A, (2.5a)

Tr
(
µ−1

)
Tr(ε)

→ ci
2, (2.5b)√

1

3
Tr(ε) |E| → 1

ci

∂ψ

∂t
, (2.5c)√

1

3
Tr(µ−1)B → ∇ψ, (2.5d)
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where we see that only the trace of ε survives. In the scalar mapping we can
take into account only the anisotropy in the permeability tensor µ. Anisotro-
pic magnetic permeability tensors are not frequently encountered in optics.
Rather than mapping (2.1a) and (2.2a) to (2.3a) and (2.4), we therefore map
(2.1a) and (2.2b) to (2.3a) and (2.4) respectively, which leads to the identifica-
tions

ε−1

1
3 Tr

(
ε−1

) → A, (2.6a)

Tr
(
ε−1

)
Tr

(
µ
) → ci

2, (2.6b)√
1

3
Tr(µ) |H | → 1

ci

∂ψ

∂t
, (2.6c)√

1

3
Tr(ε−1)D → ∇ψ. (2.6d)

We use this model to calculate the effect of dielectric anisotropy on transport
of waves through random media.

2.3 Scalar wave amplitude

To describe energy transport of waves exactly, we need to define a few quan-
tities relating to the underlying ave amplitude. In this section we first present
a homogeneous anisotropic media. We add a scatterer and determine cross
sections. Finally we present the Dyson Green function for the ensemble aver-
aged amplitude.

2.3.a Mean field quantities

In an anisotropic medium, rather than having an ordinary, extraordinary, and
longitudinal dispersion relation, one has always only one dispersion relation
for ψ, thus only one phase velocity vp (a scalar), one group velocity vg (a vec-
tor), and one refractive index m. The dispersion relation in the homogeneous
anisotropic medium reads

ω2

ci
2 −k ·A ·k ≡ 0. (2.7)

We will use the notation k for wave vectors which satisfy (2.7), and p for wave
vectors that do not.
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2.3 Scalar wave amplitude

Equation (2.7) implicitly defines the function ω(k), in terms of which the
phase and group velocities and refractive index are defined by

vp (k) ≡ ω (k)

|k| = ci

√
ek ·A ·ek, (2.8a)

vg (k) ≡ ∂ω (k)

∂k
= ci

2

vp (ek)
A ·ek, (2.8b)

m (ek) ≡ c0

vp (ek)
= c0

ci

1√
ek ·A ·ek

, (2.8c)

where c0 the velocity of light in vacuum. Along any principal axis ea of the
anisotropy tensor A we have vg (ea) = vp (ea)ea. In isotropic media A= 1, and
the expressions above reduce to vg = vp = ci. We plot the frequency surface
(2.7), the phase velocity (2.8a), and the group velocity (2.8b) in Fig. 2.1, 2.2,
and 2.3 respectively.

When we obtain the solution for ψ for arbitrary A, we can model the or-
dinary and extraordinary polarizations by choosing the right values for A.

2.3.b Scatterers in an anisotropic medium

Instead of defining dielectric scatterers, with which our mapping would lead
to unwanted nonlocal effects (a velocity dependent potential), we introduce
inhomogeneities in the magnetic permeability µ. Then the frequency depen-
dent scattering potential V is

Vω (x,x0) ≡ −ω
2

ci
2

[
µ (x)

µ
−1

]
δ3 (x−x0) , (2.9)

where both µ(x) and µ ≡ Tr(µ)/3 are scalar quantities. The amplitude Green
function G in the presence of scatterers satisfies[

∇ ·A ·∇+ ω2

ci
2

]
Gω (x,x0) = δ3 (x−x0)+

∫
d3x1Vω (x,x1)Gω (x1,x0) .

(2.10)

In terms of the free space Green function g , which is the solution to Eq. (2.10)
for V = 0, the Green function for the inhomogeneous medium reads [6, 85]

Gω (x,x0) = gω (x,x0)+
∫

d3x2

∫
d3x1gω (x,x2)Vω (x2,x1)Gω (x1,x0) .

(2.11)
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Figure 2.1 (color online).
Examples of the frequency surface defined by 1 ≡ ci

2k · ε−1 ·k/(ω2Tr[ε−1]/3)
are plotted for a constant isotropic velocity ci and constant frequency ω. The
material is homogeneous with isotropic permeabilityµ and uniaxial dielectric
permittivity ε= (3+a)[1+aezez /(1−a)]/(ci

2Tr[µ]), where a parameterizes the
anisotropy. The solid line is for isotropic media, a = 0. The dotted line is for
an anisotropic dielectric with a = 3, and the dashed line is for a =−3/4.

The T matrix for potential V is defined by the recursion relation

Tω (x,x0) ≡ Vω (x,x0)+
∫

d3x2

∫
d3x1Vω (x,x2) gω (x2,x1)Tω (x1,x0) .

(2.12)

Free space is homogeneous, therefore momentum is conserved, and upon
Fourier transforming our equations we extract a Dirac delta function, which
leads to gω

(
p,p0

)≡ gω
(
p
)

(2π)3δ3
(
p−p0

)
, with the retarded solution

gω
(
p
) ≡ 1

ω2

ci
2 −p ·A ·p+ i0+ . (2.13)

Any potential V of finite support we can interpret as a single scatterer, and
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2.3 Scalar wave amplitude
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Figure 2.2 (color online).

The anisotropy in the phase velocity vp(ek)/ci =
√
ek ·ε−1 ·ek/(Tr[ε−1]/3) is

plotted for an arbitrary isotropic velocity ci. The material is homogeneous
with isotropic permeabilityµ and uniaxial dielectric permittivity ε= (3+a)[1+
aezez /(1 − a)]/(ci

2Tr[µ]), where a parameterizes the strength of the aniso-
tropy. The solid line is for isotropic media, a = 0. The dotted line is for an
anisotropic medium with a = 3, and the dashed line is for a =−3/4.

we can write down the optical theorem for the T matrices [85], with our free
space Green function (2.13)

Im
[
Tω

(
p,p

)] =
∫

d3p0

(2π)3 Im
[
gω

(
p0

)]∣∣Tω (
p,p0

)∣∣2 , (2.14)

The imaginary part of g imposes the dispersion relation (2.7), thus fixing the
wave vector magnitude as a function of frequency ω and direction ek. The
optical theorem (2.14) gives rise to extinction and scattering cross sections σs

and σe, which are found to be

σsω (ek) ≡
〈Tω

(
ek,ek1

)
T ∗

ω

(
ek,ek1

)〉ek1

4π
p

detA
, (2.15a)

σeω (ek) ≡ −ciIm[Tω (ek,ek)]

ω
. (2.15b)

The scattering cross section (2.15a) is sensitive to the medium surrounding
the scatterer. The effect of the medium is contained in the average 〈. . .〉 over
the anisotropic surface at constant frequency,

〈. . .〉ek ≡
∫

d2ek
4π

. . .√
(ek ·A ·ek)3 detA−1

, (2.16)
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Chapter 2 Anisotropic radiative transfer in infinite media
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Figure 2.3 (color online).

The anisotropy in the group velocity vg(ek) = ciε
−1 ·ek/

√
ek ·ε−1 ·ekTr[ε−1]/3

is plotted for some constant velocity ci. The material is homogeneous with
isotropic permeability µ and uniaxial dielectric permittivity ε = (3 + a)[1+
aezez /(1 − a)]/(ci

2Tr[µ]), where a parameterizes the strength of the aniso-
tropy. The solid line is for isotropic media, a = 0. The dotted line is for an
anisotropic dielectric with a = 3, and the dashed line is for a =−3/4.

such that 〈1〉ek = 1.
Apart from the scattering and extinction cross sections (2.15a) and (2.15b),

we require the differential scattering cross section,

dσsω
(
ek,ek1

)
d2ek1

≡ Tω
(
ek,ek1

)
T ∗

ω

(
ek,ek1

)
(4π)2

(
ek1 ·A ·ek1

) 3
2

. (2.17)

The differential scattering cross section (2.17) is a measure for the amount of
radiance send into solid angle d2ek1 around ek1 , after it is removed from an
incoming beam with wave vector ek.

Elastic point scatterer

As an example of a scatterer in an anisotropic medium we consider a point
scatterer. The matrix elements of the scattering potential Vp of a point scat-
terer at xp are

Vpω(x,x0) ≡ Vpωδ
3(x−xp)δ3(x−x0), (2.18a)

Vpω ≡ −ω
2

ci
2αB. (2.18b)
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2.3 Scalar wave amplitude

The strength of the potential is governed by αB, which is the “bare” magnetic
polarizability, which, for scalar waves, is equal to the static polarizability [86].

The T matrix of the isotropic point scatterer is

Tpω(x,x0) ≡ Tpωδ
3(x−xp)δ3(x0 −xp), (2.19a)

Tpω ≡ Vpω

1−∫ d3p
(2π)3 gω(p)Vpω

. (2.19b)

The integral in the denominator of (2.19b) over the whole wave vector space
diverges, but it can be regularized by using

1
ω2

ci
2 −p ·A ·p

= 1
ω2

ci
2 −p ·A ·p

ω2

ci
2p ·A ·p − 1

p ·A ·p . (2.20)

A similar method has been employed in [68] in isotropic media. The diver-
gence is now in the term 1/p ·A ·p. The integral over the regularized part is

lim
0+↓0

∫
d3p

(2π)3

1
ω2

ci
2 + i0+−p ·A ·p

ω2

ci
2p ·A ·p = − i

4π

ω

ci

1p
detA

. (2.21)

The integral over the diverging term is cut off at large wave vector, |A 1
2 ·p| =

Λπ/2 Àω/ci, ∫
d3p

(2π)3

1

p ·A ·p = Λ

4π
p

detA
. (2.22)

The T matrix of the point scatterer has a Lorentzian-type of resonance, with
resonance frequency ω0 and linewidth Γ defined by

ω0
2 ≡ 4πci

2
p

detA

αBΛ
, (2.23a)

Γ ≡ ω0
2

ciΛ
. (2.23b)

Additionally the quality factor of the resonance is defined by Q ≡ ω0/Γ. We
finally obtain the T matrix of an isotropic point scatterer in an anisotropic
dielectric,

Tpω = −4πci
p

detAω2Γ/ω0
2

ω0
2 −ω2 − iω3Γ/ω0

2 . (2.24)

The ratio Γ/ω0
2 = (ciΛ)−1 is independent of

p
detA. We require six indepen-

dent quantities from the set {µ,ε11,ε22,ε33,ω0,αB,Γ} to determine the point
scatterer. The dynamic polarizability is given by αω =−Tpω/(ω/ci)2.

19



Chapter 2 Anisotropic radiative transfer in infinite media

The T matrix of the point scatterer (2.24) satisfies the optical theorem, so its
extinction and scattering cross sections are equal. The scattering cross section
σp of the point scatterer is

σpω = 4πci
2
p

detA(ω2Γ/ω0
2)2

(ω0
2 −ω2)2 + (ω3Γ/ω0

2)2 . (2.25)

If we takeω0 = 0, then the scattering cross section (2.25) divided by (2π)2Γ/ω0
2

exactly coincides with a Lorentzian function centered around 0. We plotted
the frequency dependence of the scattering cross section in Fig 2.4.

The differential scattering cross is direction dependent, because the solid
angle element is deformed by the anisotropy, it is

dσpω

(
ek,ek1

)
d2ek1

≡ σpω

4π
(
ek1 ·A ·ek1

) 3
2

. (2.26)

2.3.c Ensemble averages and Dyson Green function

The Dyson Green function 〈〈G〉〉 is the ensemble average of the amplitude
Green function G , and defines the in general complex valued self energy Σ
[87],

〈〈Gω (x,x0)〉〉 ≡ gω (x,x0)

+
∫

d3x2

∫
d3x1gω (x,x2)Σω (x2,x1)〈〈Gω (x1,x0)〉〉

. (2.27)

The ensemble averaging restores homogeneity so that momentum is conser-
ved

〈〈Gω

(
p−,p+

)〉〉 ≡ Gω

(
p−

)
(2π)3δ3 (

p+−p−
)

(2.28a)

Σω
(
p−,p+

) ≡ Σω
(
p−

)
(2π)3δ3 (

p+−p−
)

. (2.28b)

The Dyson Green function is

Gω

(
p
) = 1

ω2

ci
2 −p ·A ·p−Σω

(
p
) . (2.29)

The poles of the Dyson Green function obey the complex dispersion rela-
tion

ω2

ci
2 −κ ·A ·κ−Σω(κ) = 0 (2.30)
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Figure 2.4 (color online).
The extinction cross sectionσe of point scatterers in anisotropic media is plot-
ted as a function of frequency. λi = 2πci/ω is an isotropic wavelength. The ani-
sotropic medium is given by ε= (3+a)[1+aezez /(1−a)]/(ci

2Tr[µ]). As large
wave vector cutoff we set πΛ/2 = 10ωmax/ci. The solid line is for isotropic me-
dia, a = 0. The dotted line is for uniaxial media with a = 3, and the dashed
line is for media which have a = −3/4. Waves at constant frequency ω inside
the anisotropic material have a wavelength λ which is direction dependent,
so for certain directions the dotted and the dashed curves will have different
values. The differences between the cross sections shown in this plot are due
to the volume element of the anisotropy tensor which is

√
(3/(3+a))3(1+a),

which is smaller than unity for a 6= 0 and a must be larger than −1, otherwise
the components of the dielectric tensor can become negative.

and we use notation κ for wave vectors satisfying dispersion relation (2.30).
The real and imaginary parts of the wave vector magnitude κ(eκ), defined
such that κ= κ(eκ)eκ, as recursive functions of frequency ω and wave vector
direction eκ are

Re[κ(eκ)] ≡ ω

vp(eκ)

√
Re[µω(κ)]+|µω(κ)|

2µ
, (2.31a)

Im[κ(eκ)] ≡ 1

2µ

ω2

vp
2(eκ)

Im[µω(κ)]

Re[κ(eκ)]
, (2.31b)

µω(κ)

µ
≡ 1− ci

2

ω2Σω(κ), (2.31c)

with vp defined in (2.8a), and µω(κ) an effective medium permeability incor-
porating scattering effects.
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Chapter 2 Anisotropic radiative transfer in infinite media

The real part of the wave vector defines a new phase velocity ṽp “dressed”
with scattering effects. The imaginary part of the wave vector defines an ex-
tinction mean free time τe, which is direction dependent. We find

1

ṽpω(eκ)
≡ Re[κ(eκ)]

ω
(2.32a)

1

τeω(eκ)
≡ 2vp(eκ)Im[κ(eκ)], (2.32b)

where in the latter indeed the “bare” phase velocity (2.8a) appears, because
κ(eκ)2 = [ω/vp(eκ)]2µω(κ)/µ. The group velocity associated with the effective
medium is defined by

ṽgω(eκ) ≡ Re

[
∂ω(κ)

∂κ

]
= ci

2A ·eκ
ṽpω(eκ)

. (2.33)

The second equality applies only when Σω(κ) is isotropic.
The implicit equation for κ becomes explicit if we are given an explicit self

energyΣ. In the independent scattering limit for scatterer density n and single
scatterer T matrix T we approximate Σω ≈ nTω, and obtain for the real part of
the wave vector and for the extinction mean free time

vp(eκ)

ṽpω(eκ)
= 1− n

2

ci
2

ω2 Re[Tω(eκ,eκ)]+O(n2) (2.34a)

1

τeω (eκ)
= cinσe (eκ)+O(n2), (2.34b)

where we set κ=k in the single scatterer T matrix Tω(κ,κ) and σe(κ), with k
satisfying the homogeneous dispersion relation of the homogeneous medium
(2.7), which implies that the scatterers see each other in the far field. Likewise,
in the low density regime, the scattering mean free time is introduced accord-
ing to

1

τsω (eκ)
= cinσs (eκ)+O(n2), (2.34c)

and in elastic media τsω (eκ) ≡ τeω (eκ), due to (2.14).
When we consider isotropic point scatterers in anisotropic media, then the

self energy satisfies Σω(p) = Σω, and we can solve the time dependent Dyson
Green function in real space. Due to translational invariance the Green func-
tion depends only on the relative coordinate X = x−x0. The wave surface
φω(X) = constant and its unit normal vectornφ(X) are defined by

φω(X) ≡ |A− 1
2 ·X |

√
Re[µω]+|µω|

2µ
(2.35a)

nφ(X) ≡ ∇φω(X)

|∇φω(X)| = A−1 ·X
|A−1 ·X | , (2.35b)
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2.3 Scalar wave amplitude

Upon closer inspection of the wave front we learn that it can be expressed in
terms of group velocity (2.8b) and becomes

φω(X) =
√

Re[µω]+|µω|
2µ

ci|X |
|vgω(nφ(X))| . (2.35c)

We obtain a harmonic elliptical wave

Gω (X , t ) = |vg(nφ(X))|
ci

exp
(
iωci

[φω(X)−cit ]− |X|
2|leω(nφ(X))|

)
4π|X |pdetA

. (2.36)

Eq. (2.35c) shows that the elliptical wave front (2.36) propagates along eX
with a uniformly reduced group velocity (2.8b) due the effective permeability
µω. The elliptical wave (2.36) decays exponentially with the extinction mean
free path vector le, or for elastic scatterers, when τe = τs, with the scattering
mean free path vector ls. These vectors are introduced by

leω(eκ) ≡ τeω(eκ)vg(eκ), (2.37a)

lsω(eκ) ≡ τsω(eκ)vg(eκ), (2.37b)

such that both mean free path le,s(nφ(X)) ∝ eX . In (2.36), and later on also
in the radiative transfer equation, only the magnitudes le,s = |le,s| will appear.
However only when we define the extinction mean free path as a vector we
can write κ exclusively in terms of quantities which incorporate scattering ef-
fects, i.e. ṽp and le. We obtain κ(eκ) = ω/ṽp(eκ)+ i/(2le(eκ) ·eκ). Here we
made use of the fact that in the definition of the mean free time, Eq. (2.32b),
we can write vp(eκ) = vg(eκ) ·eκ. Therefore, instead of the well known ex-
pression in isotropic media le = (nσe)−1, in anisotropic media we have the
relation le(ek) = vg(ek)(cinσe)−1. This relation expresses the fact that in be-
tween scattering events the amplitude propagates with the anisotropic group
velocity (2.8b), and thus is sensitive not only to the scatterer, but also to the
surrounding medium. We plotted the extinction mean free path for isotropic
point scatterers in uniaxial media in Fig. 2.5.

When we compare in Fig 2.6 the frequency surface ω(k) = constant and the
wave surface φω(x) = constant, we note that the group velocity is perpendic-
ular to the frequency surface, but not to the wave surface. On the other hand,
if we define the wave vector direction to be the direction of the phase velocity
vp(ek), then the direction of the phase velocity vp(nφ(X)) is normal to the
wave surface as it should be [53].

23



Chapter 2 Anisotropic radiative transfer in infinite media

0 Π �4 Π �2 3Π �4 Π

Θ HradL

5

10

15

20

25

l e
�Λ

i
a=0
a=3
a=-3�4

Figure 2.5 (color online).
The extinction mean free path for point scatterers on resonance, per wave-
length λi ≡ 2πci/ω0. The material is homogeneous with isotropic permeabil-
ityµ and uniaxial dielectric permittivity ε= (3+a)[1+aezez /(1−a)]/(ci

2Tr[µ]),
where a parameterizes the anisotropy. We set the scatterer density n =
(2π)3(10λi)−3. The solid line is for isotropic media, a = 0. The dotted line is for
an anisotropic dielectric with a = 3, and the dashed line is for a = −3/4. The
anisotropy in the mean free path is due to the anisotropic medium in which
the isotropic scatterers reside. Note that at a fixed frequencyω the wavelength
inside the anisotropic material will be different in different directions.

2.4 Wave Energy Transport

2.4.a Generalized Boltzmann Transport

In order to derive a transport equation for the ensemble averaged energy den-
sity, we start with the product of amplitude Green functions, which gives a first
relation with the energy density, (2.3a). The Bethe-Salpeter equation is an ex-
act equation for the ensemble averaged product of amplitude Green functions
〈〈G∗⊗G〉〉 and is schematically given by [88],

〈〈G∗⊗G〉〉 = 〈〈G∗〉〉⊗〈〈G〉〉+〈〈G∗〉〉⊗〈〈G〉〉U 〈〈G∗⊗G〉〉 . (2.38)

Here U is known as the Bethe-Salpeter irreducible vertex, and similar to the
Dyson self energy, which is an irreducible vertex for the wave amplitude.

Ensemble averaging restores homogeneity of space. As a result both from
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2.4 Wave Energy Transport

〈〈G∗⊗G〉〉 and U a momentum conserving delta function can be extracted,

〈〈G∗
ω+

(
p+, p̃+

)
Gω−

(
p−, p̃−

)〉〉 ≡ Φω
(
p, p̃,P ,Ω

)
× (2π)3δ3 (

p+− p̃+−p−+ p̃−
)

, (2.39a)

Uω+ω−
(
p+, p̃+,p−, p̃−

) ≡ Uω

(
p, p̃,P ,Ω

)
× (2π)3δ3 (

p+− p̃+−p−+ p̃−
)

, (2.39b)

where we defined

p± ≡ p± P
2

(2.40a)

p̃± ≡ p̃± P̃
2

(2.40b)

ω± ≡ ω± Ω
2
+ i0+, (2.40c)

with 0+ an infinitesimal positive quantity to obtain the retarded solution; p
and ω represent the internal oscillations of a wave packet in space and time,
P andΩ represent the oscillations of the wave packet envelope. Furthermore
we define the responseΨ to an arbitrary source S by

Ψω

(
p,P ,Ω

) ≡
∫

d3p̃

(2π)3Φω
(
p, p̃,P ,Ω

)
Sω

(
p̃,P ,Ω

)
. (2.41)

When we integrate Eq. (2.38) over ∫d3p̃ ∫d3P̃Sω(p̃,P̃ ,Ω)/(2π)6, using the Eqs.
(2.39a), (2.39b), and (2.41), we obtain an equation forΨ

Ψω

(
p,P ,Ω

) = G∗
ω+

(
p+

)
Gω−

(
p−

)
×

[
Sω

(
p,P ,Ω

)+∫
d3p0

(2π)3 Uω

(
p,p0,P ,Ω

)
Ψω

(
p0,P ,Ω

)]
.

(2.42)

We can transform (2.42) into a generalized transport equation by rewriting
the product G∗G using ab = (a−1−b−1)−1(b−a), supplied with (2.29), (2.40a),
and the definitions

∆Gω

(
p,P ,Ω

) ≡ Gω−
(
p−

)−G∗
ω+

(
p+

)
2i

, (2.43a)

∆Σω
(
p,P ,Ω

) ≡ Σω−
(
p−

)−Σ∗
ω+

(
p+

)
2i

, (2.43b)

sω
(
p,P ,Ω

) ≡ −ci
2

ω
∆Gω

(
p,P ,Ω

)
Sω

(
p,P ,Ω

)
, (2.43c)

γω
(
p,p0,P ,Ω

) ≡ ci
2

ω
∆Σω

(
p,P ,Ω

)
(2π)3δ3 (

p−p0
)

−ci
2

ω
∆Gω

(
p,P ,Ω

)
Uω

(
p,p0,P ,Ω

)
. (2.43d)

25



Chapter 2 Anisotropic radiative transfer in infinite media

The quantity γ, defined in (2.43d), represents extinction of the direct beam
through the self energy term with∆Σ, and a collision term containing U . Here
U may be interpreted as a generalized differential scattering cross section.
The result is a generalized Boltzmann transport equation forΨ containing all
interference effects,[

iΩ− ci
2

ω
p ·A · iP

]
Ψω

(
p,P ,Ω

) = sω
(
p,P ,Ω

)
+

∫
d3p0

(2π)3γω
(
p,p0,P ,Ω

)
Ψω

(
p0,P ,Ω

)
,

(2.44)

in which we recognize iΩ as the Fourier transform of a time derivative, −iP
as the Fourier transform of the gradient, s as a source, and the integral over γ
falls apart into a ∆Σ term, related to extinction, and into a scattering integral
over U andΨ, which represents the contribution of all the light scattering into
the path. Specific for anisotropic media in (2.44) is the quantity ci

2p ·A/ω,
which reduces to the group velocity(2.8b) if p satisfies the dispersion relation
without scattering effects. Generalized Boltzmann transport equations of the
type (2.44) have never been solved exactly, not even for A = 1. In the next
sections we will present approximate solutions for anisotropic host media for
which A 6= 1.

2.4.b Energy Conservation

In section 2.4.a we derived a generalized Boltzmann transport equation (2.44)
for the ensemble averaged product of wave functionsΨ in anisotropic media.
The conserved quantity related to Ψ is the total energy. From the expression
for the energy density (2.3a) in anisotropic media we know that the energy
density must be an integral ofΨ over all internal wave vectors p. In Eq. (2.3a)
for the energy density the scattering potential can be incorporated by modify-
ing ci, and thus also contributes to the total energy density. The scalar waves
we describe scatter from an ensemble averaged frequency dependent poten-
tial (2.9).

In order to determine the amount of energy density in the scattering pro-
cess, we need the Ward identity for classical scalar waves in anisotropic media.
The Ward identity is a relation between the Dyson self energy and the Bethe-
Salpeter irreducible vertex, and we establish the identity for classical scalar
waves in anisotropic media in appendix A. The result is,∫

d3p0

(2π)3γω
(
p0,p,P ,Ω

) = −iΩδω
(
p,P ,Ω

)
, (2.45a)
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2.4 Wave Energy Transport

where the dimensionless function δ is

δω(p,P ,Ω)

ci
2 ≡ −Σ

∗
ω+(p+)+Σω−(p−)

ω+2 +ω−2

−
∫

d3p̃

(2π)3 Uω

(
p, p̃,P ,Ω

) G∗
ω+

(
p̃+

)+Gω−
(
p̃−

)
ω+2 +ω−2 . (2.45b)

The Ward identity (2.45a) is similar to results found in the literature [68, 89,
90]. The fact that δω 6= 0 informs us that the total energy density H is the sum
of a radiative energy density Hr and material energy density Hm. We define
these two parts of the energy density and their ratio δω(P ,Ω) by

Hrω (P ,Ω) ≡ ω2

ci
2

∫
d3p

(2π)3Ψω

(
p,P ,Ω

)
(2.46a)

Hmω (P ,Ω) ≡ ω2

ci
2

∫
d3p

(2π)3δω(p,P ,Ω)ΨΩ
(
p,P ,Ω

)
(2.46b)

δω (P ,Ω) ≡ Hm (P ,Ω)

Hr (P ,Ω)
, (2.46c)

where the ratio of energy densities satisfies δω(P ,Ω) ≥−1 for the total energy
density to be positive, even when we take eitherΩ→ 0 orP →0.

The quantities relevant for conservation of energy are the total energy den-
sity H = Hr +Hm, which follows from equations (2.46), the energy density
flux S defined in equation (2.3b), which in our case does not achieve a ma-
terial contribution, and a source sω(P ,Ω) for the energy density, obtained by
integrating the source sω(p,P ,Ω) over the internal wave vector p. Thus the
total energy density, energy density flux and energy density source related to
the generalized Boltzmann equation (2.44) are defined by

Hω (P ,Ω) ≡ ω2

ci
2

∫
d3p

(2π)3 [1+δω(p,P ,Ω)]Ψω

(
p,P ,Ω

)
(2.47a)

Sω (P ,Ω) ≡ ω2

ci
2

∫
d3p

(2π)3

ci
2

ω
A ·pΨω

(
p,P ,Ω

)
(2.47b)

sω (P ,Ω) ≡ ω2

ci
2

∫
d3p

(2π)3 sω
(
p,P ,Ω

)
. (2.47c)

In the definition of the flux (2.47b) we recognize the group velocity ci
2A ·p/ω

of the host medium, were we to use dispersion relation (2.7) and set p=k.
If we apply ω2/ci

2 ∫d3p/(2π)3 to (2.44), then, with the help of equations
(2.47) for total energy density H , flux S, and source s, we establish the con-
servation of the total energy,

iΩHω (P ,Ω)− iP ·Sω (P ,Ω) = sω (P ,Ω) . (2.48)
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Chapter 2 Anisotropic radiative transfer in infinite media

We recall that iΩ and −iP are the Fourier representations of the time and
space derivatives.

2.4.c Radiative Transfer

The radiance per frequency band, Iω
(
ep,x, t

)
, in the astrophysical literature

better known as specific intensity, is closely related to the energy density flux
(2.47b). In Fourier space it is

Iω
(
ep,P ,Ω

) ≡ ω2

ci
2

∫
dp

(2π)3 p2 |ci
2A ·p|
ω

Ψω

(
p,P ,Ω

)
, (2.49)

where p ≡ |p|. In order to acquire a radiative transfer equation for the radiance
I , we will adopt the dispersion relation (2.7), which comes down to making
the following replacements in the generalized Boltzmann transport equation
(2.44),

− ci
2

ω
∆Gω(p,P ,Ω) → π

2

ci
4

ω2

δ
(

ω
vp(ep) −p

)
vp(ep)

, (2.50a)

ω2

ci
2Ψω(p,P ,Ω) →

(2π)3v2
p(ep)

|vg(ep)|ω2 δ

(
ω

vp(ep)
−p

)
Iω(ep,P ,Ω). (2.50b)

In order to obtain a radiative transfer equation for the radiance per fre-
quency band in wave vector space, we integrate the generalized Boltzmann
transport equation (2.44) over ω2/ci

2 ∫dp/(2π)3p2
∣∣vg

(
p
)∣∣, and insert (2.50).

We identify the group velocity (2.8b) and obtain a Boltzmann transport trans-
port equation for the radiance I ,[

iΩ−vg (ek) · iP
]

Iω (ek,P ,Ω) = ξω (ek,P ,Ω)

+
∫

d2ek0ζω
(
ek,ek0 ,P ,Ω

)
Iω

(
ek0 ,P ,Ω

)
,

(2.51)

where we have defined the source for the radiance, ξ, and the scattering and
extinction term ζ by

ξω
(
ep,P ,Ω

) ≡ ω2

ci
2

∫
dp

(2π)3 p2
∣∣vg

(
p
)∣∣ sω

(
p,P ,Ω

)
, (2.52a)

ζω
(
ep,ek,P ,Ω

) ≡
∫

dp

(2π)3

p2
∣∣vg

(
ep

)∣∣γω (
p,ek,P ,Ω

)∣∣vg (ek)
∣∣ . (2.52b)

We approximate ζ in lowest order in the scatterer density n, i.e. approximate
the Dyson Self energy in the independent scattering approximation and at the
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2.4 Wave Energy Transport

same time the Bethe-Salpeter irreducible vertex in the Boltzmann approxima-
tion,

Σω(p) = nTω(p,p)+O(n2), (2.53a)

Uω(p, p̃,P ,Ω) = nT ∗
ω+(p+, p̃+)Tω−(p̃−,p−)+O(n2). (2.53b)

Here we used definitions (2.40) with P̃ =P . Approximations (2.53) preserve
energy conservation. The phase function pω

(
ek,ek0

)
is defined by

pω
(
ek,ek0

) ≡ 1

σsω
(
ek0

) dσsω
(
ek,ek0

)
d2ek

. (2.54)

For the final term in Eq. (2.51) we find, using (A.13), the length scales (2.37a),
and (2.37b) in the low density approximations (2.34b) and Eq. (2.34c), the
relation

Iω (ek,P ,Ω)

|leω (ek) | = 1∣∣vg (ek)
∣∣
∫

d2ek0ζ
(
ek,ek0 ,P ,Ω

)
Iω

(
ek0 ,P ,Ω

)
−iΩ

∫
d2ek0

dδω
(
ek,ek0 ,0,0

)
d2ek

Iω
(
ek0 ,P ,Ω

)∣∣vg
(
ek0

)∣∣
+

∫
d2ek0

pω
(
ek,ek0

)
Iω

(
ek0 ,P ,Ω

)
|lsω

(
ek0

) | . (2.55)

Due to the general symmetry

γ(p,p0,P )
δ( ω

vp(ep0 ) −p0)

vp(ep0 )
= γ(p0,p,P )

δ( ω
vp(ep) −p)

vp(ep)
(2.56)

we have in particular∫
d2ek0

dδω
(
ek,ek0 ,0,0

)
d2ek

Iω(ek0 ,P ,Ω)∣∣vg
(
ek0

)∣∣ = δω(ek,0,0)Iω(ek,P ,Ω)∣∣vg (ek)
∣∣ .

(2.57)

We will now introduce the derivative along a curve. At any point (t ,x) we
can consider an infinitesimal cylindrical volume element dV = dAds with dA
the cross section of the cylinder and ds the length. The cylinder is oriented
along the group or energy velocity direction, i.e. es ≡ vg (ek)/

∣∣vg (ek)
∣∣, while

keeping ek fixed, see Fig. 2.8. Given an ek at (t ,x), then the irradiance dI ,
traveling a distance ds along es at velocity ds/dt = vg(ek)/[1+δω(ek,0,0)], is

dIω (ek,x, t )

ds
=

[
1+δω(ek,0,0)

|vg(ek)|
∂

∂t
+es(ek) ·∇

]
Iω (ek,x, t ) . (2.58)
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Chapter 2 Anisotropic radiative transfer in infinite media

Inserting (2.55) into (2.51), Fourier transformingP tox andΩ to t , dividing
by

∣∣vg
∣∣, and using (2.58) we finally find the radiative transfer equation,

dIω (ek,x, t )

ds
= ξω (ek,x, t )∣∣vg (ek)

∣∣ − Iω (ek,x, t )

|leω (ek) |

+
∫

d2ek0

pω
(
ek,ek0

)
Iω

(
ek0 ,x, t

)
|lsω

(
ek0

) | . (2.59)

We refer to Fig. 2.8 for a phenomenological picture. The source term of the
radiative transfer equation can be related to the source term S for the Bethe-
Salpeter equation according to

ξω (ek,x, t )∣∣vg (ek)
∣∣ = ω2ci

2

(4π)2v3
p(ek)

Sω(ek,x, t ), (2.60)

where the prefactor results from the radiative density of states. For an incom-
ing unit plane wave Sω(ek,x, t ) = 1.

When we compare Eq. (2.59) with Ref. [68] we see some differences. Firstly,
we see the appearance of a group velocity in the denominator of the source
term, which represents the anisotropy in the available local radiative density
of propagating states. Secondly, we see the appearance of mean free paths as
function of ek, and ls,e(ek) ∝ es .

Note that there is a scattering delay contained in d/ds, and that integrating
(2.59) over ∫d2ek will cancel the extinction and scattering term against each
other. This results in a continuity equation for the energy density H , see Eq.
(2.48).

In Eq. (2.59) we may introduce the albedo a by

aω (ek) ≡ σsω (ek)

σeω (ek)
= |leω (ek) |

|lsω (ek) | , (2.61)

which is just the ratio of extinction and scattering mean free path vector com-
ponents along the direction of propagation es . We replace the distance ds by
the optical depth do defined by

doω (ek) ≡ ds

|leω (ek) | , (2.62)

such that we obtain the radiative transfer equation in terms of optical depth
and albedo as

dIω (ek,x, t )

doω (ek)
= |leω (ek) |

|vg (ek) | ξω (ek,x, t )− Iω (ek,x, t )

+
∫

d2ek0pω
(
ek,ek0

) doω
(
ek0

)
doω (ek)

aω
(
ek0

)
Iω

(
ek0 ,x, t

)
.

(2.63)
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2.5 Summary of radiative transfer

We infer that the radiance scattering into direction es is reduced by the albedo
factor due to extinction along the traveled optical depth towards the scatterer
atx. We recognize a ratio of optical path lengths, which expresses the fact that
in anisotropic media the optical depth is different in different directions.

The radiance travels along the propagation direction es, and the observed
phase function in anisotropic media is

pω
(
es ,es0

) ≡ 1

σsω
(
es0

) dσsω
(
es ,es0

)
d2es

, (2.64)

We recall that the propagation direction of the radiance equals the direction
es of the group velocity (2.8b), which is in anisotropic media is not equal to
ek. In section 2.7 we present some examples of the (an)isotropic quantities
appearing in the radiative transfer equation (2.59).

2.5 Summary of radiative transfer

In the previous sections we presented a long derivation of the radiative trans-
fer equation for anisotropic media starting from basic building blocks. These
building blocks were a scalar wave amplitude and a scattering potential. In
this section we give a brief summary of the ingredients of the model and the
resulting radiative transfer equation.

In the absence of scattering potentials the scalar wave satisfied an anisotro-
pic scalar wave equation

∇ ·A ·∇ψ− 1

ci
2

∂2ψ

∂t 2 = 0. (2.65)

We mapped the physical quantities in the Maxwell equations on the scalar
waveψ, the anisotropy tensor A, and the isotropic velocity of light ci according
to

ε−1

1
3 Tr

(
ε−1

) → A, (2.66a)

Tr
(
ε−1

)
Tr

(
µ
) → ci

2, (2.66b)√
1

3
Tr(µ) |H | → 1

ci

∂ψ

∂t
, (2.66c)√

1

3
Tr(ε−1)D → ∇ψ. (2.66d)

In contrast with other scalar wave models for light we can use this mapping
to incorporate an anisotropic permittivity tensor ε in a scalar wave model.
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Chapter 2 Anisotropic radiative transfer in infinite media

Because we put a locality requirement on the scattering potential, we must
incorporate (anisotropic) scatterers as inhomogeneities in the permeability,
which in the scalar model must be a scalar quantity. Our mapping forces us
to incorporate scatterers, which may be anisotropic. Mapping (2.66a) is not
unique, an alternative mapping incorporating a tensorial permeability and di-
electric scatterers is presented in section 2.2.

In section 2.3 we discussed the propagation of the scalar wave amplitude.
The dispersion relation in the absence of scatterers defines the real valued
wave vector k,

ω2

ci
2 −k ·A ·k ≡ 0, (2.67)

and determines the phase and group velocity vp and vg. When scatterers are
added to the problem we have to deal with the complex wave vectorκ. We de-
rived the radiative transfer equation in the independent scattering and Boltz-
mann approximations, thus the scatterers see each other in the far field. The
complex wave vector consistent with this limit is

κ = k+ i

le(ek) ·ek
ek. (2.68)

In isotropic media le(ek) ·ek = le(ek). However in anisotropic media (2.68)
le(ek) 6∝ ek, but it is still le(ek) = |le(ek)| which turns up in the radiative trans-
fer equation.

Given a scatterer density n, the extinction mean free path vector le in (2.68),
and the scattering mean free path vector ls are related to the extinction and
scattering cross sections σe and σs by

lsω(ek) = vg(ek)

cinσsω(ek)
, (2.69a)

leω(ek) = vg(ek)

cinσeω(ek)
. (2.69b)

If the scattering is elastic, then le = ls as expected.
In section 2.4 we proceeded with a derivation of the radiative transfer equa-

tion for anisotropic media starting from the exact Bethe-Salpeter equation. In
order to write down the resulting radiative transfer equation for anisotropic
media in a familiar form we now only need to introduce derivative of the radi-
ance along the path given by

dI (ek,x, t )

ds
= 1+δω(ek,0,0)

|vg(ek)|
∂I (ek,x, t )

∂t
+ vg(ek)

|vg(ek)| ·∇I (ek,x, t ).

(2.70)
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2.5 Summary of radiative transfer

The quantity δ is a scattering delay due to the fact that the scatterers are fre-
quency dependent, and is derived in appendix A. When there is no scattering,
the radiance propagates at velocity vg. The scatterers along the path of the ra-
diance are inhomogeneities in the refractive index, and therefore the radiance
is delayed due to internal reflections inside the scatterers.

The radiative transfer equation in anisotropic media, for the radiance per
frequency band Iω is given by

dIω (ek,x, t )

ds
= ξω (ek,x, t )∣∣vg (ek)

∣∣ − Iω (ek,x, t )

|leω (ek) |

+
∫

d2ek0

pω
(
ek,ek0

)
Iω

(
ek0 ,x, t

)
|lsω

(
ek0

) | . (2.71)

Equation (2.71) describes transport of radiance. When the radiance I propa-
gates along a a path parameterized by s, then it the amount of radiance in-
creases due to a source of incoming radiance per unit time ξ, it decreases
because of extinction due to scattering and absorption, and it can increase
because radiance is scattered into its propagation direction, see also Fig. 2.8
for this phenomenological picture. The derivation of the anisotropic radiative
transfer equation was presented in section 2.4.c.

Indeed equation (2.71) appears to have the same structure as the radiative
transfer equation for isotropic media. There are a few differences however. In
our equation there is not only anisotropy in the phase function, but there is
also anisotropy in the mean free path. Furthermore, because in our equation
the wave vector has a different direction as the group velocity, and can there-
fore be used for either the ordinary, or the extraordinary radiance (not at the
same time however). Finally hidden in the derivative along a path dI /ds is an
anisotropic scattering delay.

Radiative transfer equation (2.71) gives rise to a continuity equation for the
total energy density. The energy density per frequency band Hω and energy
density flux per frequency band Sω, are related to the radiance per frequency
band Iω by

Hω (x, t ) =
∫

d2ek
1+δω(ek,0,0)∣∣vg (ek)

∣∣ Iω (ek,x, t ) , (2.72a)

Sω (x, t ) =
∫

d2ekIω (ek,x, t )
vg (ek)∣∣vg (ek)

∣∣ . (2.72b)

In the total energy density we observe again both a radiative part and a mate-
rial part due to the scattering delay represented by δ.
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Chapter 2 Anisotropic radiative transfer in infinite media

2.6 Monte Carlo Method for Radiative Transfer

In this section we will provide a recipe for a Monte Carlo simulation [10, 11] of
the radiative transfer equation (2.59) in an unbounded homogeneous aniso-
tropic random medium [83]. We recall that

dIω (ek,x, t )

ds
= ξω (ek,x, t )∣∣vg (ek)

∣∣ − Iω (ek,x, t )

|leω (ek) |

+
∫

d2ek0

pω
(
ek,ek0

)
Iω

(
ek0 ,x, t

)
|lsω

(
ek0

) | . (2.73)

In order to solve the radiative transfer equation for the radiance Iωdω per fre-
quency band dω we require

• a tensor host permittivity ε and a scalar host permeability µ which, us-
ing the dispersion relation (2.7), determine the group and phase veloc-
ity,

• the absorption and scattering properties of the microscopic scatterers,
i.e. their differential scattering cross section, and their absorption cross
section, which then yield the extinction and scattering mean free path,
albedo, phase function, and scattering delay.

• a source function for the radiance,

ξω (ek,x, t )∣∣vg (ek)
∣∣ = ω2ci

2

(4π)2v3
p(ek)

Sω(ek,x, t ), (2.74)

which is normalized such that for plane waves of unit amplitude we
have Sω(ek,x, t ) = 1.

We consider an infinite medium with homogeneous anisotropic disorder,
and follow the evolution of an initial state of the radiance for some time tf − t .
The initial radiance I0, which for simplicity we take to be a unit impulse func-
tion located at phase space coordinate (ek,x) is divided in N finite radiance
elements Ii . The size of N is chosen such that the desired accuracy is met.
Our initial state has only a single wave vector coordinate and a single spatial
coordinate. In the procedure we present below new coordinates are gener-
ated from these initial coordinates, and these we may store. Thus we can run
our Monte Carlo simulation without discretizing the phase space in advance.
Afterwards we can evaluate the stored coordinates, and we can determine if
and how we want to discretize the phase space. As an example we may want
to have a snapshot of where each radiance element was each femtosecond.
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2.6 Monte Carlo Method for Radiative Transfer

Provided the mean free path is much longer than the wavelength, in the first
few femtoseconds almost all radiance elements will still have their initial wave
vector, and all radiance elements are still close to their original spatial coordi-
nate. In order to see the small deviations from the initial coordinate, we need
to make the spatial bins very small. On the other hand, at much longer time
scales radiance elements will have spread thinly over a large part of the phase
space, and the bin size should be increased.

For more complicated initial states of the radiance we discretize the phase
space in advance in elements (dek,dx) where in each element the amount
of radiance is approximately constant. In each phase space element we can
assign the radiance again a single wave vector and a single spatial coordinate.
For each of these initial coordinates we can follow the procedure prescribed
in the above paragraph, and make the discretization of phase space consistent
with the accuracy requirements at each time step.

We will follow the trajectory of each discrete radiance element Ii of an initial
unit impulse function, so we require the initial wave vector direction, space
and time coordinates, ek, x and t respectively, and we can start the simula-
tion. The radiative transfer equation (2.59) tells us that for each discrete el-
ement two random quantities exist. First, radiance with a given wave vector
ek has a (conditional) probability P to travel some (positive valued) distance
δxω(ek) without scattering,

Pω[δxω(ek)|ek] = e
− δxω(ek)

|leω(ek)| . (2.75)

Next, the radiance has, again given the wave vector ek, a (conditional) proba-
bility pω

(
ekn |ek

)
d2ekn to scatter with another wave vector ekn ,

pω
(
ekn |ek

) ≡ 1

σsω (ek)

dσsω
(
ekn ,ek

)
d2ekn

. (2.76)

These two steps are taken, until the addition of time increments δt has
reached the final time tf:

1. Ii travels some space and time distance,

δxω(ek) = −|leω(ek)| lnPω[δxω(ek)|ek], (2.77a)

xn = x+δxω(ek)es(ek), (2.77b)

δtω(ek) = 1

|vg(ek)|δxω(ek), (2.77c)

t̃ = t +δtω(ek), (2.77d)
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2. Ii undergoes absorbtion and scattering and obtains a scattering delay
time,

δek = f [ek, pω
(
ekn |ek

)
], (2.77e)

ekn = ek+δek, (2.77f)

δtmω(ek) = δω(ek,0,0)

|vg(ek)| δxω(ek), (2.77g)

tn = t̃ +δt̃ω(ek), (2.77h)

Iniω(ekn ,xn, tn) = aω(ek)Iiω(ekn ,xn, tn), (2.77i)

where a is the albedo of the scatterers, which is unity in elastic me-
dia (2.61), and f some complicated vector function which can only be
made explicit given a phase function.

When this iterative procedure has been carried out for all N radiance ele-
ments, we end up with a distribution of radiance over phase space. During the
procedure we can also make snapshots, but there is a caveat, because in any
snapshot different Ii have traveled trajectories with different times. However,
each radiance element travels in a straight line before it undergoes scattering
or absorption, and we can calculate where the radiance was at any time. It is
straightforward to account for the number of scattering events along the tra-
jectory of radiance element Ii , because it is just the number of iterations used
to produce the trajectory. In our two step procedure we incremented the time
twice in order to focus attention to the physics in the energy velocity, which
consists of a radiative and a material part. In a real simulation one could add
both time increments in the first step.

The Monte Carlo method for unbounded media can be extended to incor-
porate bounded media. In bounded media the iteration is to be stopped as
well when the radiance element leaves the scattering material, as there will be
no scattering or absorption events anymore. Note that the attenuation for the
distance traveled inside the scattering material and possible (internal) reflec-
tions have to be accounted for.

In contrast with other Monte Carlo recipes for anisotropic media, our pro-
cedure has three key differences. Firstly, we incorporate an anisotropic host
medium. Thus in our model the direction of propagation of the radiance is
different from the wave vector direction, and can not only model the radiance
of ordinary waves, but can also model the radiance of extraordinary waves.
Secondly, we incorporate the effect of scattering delay, a quantity which is ani-
sotropic for anisotropic scatterers. Thus in media with anisotropic scatterers,
it is not sufficient to incorporate scattering delay by a rescaling the velocity of
light by a constant multiplicative factor. Thirdly the scattering and extinction
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2.7 Special host media

mean free path can be different for different propagation directions, not only
for the principal axes of the anisotropy, but for all directions.

2.7 Special host media

In this section we consider some special cases of scatterers and host media.
The magnetic permeability tensor of the host medium is assumed to be iso-
tropic, µ= 1

3 Tr[µ]1, whereas the dielectric tensor can be anisotropic. In these
examples we take the anisotropic host dielectric permittivity tensor on prin-
cipal axes. In a convenient Cartesian coordinate system we have

ε = εxxexex +εy yeyey +εzzezez , (2.78)

and the anisotropy tensor A is

A = 3
εy yεzzexex +εxxεzzeyey +εxxεy yezez

εy yεzz +εxxεzz +εxxεy y
. (2.79)

We include elastic isotropic point scatterers, with some scattering cross sec-
tion, that is constant with respect to wave vector, but dependent on frequency,

σeω = σsω. (2.80)

The source for the radiative transfer equation is a plane wave of unit ampli-
tude, i.e S = 1Jsm−2 sr−1, and

ξω (ek,x, t )∣∣vg (ek)
∣∣ = ω2ci

2

(4π)2v3
p(ek)

. (2.81)

2.7.a Isotropic media

The simplest medium has isotropic permittivity εxx = εy y = εzz and therefore

A = 1. (2.82)
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All physical quantities in the radiative transfer equation simplify, here we pre-
sent them in spherical polar coordinates,

vp(θ,ϕ)

ci
= 1, (2.83a)

vg(θ,ϕ)

ci
= sinθ(cosϕex + sinϕey )+cosθez , (2.83b)

ls
(
θ,ϕ

) = le
(
θ,ϕ

) = 1

nσp
, (2.83c)

σpω = 4πci
2(ω2Γ/ω0

2)2

(ω0
2 −ω2)2 + (ω3Γ/ω0

2)2 , (2.83d)

pω(θ,ϕ,θ0,ϕ0) = 1

4π
, (2.83e)

δω = 2nci
3(4π−1)Γ/ω0

2(ω0
2 −ω2)

(ω0
2 −ω2)2 + (ω3Γ/ω0

2)2 . (2.83f)

Here n is the scatterer density, σp is the scattering cross section of the point
scatterer, which is in isotropic media fully determined by its resonance fre-
quency ω0 and its linewidth Γ.

The equation of radiative transfer reduces to its familiar form

dIω
(
θ,ϕ,x, t

)
ds

= ω2

(4π)2ci
− Iω

(
θ,ϕ,x, t

)
leω

+
Ï

dϕ0dθ0 sinθ0

4π

Iω
(
θ0,ϕ0,x, t

)
lsω

. (2.84)

2.7.b Uniaxial media

Uniaxial media are characterized by a dimensionless anisotropy parameter
a > −1. As we will only consider elastic scatterers in this section, which have
albedo aω(ek) = 1, no confusion with anisotropy parameter a can arise. If the
optical axis is along ez , the uniaxial permittivity is given by

ε = 3+a

ci
2Tr[µ]

[
1− a

1+a
ezez

]
, (2.85)

and the anisotropy tensor reduces to

A = 3

3+a
[1+aezez ] . (2.86)
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The radiative transfer equation with source (2.81) reads

dIω
(
θ,ϕ,x, t

)
ds

= ω2ci
2

(4π)2v3
p(θ,ϕ)

− Iω
(
θ,ϕ,x, t

)
leω

(
θ,ϕ

)
+

Ï
dϕ0dθ0 sinθ0

pω
(
θ,ϕ,θ0,ϕ0

)
Iω

(
θ0,ϕ0,x, t

)
lsω

(
θ0,ϕ0

) . (2.87)

with mean free paths ls,e = |ls,e|. The three situations we should discuss are
isotropic, a = 0, positive anisotropy, a > 0, and negative anisotropy −1 < a < 0.

In isotropic media the length scales, velocities and phase function, Eqs.
(2.83) in the radiative transfer equation are independent of the wave vector
direction. In anisotropic media with anisotropy tensor (2.86) these physical
quantities become direction dependent. In terms of spherical polar coordi-
nates

vp(θ,ϕ)

ci
=

√
3

3+a

√
1+a cos2θ, (2.88a)

vg(θ,ϕ)

ci
=

√
3

3+a

sinθ(cosϕex + sinϕey )+ (1+a)cosθezp
1+a cos2θ

, (2.88b)

ls
(
θ,ϕ

) = le
(
θ,ϕ

) = √
3

3+a

√
1+a(2+a)cos2θ

1+a cos2θ

1

nσs
, (2.88c)

p(θ,ϕ,θ0,ϕ0) = 1

4π

√
1+a(

1+a cos2θ
)3 , (2.88d)

σpω = 4πci
2(ω2Γ/ω0

2)2

(ω0
2 −ω2)2 + (ω3Γ/ω0

2)2

√(
3

3+a

)3

(1+a), (2.88e)

δω = 2nci
3Γ/ω0

2(ω0
2 −ω2)

(ω0
2 −ω2)2 + (ω3Γ/ω0

2)2

4π

√(
3

3+a

)3

(1+a)−1

 .

(2.88f)

Here n is the scatterer density, σp is the cross section of the point scatterer,
which is fully determined by its resonance frequency ω0, its linewidth Γ, and
the value of the anisotropy parameter a. The value of a depends on the aniso-
tropy of the uniaxial medium to be studied. In this kind of disordered material
the scattering delay δ and the scattering cross section do depend on the ani-
sotropy parameter a, but are independent of the propagation direction.

If a > 0, then all length scales and all velocities, except ci which is constant,
are a factor

p
1+a larger in the ez direction, as compared to the ex and ey

directions. We note that the phase function has become anisotropic even
though the scatterers themselves are isotropic, because the element of solid
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angle is deformed by the anisotropy in the host medium. The phase function
is a factor

√
(1+a)3 larger in the ex or ey direction as compared to the ez di-

rection. So although the scattering strength of the medium, as measured by
the mean free path, is for a > 0 stronger in the x y planes, the anisotropy of the
host medium also restrains more of the scattered radiance in the x y plane.
We conclude that anisotropy of the host medium confines radiation in the x y
plane when a > 0. If on the other hand a < 0, then we may follow a similar
argument to conclude that for a < 0 the radiation is confined along the z axis.

2.8 Conclusion

In this section we present an overview of the results of this chapter, and what
we want to use it for.

We have presented a derivation of the radiative transfer equation for ra-
diance in anisotropic media in terms of basic building blocks. The building
blocks were a scalar wave and some scattering potential. Anisotropy in the
random medium in- or decreases the phase and group velocity in certain di-
rections and has an impact on the extinction and scattering cross sections of
the inhomogeneities in the refractive index. We illustrated this for point scat-
terers. Instead of scattered spherical waves we encountered elliptical waves,
in which the group velocity governs the shape of the wave surface. In ani-
sotropic media the group velocity also turns up in the expressions for the
extinction and scattering mean free path. In an anisotropic multiple scat-
tering medium, the waves do decay due to extinction or scattering, but this
decay does not satisfy the well known relation le,s = (nσe,s)−1 valid in isotro-
pic disordered media. Instead we found a direction dependent length scale
le,s(ek) = vg(ek)/(cinσe,s). Here vg(ek) contains the anisotropy of the sur-
rounding medium. Apart from the surrounding medium the scatterers them-
selves can also contribute to the anisotropy. Moreover the le,s(ek) are the mag-
nitude of an extinction or scattering mean free path vector.

From the Bethe-Salpeter equation for the ensemble averaged product of
amplitudes we derived a radiative transfer equation. In this transport equa-
tion again the aforementioned anisotropic scattering and extinction mean
free paths show up. In an appendix we derived the Ward identity for aniso-
tropic media, and, as is well known in the literature, we found a scattering de-
lay due to the energy dependence of the scattering potentials. In anisotropic
media this scattering delay can also contain anisotropy. In the radiative trans-
fer equation it shows up as a correction to the propagation velocity along a
radiance trajectory through a multiple scattering medium. However, the scat-
tering delay can not be absorbed as a scaling factor in the group velocity due
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to fact that the anisotropy in these two quantities do not necessarily coincide.
Finally, because in our model the wave vector direction is in general different
from that of the group velocity, we can not only use it to describe the transport
of the radiance of ordinary waves, but we can also use it for transport of the
radiance of extraordinary waves.

It is well known that radiative transfer equation for isotropic multiple scat-
tering media is in general impossible to solve analytically, and the usual way
to obtain solutions is through Monte Carlo simulations. Our radiative trans-
fer equation for anisotropic disordered media is even more difficult to solve
analytically. For this reason we presented a scheme to numerically solve our
radiative transfer equation through Monte Carlo simulation. Our ideas can
serve as a starting point for those who in practice have to deal with compli-
cated anisotropic media and wish to obtain accurate numerical solutions for
their anisotropic radiative transfer problems.

To facilitate the understanding of the anisotropic radiative transfer equa-
tion we gave two examples of the two least complicated disordered media.
The least complicated is of course the isotropic medium which we presented
as reference material in order to compare our anisotropic example. Our ani-
sotropic example is a uniaxial medium in which the anisotropy is fully deter-
mined by a single anisotropy parameter. In both of these examples the scat-
terers are point scatterers such that there are only three additional parameters
which characterize the scattering strength of the uniaxial disordered medium.
These three parameters are the number density of the point scatterers, the res-
onance frequency, and the linewidth of the point scatterers. We expressed the
the velocities and length scales explicitly in terms of spherical polar coordi-
nates and the anisotropy parameter. In the uniaxial medium only the polar
angle is relevant. In these examples the scattering delay and the scattering
cross section depend only on the anisotropy parameter and the three scatter-
ing strength parameters, not on the angles. The isotropic example is recovered
as a limit of the uniaxial medium.

The radiative transfer equation for anisotropic disordered media has firm
foundations, and it describes a broad range of transport phenomena, both
isotropic and anisotropic. The radiative transfer equation describes ballistic
transport in the limit le,s →∞. When the extinction and scattering mean free
path are finite we can determine the anisotropic diffusion tensor. The ani-
sotropic diffusion equation is an accurate description of transport of waves
through most disordered media. However neither the radiative transfer equa-
tion, nor the diffusion equation incorporate interference effects, not even for
isotropic disordered media. It is well known that it is extremely difficult to
directly add interference corrections to the radiative transfer equation. On
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Chapter 2 Anisotropic radiative transfer in infinite media

the other, it is also well known that through a renormalization of the diffu-
sion constant interference effects such as the enhanced backscattering cone
can be accounted for. Doing this renormalization procedure for anisotropic
media is expected to give an accurate description of the anisotropy which is
observed in the enhanced backscattering cone of anisotropic media. Through
such a renormalization procedure we can also generalize the Ioffe-Regel crite-
rion, which predicts the onset of Anderson localization in isotropic media, to
anisotropic media. However all thing mentioned in this paragraph are outside
the scope of this chapter.
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Figure 2.6 (color online).
In this plot the units left and below refer to the solid and dotted lines, whereas
the units right and above refer to the dashed and dot-dashed lines. The solid
ellipse is a phase surface φ(X) = constant of an elliptical wave emerging from
an isotropic scatterer located at X = 0 in a uniaxial medium with dispersion
relation ω2/ci

2 = k · (1+ 3ezez )/2 ·k. Each black arrow points to a coordi-
nateX on the phase surface. For each of these coordinatesX we plotted the
unit normal nφ(X) scaled such that the dotted and the dashed arrows run-
ning parallel have the same length. The dashed ellipse is a frequency surface
ω(k)/ci = constant. The dashed arrows are wave vectors k on the frequency
surface. For each of these k we have drawn a dot-dashed arrow which is pro-
portional to the group velocity vg(k) and therefore normal to the frequency
surface. Each dot-dashed arrow is scaled such that it has the same length as
the parallel solid arrow. For each X we can identify nφ(X) with a unit wave
vector ek. Using the identification we find vg(k) = vg(nφ(X)) ∝X . We de-
fine the wave vector direction to be the direction of the phase velocity, and we
see that the phase velocity is normal to the wave surface, as it should be.
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Figure 2.7 (color online).
We plotted the scattering delay factor δ for point scatterers in a uniaxial di-
electric ε = (3 + a)[1+ aezez /(1 − a)]/(ci

2Tr[µ]), where a parameterizes the
anisotropy. We set the scatterer density n = (2π)3(10λi)−3. The solid line is
for isotropic media, a = 0. The dotted line is for an anisotropic dielectric with
a = 3, and the dashed line is for a =−3/4. The magnitude of the delay depends
on the linewidth of the scatterer. For real atoms the size of the delay is orders
magnitude larger, as the delay is inversely proportional to the linewidth.
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Figure 2.8.
The phenomenology behind radiative transfer. In a multiple scattering
medium the radiance element dI (ep,x, t ) at time t , spatial coordinate x, and
wave vector ep, travels along a path element ds in the propagation direction
es inside a comoving cylindrical volume element oriented along the propa-
gation direction es. Along ds the radiance reduces if sinks and (possibly ab-
sorbing) scatterers are encountered. Scattering into direction es from all di-
rections es0 , and possible sources along the path can increase the radiance.
(a) In isotropic media the wave vector ep coincides with the direction of prop-
agation es. (b) In anisotropic media the direction of propagation es and wave
vector ep in general do not coincide. We find a bijective mapping between es
and ep, and that es coincides with the direction of the group velocity.
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Chapter 3

Diffusion and Anderson
localization in infinite media

We derive anisotropic diffusion from the equation of radia-
tive transfer in infinite anisotropic media. We add interfer-
ence corrections to find the location of the transition to Ander-
son localization in anisotropic media. In anisotropic media
we find that the transition to Anderson localization occurs at
lower values of the scattering strength parameter.

3.1 Introduction

Every material contains a certain amount of disorder. Therefore, when we
send a wave into some non-absorbing material, the way of transport of the
wave energy is governed by the disorder. If the disorder is small, most energy
passes ballistically through the material. However, most materials have a sig-
nificant amount of disorder, and waves inside will scatter many times. Multi-
ple scattering of waves gives rise to diffusion or, for extreme amounts of disor-
der, to Anderson localization of the wave energy. When light diffuses through
the material most interference effects are washed out. Anderson localization
[30], on the other hand, is a situation in which interference conquers, and
gives rise to localized states in the disordered material, rather than extended
states.

The scattering strength of statistically isotropic disordered matter is charac-
terized by the transport mean free path l and the wave vector k. It is intuitively
clear that a large transport mean free path implies a weaker disorder. Diffuse
propagation of wave energy is governed by the diffusion constant D , which
can be expressed in terms of the transport mean free path. For three dimen-
sional statistically isotropic disordered media it is common to write D = vl /3,
with energy velocity v . The shorter the transport mean free path, the stronger
the diffusion, until finally the transition to Anderson localization sets in when
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the transport mean free path becomes kl = constant, with the constant of or-
der 1 but model-dependent [32, 88]. This is known as the Ioffe-Regel criterion
for Anderson localization. Alternatively, the Ioffe-Regel criterion is sometimes
expressed in terms of a transport mean free time τ and a frequency ω, so that
the transition occurs at kl =ωτ≈ 1.

The equation of radiative transfer is more general than the diffusion equa-
tion, but it does not contain interference effects [6]. It turns out to be ex-
tremely complicated to add interference corrections to the radiative transfer
equation, unless when it is first approximated by a diffusion equation.

In statistically isotropic disordered infinite media of dimension lower than
three the that the diffusive solution is actually not believed to exist. In those
dimensions there is either ballistic transport or Anderson localization, with-
out diffusion. We may imagine lower dimensional media to be three dimen-
sional media whose frequency surfaces are strongly anisotropic. Thus we may
conjecture that anisotropy in materials with strong disorder is favorable for
Anderson localization, but this idea has never been confirmed [62, 91]. In Ref.
[91] three cases were considered, with one of them a quasi two dimensional
metal with a cylindrical frequency surface, and the, perhaps counterintuitive,
result was obtained that it was harder to localize along the directions parallel
to the axis of the cylinder, than in the plane perpendicular to it. This was ex-
plained by the consideration that the conductivity across the planes, i.e. the
direction parallel to the cylinder, did not constitute a quasi one dimensional
medium and therefore required a three dimensional treatment.

In this chapter we study the effect of anisotropy on diffusion and on the
transition to Anderson localization. We start from the equation of radiative
transfer in anisotropic media, which we derived from first principles in chap-
ter 2 in a low scatterer density approximation. We derive a self-consistent dif-
fusion equation for the energy density. Next we consider the effect of reci-
procity for wave amplitude on transport. We then use that information to add
an interference correction to the anisotropic diffusion solution. The interfer-
ence correction is a set of higher order terms in a scatterer density expansion.
With this correction we derive a Ioffe-Regel criterion for anisotropic media,
which is the main result of this article. There are two appendices. In appendix
B we present some linear response theory, and some background on the self
consistent approach to the equation of radiative transfer. Finally, in appendix
3.4 we present some explicit special cases of the effect of anisotropy on diffu-
sion and the Ioffe-Regel criterion.
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3.2 Anisotropic Radiative Transfer

The radiative transfer equation describes transport specific intensity [6, 7, 92],
or in SI units, the radiance per frequency band Iω [75]. In general the radiance
depends 6 coordinates, a unit wave vector ek, a space coordinate x, and time
t . The transport mean free path l does not explicitly appear in the radiative
transfer equation. In chapter 2, we derived the radiative transfer equation for
anisotropic media for radiance per frequency band Iω(ek,x, t ). In that equa-
tion we encountered anisotropy in both the scattering and extinction mean
free path, ls and le. These turn into vector quantities, and are functions of the
wave vector direction ek. The magnitude of the wave vector, k, is also aniso-
tropic, and is is fixed by the dispersion relation k(ek) =ω/vp(ek), with phase
velocity vp. When we follow the radiance dIω(ek,x, t ) along an infinitesimal
path ds in an anisotropic medium, then hydrodynamic derivative becomes

dIω (ek,x, t )

ds
= 1+δω(ek)

|vg(ek)|
∂Iω (ek,x, t )

∂t
+ vg(ek)

|vg(ek)| ·∇Iω (ek,x, t ) .(3.1)

Here vg is the group velocity vector, and δω(ek) is the well known scattering
delay [68], generalized to anisotropic media.

The anisotropic radiative transfer equation (2.71) for the radiance per fre-
quency band Iω is, for an isotropic point source of strength sω located atx= 0
and t = 0,

dIω (ek,x, t )

ds
= ω2ci

2sωδ
3(x)δ(t )

(4π)2v3
p(ek)

− Iω (ek,x, t )

|leω (ek) |

+
∫

d2ek0

pω
(
ek,ek0

)
Iω

(
ek0 ,x, t

)
|lsω

(
ek0

) | . (3.2)

The left-hand side of Eq. (3.2) describes transport of radiance along a path.
The first term on the right-hand side, which contains an isotropic velocity
ci

2 = Tr[ε−1]/Tr[µ] is the point source, the second term is extinction and a
the third term stands for a scattering integral, featuring the phase function
p. The source strength sω has SI units of J m s2. The strength of the isotropic
point source is weighted by a direction dependent product of phase velocities,
deforming the isotropic output energy density into an anisotropic radiation
pattern. This deformation is caused by the density of states in an anisotropic
medium, which is proportional to δ(ω2 − v2

p(ek)k2).
The radiative transfer equation describes redistribution of radiation over

angles, and in elastically scattering media, the energy is conserved in this pro-
cess. The total energy density H in a multiple scattering medium, has two
components, a radiative component Hr and a material component Hm de-
scribed by δω(ek). The energy density per frequency band Hω and the energy

49



Chapter 3 Diffusion and Anderson localization in infinite media

density flux per frequency band, Sω are related to the radiance per frequency
band Iω by

Hω (x, t ) =
∫

d2ek∣∣vg (ek)
∣∣ [1+δω(ek)] Iω (ek,x, t ) = Hr +Hm, (3.3a)

Sω (x, t ) =
∫

d2ek∣∣vg (ek)
∣∣vg (ek) Iω (ek,x, t ) . (3.3b)

The material energy density in the process of scattering is

δω = Hmω (x, t )

Hrω(x, t )
=

∫
d2ek∣∣vg (ek)

∣∣δω(ek)
Iω (ek,x, t )

Hrω(x, t )
. (3.3c)

The radiative transfer equation (3.2) gives rise to a continuity equation for
the total energy density when we integrate over ∫d2ek, which yields for our
point source

∂Hω(x, t )

∂t
+∇ ·Sω(x, t ) = ω2ci

2sωδ
3(x)δ(t )

4πvp(e1)vp(e2)vp(e3)
, (3.4)

with {ei } unit vectors along the principal axes of the anisotropy. In continu-
ity equation (3.4) for the energy density we can not see the anisotropy of the
radiance anymore, because we integrated over all angles. The only explicit
remnant of the anisotropy is the product of the phase velocities along the dif-
ferent principal axes. This product is related to the deformation of the vol-
ume element by the anisotropy of the medium. The appearance of the total
energy density instead of only the radiative energy density in continuity equa-
tion (3.4) expresses the fact that frequency dependent scatterers can cause an
energy density increase near or in the scatterers. Continuity equation (3.4)
indicates that transport in the diffusive regime is governed by a diffusion con-
stant which relates the sum of the radiative and material energy density to the
energy density fluxS [68]. In the next section we derive the diffusion constant,
which in anisotropic media will be a diffusion tensor.

3.3 Diffusion

The anisotropic radiative transfer equation describes a whole range of trans-
port phenomena without interference effects, including ballistic and diffu-
sive transport. We have two reasons to approximate the anisotropic radiative
transfer equation by an anisotropic diffusion equation. The first reason is that
the radiative transfer equation is, exactly because it is such a general equa-
tion, hard to solve without resorting to numerical methods such as Monte
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Carlo simulations. The anisotropic diffusion equation on the other hand, is
much less complex, and can often be solve analytically. The second reason for
approximating the anisotropic radiative transfer equation by an anisotropic
diffusion equation is to be able to cope with interference corrections. In the
literature it is well known how to add interference corrections to a diffusion
equation [32, 62, 88]. In this section we approximate the anisotropic radiative
transfer equation by an anisotropic diffusion equation, and determine the dif-
fusion tensor.

The radiative transfer equation gives rise to a continuity equation (3.4) for
the total energy density. Therefore, to obtain an anisotropic diffusion equa-
tion we seek for a Fick law relating the total energy density to the energy den-
sity flux, S = −D ·∇H , to identify the diffusion tensor. It is easiest to derive
the Fick law in Fourier space where it readsS =D · iPH . In Fourier space the
diffusion equation, for an isotropic point source of strength sω, reads

iΩHω (P ,Ω)− iP ·Dω · iPHω (P ,Ω) = ω2ci
2sω

4πvp(e1)vp(e2)vp(e3)
. (3.5)

In order to identify the diffusion tensor D in (3.5) we self-consistently ex-
pand the radiance I in terms of the radiative energy density Hr and the energy
density fluxS,

Iω(ek,P ,Ω) = |vg(ek)|
4π

vp(e1)vp(e2)vp(e3)

v3
p(ek)

×
[
Hrω(P ,Ω)+3

ek ·Sω(P ,Ω)

ek ·vg(ek)

]
. (3.6)

Expansion (3.6) closely resembles the often encountered ordinary multipole
expansion of radiance in isotropic media [68]. It is weighted by the magnitude
of the group velocity, and a ratio of phase velocities vp, to assure Eqs. (3.3).
Since we anticipate a Fick law relating the energy density and flux, the small
parameter in this expansion isP multiplied by some length scale. In appendix
B we derive (3.6).

Before proceeding with the derivation of the Fick law, we introduce some
useful notation and a useful transport quantity. For notational convenience,
we write for the average over the frequency surface,

〈. . .〉ep ≡
∫

d3pδ(ω2 − v2
p(ep)p2) . . .∫

d3pδ(ω2 − v2
p(ep)p2)

=
∫

d2ep
4π

vp(e1)vp(e2)vp(e3)

v3
p(ep)

. . . .

(3.7)

Using (3.7), the differential scattering cross section dσsω
(
ek,ek0

)
/d2ek0 and

scatterer density n, we define a tensor quantity t, with the dimension of time,
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by

citω ≡ 3〈vg(ek)vg(ek)〉ek

· 〈
∫

d2ek0 n
dσsω

(
ek,ek0

)
d2ek0

[vg(ek)−vg(ek0 )]vg(ek)〉
−1

ek

, (3.8)

with ci
2 = Tr[ε−1]/Tr[µ] the isotropic part of the phase velocity v2

p. We recog-
nize that the trace of cit is the transport cross sectionσω(ek) multiplied by the
scatterer density n, [50], averaged over the frequency surface. Hence we can
define a scalar transport time scale τ by

1

ciτω
≡ 1

3
Tr[(cit)−1

ω ] = 〈nσω(ek)〉ek . (3.9)

For isotropic scatterers in an anisotropic medium the tensor t always reduces
to τ1.

The Fick law for diffusion of waves in anisotropic media is obtained when
we multiply equation (3.2) by the group velocityvg and integrate over all direc-
tions ek. We drop the term iΩS, which is of orderΩP and is therefore beyond
the diffusion approximation. Using (3.8), and v−3

p (ek)dσsω
(
ek,ek0

)
/d2ek0 =

v−3
p (ek0 )dσsω

(
ek,ek0

)
/d2ek we find a relation between the radiative energy

density and the flux

〈vg(ek)vg(ek)〉ek · iPHrω(P ,Ω) = t−1
ω ·Sω (P ,Ω), (3.10)

which is of the formS =D · iPH . We can replace the radiative energy density
Hr by the total energy density H through the relation H = [1+δ]Hr, which
follows from Eqs. (3.3a) and (3.3c). The diffusion tensor, relating total energy
density H and fluxS becomes,

Dω ≡ tω · 〈vg(ek)vg(ek)〉ek
1+δω

, (3.11a)

= 〈vg(ek)vg(ek)〉ek · tT
ω

1+δω
= Dω

T, (3.11b)

which is the result we announced at the beginning of this section. To obtain
Eq. (3.11b)we use 〈∫d2ek0 ndσsω

(
ek,ek0

)
/d2ek0 [vg(ek) − vg(ek0 )]vg(ek) 〉ek ,

which is sandwiched between two identical symmetric tensors 〈vgvg〉, is it-
self also symmetric under transposition, because v−3

p (ek)dσsω
(
ek,ek0

)
/d2ek0

is symmetric with respect to switching ek and ek0 . We do not obtain an ex-
pression in terms of a transport mean free path and a transport velocity, be-
cause such a partitioning can only be defined unambiguously in the pres-
ence of a boundary, which is beyond the scope of this paper [50]. For iso-
tropic scatterers in anisotropic media, the diffusion tensor (3.11) reduces to

52



3.4 Examples of anisotropic diffusion and its extremities

Dω = τω 〈vgvg〉/(1 + δω), whereas for anisotropic scatterers in an isotropic
medium we end up with anisotropy in t alone, Dω = tωci

2/[3(1+δω)]. In fully
isotropic media we recover the familiar result Dω = τωci

2/[3(1+δω)], [68]. In
section 3.4 we present the solution to diffusion equation (3.5) in space and
time coordinates x and t , and we compare certain results for anisotropic me-
dia with isotropic media.

3.4 Examples of anisotropic diffusion and its
extremities

In this section we take an instantaneous point source and solve the diffusion
equation. We treat the solution of the diffusion equation for some special
cases of scatterers and host media, and discuss the limits of extreme aniso-
tropy.

The magnetic permeability tensor of the host medium is assumed to be iso-
tropic, µ= 1

3 Tr[µ]1, whereas the dielectric tensor can be anisotropic. In these
examples we take the anisotropic host dielectric permittivity tensor on prin-
cipal axes. In a convenient Cartesian coordinate system we have

ε = εxxexex +εy yeyey +εzzezez , (3.12)

and the anisotropy tensor A is

A = 3
εy yεzzexex +εxxεzzeyey +εxxεy yezez

εy yεzz +εxxεzz +εxxεy y
. (3.13)

We include elastic isotropic point scatterers, with some scattering cross sec-
tion, that is constant with respect to wave vector, but dependent on frequency,

σeω = σsω. (3.14)

For isotropic point scatterers in an anisotropic medium we obtain for the dif-
fusion tensor

Dω = 1

3

τωci
2

1+δω
A. (3.15)

The instantaneous isotropic point source for the diffusion equation is

sωδ
3(x)δ(t ) (3.16)

The source strength sω has SI units of J m s2.
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3.4.a Isotropic media

In isotropic media we have εxx = εy y = εzz and therefore

A = 1, (3.17)

The diffusion tensor becomes proportional to the unit tensor

Dω = 1

3

τωci
2

1+δω
1 = Dω1. (3.18)

Here D is the trace of the isotropic diffusion tensor, and is the diffusion con-
stant for the isotropic medium.

In space and time coordinates diffusion equation (3.5) for a point source of
strength sω has the familiar form

∂Hω (x, t )

∂t
−Dω∇ ·∇Hω (x, t ) = ω2sωδ

3(x)δ(t )

4πci
. (3.19)

In disordered infinite media the energy density from the instantaneous point
source is spread thinly, and at infinity the energy density is negligible,

lim
|x|→∞

Hω(t ,x) = 0. (3.20)

The solution for isotropic diffuse energy density Hω(x, t ) in a infinite medium
is well known, it is

Hω(x, t ) = ω2sω

4πci

exp[− |x|2
4Dωt ]

(4πDωt )
3
2

. (3.21)

In isotropic media the energy density distribution is an isotropic Gaussian
with variance 2Dωt . We can ask the question if we can define a mean free path
for diffusion in unbounded media. The answer is no, because mean free paths
are defined as the length scale after which something has decayed exponen-
tially. So maybe we should look for exponential decay in the stationary limit.
When we integrate (3.21) from t = 0 to infinity, then we obtain the stationary
solution

Hω(x) = ω2sω

4πci

1

4πDω|x|
. (3.22)

The stationary solution (3.22) does not decay exponentially either. We con-
clude again that in unbounded media it is impossible to define an exponen-
tial decay length for the energy density. In bounded media the boundary con-
ditions define the partitioning of the diffusion constant in an energy velocity
and a transport mean free path according to D = vl /3, but bounded media are
beyond the scope of this chapter. We see that the amount of energy density at
each location is governed by the diffusion constant

54



3.4 Examples of anisotropic diffusion and its extremities

3.4.b Anisotropic media

In space and time coordinates the diffusion equation given a point source of
strength sω reads,

∂Hω (x, t )

∂t
−∇ ·Dω ·∇Hω (x, t ) = ω2ci

2sωδ
3(x)δ(t )

4πvp(e1)vp(e2)vp(e3)
. (3.23)

Also in anisotropic disordered infinite media the energy density from the in-
stantaneous point source is spread thinly, and at infinity the energy density is
negligible,

lim
|x|→∞

Hω(t ,x) = 0. (3.24)

The solution for the diffuse energy density Hω(x, t ) is in anisotropic media

Hω(x, t ) = ω2ci
2sω

4πvp(e1)vp(e2)vp(e3)

exp[−x·D−1·x
4t ]

(4πt )
3
2
p

detD
. (3.25)

The energy density distribution is a three dimensional anisotropic Gaussian
with variance 2t/ex ·D−1 ·ex. When we integrate (3.25) from t = 0 to infinity,
then we obtain the anisotropic stationary solution

Hω(x) = ω2ci
2sω

4πvp(e1)vp(e2)vp(e3)

1

4π
p

detD
p
x ·D−1 ·x

. (3.26)

Compared with the isotropic solutions (3.21) and (3.22) are clearly anisotro-
pic, as each direction is weighted differently by the diffusion tensor.

In order to clarify the effects we consider a uniaxial dielectric. Uniaxial me-
dia are characterized by a dimensionless anisotropy parameter a >−1 and an
optical axes. If the optical axis is along ez , the uniaxial permittivity is given by

ε = 3+a

ci
2Tr[µ]

[
1− a

1+a
ezez

]
, (3.27)

and the anisotropy tensor reduces to

A = 3

3+a
[1+aezez ] . (3.28)

The diffusion tensor becomes

Dω = 1

3

τωci
2

1+δω
A = 1

3+a

τωci
2

1+δω [1+aezez ] . (3.29)
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For all a the trace of the diffusion tensor is given by

Tr[Dω] = τωci
2

1+δω
. (3.30)

Our diffusion tensor was obtained using a mapping of the energy of electro-
magnetic waves onto scalar waves. There are two types of propagating elec-
tromagnetic waves in uniaxial media, the ordinary waves, which are subject
to an isotropic dispersion relation, and the extraordinary waves, which are
subject to an anisotropic dispersion relation. It is well known that in uniaxial
dielectrics with one principal axis longer than the other axes, the extraordi-
nary wave dominates [93]. In our mapping of electromagnetic waves to scalar
waves, the parameter range −1 < a < 0 is therefore of most interest, because
in this range light is most sensitive to the anisotropy. For a = 0 we recover iso-
tropic media, whereas for a > 0, the anisotropy of the dielectric has a smaller
effect on the transport of electromagnetic waves as more of the wave energy
will be transported by the ordinary waves than by the extraordinary waves.

In porous materials such as the etched semiconductor Gallium Phosphide
[76], the aligned air cylinders have a low permittivity compared to the GaP.
In this material the ordinary waves carry more energy than the extraordinary
waves. Still,in GaP exists strong optical anisotropy, leading even to a ratio of
four between principal diffusion constants. Equation (3.29) can be used for a
description of the anisotropic diffusion light in porous GaP. We let the total en-
ergy density of both ordinary and extraordinary waves diffuse anisotropically,
and we set anisotropy parameter a = 3. Alternatively we could construct the
diffusion of energy in GaP out of a weighed sum of an isotropically diffusing
ordinary and an anisotropically diffusing extraordinary contribution. Such a
sum may yield better results, but we must note that the scattering delay and
the mean free time need to be evaluated for both the isotropic and the aniso-
tropic waves.

Stronger anisotropic diffusion is to be expected if we have disordered sam-
ples of aligned GaP cylinders (e.g. nanowires [94]) in air instead of porous Gap,
because the contribution of the anisotropically diffusing extraordinary waves
to the diffusion outweighs the contribution of the isotropically diffusing ordi-
nary waves. The expected anisotropy parameter to use for the description of
anisotropic diffusion of the total radiance is at worst a = −3/4, but probably
a <−3/4 due to the domination of extraordinary waves.

3.4.c Dimensionality in anisotropic diffusion

In our result for the uniaxial diffusion constant, Eq. (3.29), it is clear that the
anisotropy alters the factor 3 by an amount a. The factor three is always ob-

56



3.4 Examples of anisotropic diffusion and its extremities

tained in isotropic media. The fact that we find 3+a suggests the possibility of
a dimensional cross over, because in three dimensional we can write down a
single diffusion constant by D = Tr[D]/3 where the factor 3 is the dimension-
ality of the medium. We can compare this to the expression for the diffusion
constant in terms of mean free path l and energy velocity v , which is D = vl /3
[68], and we observe that Tr[D] plays the role of vl . We can explore the limits
of (3.29), in the hope to find D = Tr[D]/2 or even D = Tr[D] for two and one di-
mensional media respectively. Below we discussion of these limits assuming
that Tr[D] is nonzero and finite in the limits a →−1 and a →∞. Afterwards
we will discuss the behavior of Tr[D].

When we take a → ∞ we obtain the limit of one dimensional diffusion.
Even though at first sight it may seem that for a > 0 we can increase the factor
three to any desired value, this observation is incorrect. Actually two of the
three principal diffusion constants vanish, because the limit for both the Dxx

and D y y components is

lim
a→∞

Tr[Dω]

3+a
= 0. (3.31a)

For the Dzz component the limit is nonzero and finite, it is

lim
a→∞

Tr[Dω](1+a)

3+a
= Tr[D]. (3.31b)

For the dielectric tensor the limit a →∞ implies that both εxx and εy y go to
infinity, while εzz remains finite. Also the width of the energy distributions
(3.25) and (3.26) vanishes in both the x and y directions, and thus we have
typical one dimensional diffusion.

The limit a → −1 leads to two dimensional diffusion. In this limit εzz be-
comes infinite, while εxx and εy y remain finite. For the principal diffusion
constants we have

lim
a→−1

Tr[Dω]

3+a
= Tr[D]

2
, (3.32a)

lim
a→−1

Tr[Dω](1+a)

3+a
= 0. (3.32b)

The width of the energy distributions (3.25) and (3.26) vanishes in the z di-
rection, and thus the dimensionality of our problem becomes two instead of
three.

There are caveats while taking the limits a → ∞ and a → −1, the first is
that many workers in the field obtained diverging diffusion solutions in one
and two dimensions [88, 89], and concluded that in infinite media lower than
three dimensions the diffusion asymptotics do not exist. The basis for this
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Chapter 3 Diffusion and Anderson localization in infinite media

conclusion is the contribution of interference effects to wave transport. Our
starting point for the derivation of diffusion was the radiative transfer equa-
tion, so there are no interference effects to cause this divergence. The second
caveat is that also the determinant of A vanishes in the limit a → −1, which
can cause divergences for us. The determinant is present in the transport time
τ= 1/(cinσ), because from the optical theorem it follows thatσ∝p

detA, and
thus we seem to create a division by zero. However, to make the cross section
satisfy the dispersion relation, already an integration over the magnitude of
wave vector p has been carried out. In that integration we should also take
a →−1, and here the zero in Azz naturally cancels the integration in the z di-
rection, and we are saved. On top of that in Eq. (3.7) we could also run into
trouble when a →−1, but here as well we have vanishing Azz which naturally
cancel diverging integrations along the z direction.

Sometimes we encounter biaxial media, and for completeness we treat the
possible dimensional crossovers. Biaxial media have two anisotropy param-
eters ay y and azz which range from −1 to ∞. We generalize our uniaxial
medium to a biaxial medium according to

ε = 3+ay y +azz

ci
2Tr[µ]

[
1− ay y

1+ay y
eyey − azz

1+azz
ezez

]
, (3.33)

and the anisotropy tensor reduces to

A = 3

3+ay y +azz

[
1+ay yeyey +azzezez

]
. (3.34)

The biaxial diffusion tensor reads

Dω = 1

3

τωci
2

1+δω
A = 1

3+ay y +azz

τωci
2

1+δω
[
1+ay yeyey +azzezez

]
.

(3.35)

and again for all values of the anisotropy parameters the trace is given by
(3.30). We can obtain a factor of two instead of 3 for all values such that
ay y + azz = −1, but for these values there is no vanishing of diffusion con-
stants, and no cross over to a lower dimensional medium. There are three
limits that were not possible for uniaxial media, both ay y and azz to infinity
or −1, and one of the two to infinity, while the other goes to −1. When both pa-
rameters are taken to infinity independently all principal diffusion constants
vanish. We only obtain a nonzero result for the some of the principal diffu-
sion constants when ay y = azz , which reduces the biaxial medium to a uni-
axial medium, but with a parametrization different from (3.28). Instead of
diffusion in the x y planes, we obtain diffusion in the xz plane. For ay y and
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azz to −1 independently also all principal diffusion constants vanish. When
ay y = azz we again have a uniaxial medium, but with one dimensional dif-
fusion is along the x axis. when we take ay y → −1 and azz → ∞ we obtain
one dimensional diffusion along the z axis, and the other principal diffusion
constants vanish. Finally, when these limits are switched, we find one dimen-
sional diffusion along the y axis.

Vector waves in uniaxial media can be separated in ordinary and extraor-
dinary waves. In uniaxial media with two principal permittivities larger than
the third the ordinary waves dominate (a > 0). Hence the contribution of the
anisotropic diffusion of the energy of the ordinary waves to the total energy
density is outweighed by the isotropic diffusing ordinary wavesBased on the
argument that extraordinary waves transport the larger part of the energy in
media with a < 0, provided we can overcome the difficulty of creating the re-
quired anisotropy, it is much more likely that a cross over to two dimensional
diffusion occurs than a cross over to one dimensional diffusion.

3.5 Reciprocity and Transport

Neither the anisotropic diffusion equation (3.5), nor the more general aniso-
tropic radiative transfer equation (3.2) contain interference effects or satisfy
reciprocity. Had the radiative transfer equation satisfied reciprocity, then the
survival of the interference effect for multiple scattered waves known as en-
hanced backscattering would not have been such a big surprise some twenty
three years ago. In this section we explain the effect of reciprocity and relate it
to interference corrections.

Reciprocity is satisfied by the Green function for the wave amplitude, and is
in coordinate space or wave vector space given by [6],

Gω(x1,x2) = Gω(x2,x1), (3.36a)

Gω(p1,p2) = Gω(−p2,−p1). (3.36b)

Eq. (3.36a) expresses the principle that a cause at x2 has the same effect at
x1, as when the cause were at x1 and the effect were at x2. In the wave vector
terminology of Eq. (3.36b) we have extra minus signs, because the direction
of propagation reverses in a reciprocity operation. In anisotropic media the
direction of the wave vector is not the same as the propagation direction, but
for scalar waves there is a unique relation between them.

The microscopic quantity that underlies the radiance is a product of the
amplitude Green function with its complex conjugate, and depends on four
wave vectors. We will consider the quantity Φω(p, p̃,P ,Ω), as the product
of amplitude Green functions obtained in phase space after extraction of a
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Chapter 3 Diffusion and Anderson localization in infinite media

momentum conserving Dirac delta function. This quantity must have certain
symmetries due to reciprocity, expressed by the equalities

Φω(p, p̃,P ,Ω) = Φω(−p̃,−p,−P ,Ω), (3.37a)

Φω(p, p̃,P ,Ω) = Φω(
P +p− p̃

2
,
P −p+ p̃

2
,p+ p̃,Ω), (3.37b)

Φω(p, p̃,P ,Ω) = Φω(
p̃−p−P

2
,
p− p̃−P

2
,−p− p̃,Ω). (3.37c)

In Eq. (3.37a) we interchanged cause and effect in both amplitude Green func-
tions, which is a reciprocity symmetry in energy transport that is also satisfied
by the radiative transfer equation. In Eq. (3.37b) however, we interchange
cause and effect in only one amplitude, whereas in (3.37c) we change cause
and effect only in the conjugate amplitude, which is just application of sym-
metry (3.36b).

Neither the radiative transfer equation nor the diffusion equation satisfy
Eq. (3.37b) or Eq. (3.37c). If we define ΦB to be the solution in the Boltzmann
limit, i.e. the solution to either the anisotropic radiative transfer equation or
the anisotropic diffusion equation, then we can write

Φω(p, p̃,P ,Ω) = ΦBω(p, p̃,P ,Ω)+Φcω(p, p̃,P ,Ω). (3.38)

Here Φc contains all terms neglected by the Boltzmann approximation ΦB,
andΦ satisfies energy conservation.

A first attempt to add interference corrections to the radiative transfer equa-
tion whilst keeping the energy conserved has been presented by Stephen [95].
We temporarily disregard the energy conservation law forΦ, because then we
can take Φc to be the reciprocal conjugate to ΦB. In this way it is easiest to
restore the full reciprocity symmetry for the diffusive solution, because that
solution depends only on wave vector P describing the envelope of the en-
ergy density packet, but not on the wave vector p of the internal oscillation.
The diffusion solution forΦB is, in terms of eigenfunctionsΨ0 in the diffusive
regime, given by

ΦBω(p, p̃,P ,Ω) ≡ Ψ0
∗
ω(p,P ,Ω)Ψ0ω(p̃,P ,Ω)

iΩ− iP ·DBω · iP
, (3.39)

where DB is the diffusion tensor in the Boltzmann limit (3.11). The interfer-
ence correction to the diffusion solution follows from reciprocity symmetry
(3.37b) and is found to be

Φcω(p, p̃,P ,Ω) ≡ Ψ0
∗
ω(P2 − p−p̃

2 ,p+ p̃,Ω)Ψ0ω(P2 + p−p̃
2 ,p+ p̃,Ω)

iΩ− i(p+ p̃) ·DBω · i(p+ p̃)
. (3.40)
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Equations (3.39) and (3.40) break energy conservation. In the Boltzmann limit
we approximated the eigenfunctions Im[G] by the independent scattering ap-
proximation and set Im[G] → Im[g ], with g the Green function for the ho-
mogeneous medium. Using these approximations we obtained diffusion con-
stant (3.11), here denoted by DB. The rigorous eigenfunction with long range
diffusion is Im[G], and D is the diffusion tensor related to the eigenfunction
Im[G]. To restore energy conservation for Φ we should replace DB by the
renormalized diffusion tensor D, and the eigenfunctions Ψ∗

0 and Ψ0 in (3.39)
and (3.40) by the eigenfunctions Im[G], which are valid beyond the Boltzmann
limit. In practice it is very hard to work with eigenfunctions Im[G] and directly
obtain the renormalized diffusion tensor D. Instead, interference corrections
to the derivation of DB are added, and an equation for D is obtained in terms
of DB.

For stationary solutions we haveΩ= 0, and the main contribution from the
reciprocity symmetry (3.37b) occurs when the denominator vanishes, i.e. at
p̃=−p, which is exactly where the tip of the enhanced backscattering cone is.
Just like the diffusion equation, which can be seen as an expansion of the ex-
act solution to the radiative transfer equation up to and including O[(ciτP )2],
the interference correction to diffusion is also an approximation to the exact
interference correction.

3.6 Ioffe-Regel criterion

In this section we calculate the strength of the disorder in anisotropic media
required to induce the transition to Anderson localization, and compare it to
the known result for isotropic media. Starting from the anisotropic equation
of radiative transfer (3.2), we have identified the diffusion tensor (3.11) in the
anisotropic diffusion equation (3.5). The anisotropic diffusion solution was
derived in the limit of low scatterer density n. We have shown that we can add
an interference correction to solution (3.40).

We consider an anisotropic host medium with elastic isotropic point scat-
terers. Following Vollhardt and Wölfle and others [32, 62, 88, 96], we im-
prove the Boltzmann approximation of the irreducible Bethe-Salpeter vertex
by adding the terms correcting reciprocity symmetry, and by replacing the
Boltzmann diffusion tensor (3.11) by the renormalized diffusion tensor D,

Uω(p,p0,0,0) = n |Tω|2 + 4π

ciτω2

p
detA

1+δω
1(

p+p0
) ·Dω ·

(
p+p0

) . (3.41)

The density of states factor
p

detA/(1+δω) was accidentally omitted in [50],
but this does not alter the conclusions of that paper.
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Chapter 3 Diffusion and Anderson localization in infinite media

To obtain the interference correction to the diffusion tensor, then according
to Eq. (B.19), we need to calculate the objectΓ, determined by equation (B.18),

Γω(p,P ) = P · ci
2

ω
A ·p+

∫
d3p0

(2π)3 Uω(p,p0,0,0)|Gω(p0)|2Γ(p0,P ). (3.42)

When we consider the Boltzmann limit for isotropic scatterers UB = n|T |2,
then Γω(p,P ) = ci

2P ·A ·p/ω due the fact that the integrand is odd in p0 and
vanishes. This automatically leads to our previous result for the diffusion ten-
sor (3.11).

The correction to the Boltzmann limit is most relevant when p≈−p0. [(p+
p0) ·D · (p+p0)]−1 = δ3(p+p0)/detA∫d3p1[p1 ·D ·p1]−1. where the integral
is carried out over a subset of wave vectors with upper bound kmax(ek) =
β/(ek ·τωvg(ek)), with β some dimensionless numerical constant. The cutoff
kmax regularizes the divergence that occurs in the Green function GH (x,x0)
for diffuse energy density when x→x0. The product τωvg(ek)) is the extinc-
tion or scattering mean free path in an elastic anisotropic medium, because
we consider elastic isotropic point scatterers it also coincides with the trans-
port mean free path in anisotropic media [50].

The function Γω(p,P ) is odd in p also after adding the correction to the
Boltzmann limit, i.e. Γω(p,P ) = −Γω(−p,P ). Using the equality |Gω(p)|2 =
Im[Gω(p)]/Im[Σω] = −Im[Gω(p)]ci

2τω/ω, together with the on-shell equality
Im[Gω(p)] =−ci

2τω/ω, we obtain

ωΓω(p,P )

ci
2P ·A ·p =

[
1+ 4πci

3

ω2
p

detA

∫
d3p1

(2π)3

1

p1 ·D ·p1

]−1

= const. (3.43)

Using result (3.43) in Eq. (B.19) yields

P ·D ·P = P ·DB ·P
[

1+ 4πci
3

ω2
p

detA

∫
d3p1

(2π)3

1

p1 ·D ·p1

]−1

. (3.44)

The Boltzmann diffusion tensor DB is renormalized by the multiplicative con-
stant (3.43). The anisotropy of the diffusion tensor is not altered, and there-
fore we can exchange the D in the integral with the DB outside the integral.
Eq. (B.19) holds for any direction of P , and D = DT, so we can remove the P
from the equation.

We choose parameter β = π/6 to set the isotropic Ioffe-Regel criterion at
ωτω = 1 for an isotropic medium. This leads to

D−1 = DB
−1 +

[
1p

detAωτω

]2

D−1, (3.45)
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where DB is given by (3.11). The transition to Anderson localization occurs
when

ωτcω = 1p
detA

≥ 1. (3.46)

The transition is affected by the anisotropy in the dielectric tensor the deter-
minant of anisotropy tensor A. We can check that both ωτc and 1/

p
detA

scale in the same way when we alter the anisotropy, (2.15). This means that
given a mean free time near the transition to Anderson localization in an iso-
tropic medium, and consider an identical a mean free time in an anisotropic
medium, then the anisotropic medium could already be beyond the transition
to Anderson localization.

Our result can be compared with the potential well analogy [61]. The po-
tential well analogy predicts the mobility edge to occur at Sl 2 ≈ 9, with S the
Fermi surface, and l the magnitude of the mean free path averaged over the
Fermi surface. For our classical waves describing light the Fermi surface is
the surface of constant frequency S =ω2/(ci

2
p

detA). The mean free path av-
eraged over the surface of constant frequency is l = 〈|l(ek)|〉ek = ciτω

p
detA.

Inserting this result in Sl 2 = 9 yields ωτcω ≈ 3. Had we taken our parameter
β= detAπ/(2) instead of π/6 we would have had the same result, but the cut-
off should not depend on detA.

In anisotropic dielectric media
p

detA is always smaller than one, there-
fore Anderson localization should be easier to find in statistically anisotropic
media. This result is quantitatively worked out in Fig 3.1 for a uniaxial host
medium.

Vector waves in uniaxial media can be separated in ordinary and extraordi-
nary waves, and we can apply an isotropic scalar model to the ordinary waves
and an anisotropic scalar model to the extraordinary waves. A realistic exam-
ple of a medium for which we know the anisotropy tensor is porous Gallium
Phosphide (GaP) [76]. In the uniaxial porous GaP, the principal diffusion con-
stants have been measured to be a factor of four different, i.e. if the pores
are along the z direction, the principal components of the diffusion tensor for
GaP are related by Dxx = D y y = Dzz /4. When we calculate the mobility edge
for uniaxial media with such a ratio we must insert a = 3 in the anisotropy
matrix (3.28) and we obtain

ωτcω = p
2 ≈ 1.4 > 1. (3.47)

The value a = 3 can be used for a description of porous GaP, but we do note
that for a = 3 the ordinary waves dominate, and these diffuse isotropically. If
we invert porous GaP, we get aligned GaP cylinders in air, and in this material
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Chapter 3 Diffusion and Anderson localization in infinite media

the extraordinary waves prevail. Therefore we can expect that a disordered
material of GaP cylinders will give rise to at least a factor of four difference
in the principal diffusion constants, but with the relation Dxx = D y y = 4Dzz .
Anisotropy parameter a =−3/4 realizes this ratio, and the Ioffe-Regel criterion
yields

ωτcω = 3
p

3

4
≈ 1.3 > 1. (3.48)

The location of the transition to Anderson localization is not the same for
porous GaP and the aligned GaP nanowires in air.In Fig. 3.2 we observe that
the locations of the transition to Anderson localization for a ratio of f Dxx =
Dzz or Dxx = f Dzz are only equal for f = 1. In uniaxial media where ani-
sotropy has more effect on the light traveling through it, i.e. for a < 0, the
transition to Anderson localization occurs for shorter mean free times. This
may sound as bad news for those searching for Anderson localization, but it
fits nicely with the results from section 3.4. In that section we observed that
for a →∞ two of the three principal components of the diffusion tensor van-
ished, and for a →−1 only one principal component vanished. We thus con-
clude that the lower the effective dimension of the medium, the quicker the
onset of Anderson localization.

The above criterion for Anderson localization (3.46) has been derived for
stationary situations. We conjecture that in non stationary experiments even
in uniaxial media with a > 0 Anderson localization is more likely to occur as
compared to isotropic media. The reason is that when we have a disordered
uniaxial medium, in which the ordinary waves already scatter very strongly,
every now and then there will be a scattering event through which they be-
come extraordinary waves. The extraordinary waves are sensitive to the aniso-
tropy, and could be subject to a mean free time τ which is already lower than
the critical value. Thus in non stationary experiments, the possibility exists
that for some time even for a > 0 more energy is transported by the Anderson
localized extraordinary waves than by the non localized ordinary waves.

3.7 Conclusions

In unbounded media we derived anisotropic diffusion starting from the radia-
tive transfer equation in anisotropic media. The diffusion tensor we obtained
consisted of a mean free time and a product of group velocities averaged over
the surface of constant frequency, divided by a scattering delay term. In un-
bounded media we showed that it is impossible to identify a mean free path or
an energy velocity. We presented solutions to the anisotropic diffusion equa-
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Figure 3.1.
The critical strength of the disorder (ωτc)−1 required for the transition to An-
derson localization is plotted for a uniaxial medium with anisotropy a. The
transition to Anderson localization is at scattering strength (ωτc)−1 =p

detA,
with

p
detA volume element of the anisotropy of the host medium. The uni-

axial dielectric with directorn is ε= (3+a)[1−ann/(1+a)]/(ci
2Tr[µ]), and the

anisotropy of this medium is A= 3ε−1/Tr[ε−1]. For a = 0, i.e. isotropic media
we have an absolute maximum. The anisotropy lowers the required scatter-
ing strength for Anderson localization. The critical value ωτc drops rapidly
for a < 0, i.e. two axes of the permittivity smaller than the third axis. In this
regime in vector models for light in uniaxial media the extraordinary wave
dominates, which is the wave sensitive to the anisotropy. For a > 0 the ordi-
nary wave dominates, and the anisotropy has much less influence on wave
transport.

tion given a point source in an infinite medium. In the limit of extreme aniso-
tropy, the dimension of the diffusion tensor is reduced, such that it projects on
a two or even one dimensional subspace in which isotropic diffusion occurs.
Interference effects were incorporated into the anisotropic diffusion equation
by restoring reciprocity. We found that anisotropy lowers the required scatter-
ing strength for a transition to Anderson localization. For uniaxial media the
results for the transition to Anderson localization coincide with the reduction
of the dimension in anisotropic diffusion for strong anisotropy.
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Figure 3.2 (color online).
The transition to Anderson localization occurs at the critical strength of the

disorder ωτc =
√

(1+a/3)2

1+a , and is plotted for anisotropy ratio f . The solid line
is for a uniaxial medium with εzz < εy y = εxx , and for this material f ≡ εxx /εzz

such that a > 0. In this type of medium more energy is transported by ordi-
nary waves, which are not sensitive to the anisotropic medium, than by ex-
traordinary waves The dotted line is for media with εzz > εy y = εxx , and here
f ≡ εzz /εxx , such that −1 < a < 0. Here the extraordinary waves transport
most energy. We note that for extreme anisotropy the curves are linear on
this double logarithmic scale. The factor 2 difference is related to the fact that
for εzz → 0 only Dzz remains finite and Dxx and D y y both vanish, whereas for
both εxx = εy y → 0, both Dxx = D y y remain finite, and Dzz vanishes.
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Chapter 4

Wave transport in the presence of
boundaries

In this chapter we study transport of light in bounded aniso-
tropic media. Boundaries have an effect on both the wave
amplitude and radiance. We calculate anisotropic diffuse
reflection and transmission. The energy density is redis-
tributed over angles in a non-Lambertian way. The enhanced
backscattering cone becomes anisotropic.

4.1 Introduction

The propagation of waves through any material is almost always hampered
by a certain amount of disorder. This disorder could stem from some local
inhomogeneities in the refractive index, or it could be a discontinuous jump,
i.e. an interface between two materials.

Currently the effect of anisotropy on transport of radiance through disor-
dered media is extensively investigated. Some examples of anisotropic media
under study are semiconductors [27, 76], liquid crystals [28, 97], multilayer
films [43], blood cells [5], and the brain [4]. Radiative transfer in these ani-
sotropic media is usually either numerically modeled by Monte Carlo sim-
ulation, or, to very good agreement, approximated by an anisotropic diffu-
sion equation. The key advantage of the diffusion equation over the radiative
transfer equation is the fact that it can much more often be solved analytically.

In disordered media the waves can only travel a certain distance without
losing all directionality. Stationary diffusion of waves in some disordered ma-
terial is fully governed by the transport mean free path, a quantity which can
only be determined through boundary conditions on the diffusion equation.
Once the transport mean free path is known, we can measure the diffusion
constant, and obtain the energy velocity. In an experiment the transport mean
free path may be obtained by total transmission or enhanced backscattering
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Chapter 4 Wave transport in the presence of boundaries

measurements. The diffusion constant may be extracted from a time resolved
transmission experiment.

In this chapter, we study the boundary conditions at a planar interface be-
tween a homogeneous medium and an anisotropic disordered material. We
use a scalar wave model to describe the propagation of the amplitude of light.
In chapter 2 we related our model to the Maxwell equations and derived aniso-
tropic radiative transfer and in chapter 3 we studied anisotropic diffusion in
infinite media. Using boundary conditions we establish the transport mean
free path and the energy velocity. For semi-infinite media we present the es-
cape function and the enhanced backscattering cone, for slab like geometries
we present angle resolved transmission, and also the enhanced backscatter-
ing cone.

4.2 Conditions at an interface

When we want to describe a multiple scattering experiment it is crucial to
know what happens at the interface between a homogeneous medium and
a multiple scattering medium. In an illumination experiment we would send
some radiance into a disordered medium. This radiance will then scatter a
number of times due to the disorder, and, if it is not absorbed, eventually exit
the medium in some direction with a certain probability. Outside the disor-
dered material the radiance is governed by the wave equation for the wave
amplitude, whereas inside the disordered medium, once it scatters, it will be
governed by the radiative transfer or the diffusion equation. To give an accu-
rate description of such an experiment, we also need to determine what hap-
pens at the interface for the wave amplitude, its radiance, or its diffuse energy
density.

In this section we consider a planar interface between a homogeneous and
an elastic inhomogeneous medium, either of which is allowed to be anisotro-
pic. We will study the wave amplitude near the interface, the energy density
flux, the radiance, and the diffuse energy density. Before we proceed, we will
first revisit the mapping of vector waves to scalar waves, and see if there are
significant differences.

4.2.a Boundary conditions for electromagnetic fields

In this chapter we will study the boundary conditions for a scalar model for
light. The scalar model was obtained by mapping the electromagnetic energy
density onto the energy density of a scalar wave. In this section we deter-
mine the boundary conditions on the scalar wave, the energy density and flux.
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4.2 Conditions at an interface

These results are used in section 4.2.b to generalize Snell’s law to anisotropic
media, in section 4.2.c to obtain the Fresnel coefficients for anisotropic media,
and in section 4.2.e we determine the reflection and transmission coefficients
for the energy density flux.

We have a planar surface at z = 0 with unit normal n⊥ ≡ ez . There are no
free charges. The fields at an infinitesimal distance z = 0− < 0 are denoted by
the superscript <, the fields at infinitesimal distance z = 0+ > 0 are denoted
by the superscript >. The components parallel to the boundary have sub-
script ∥, whereas the perpendicular components have the subscript ⊥. The
four boundary conditions on the electromagnetic fields which follow from the
integral form of the Maxwell equations in matter are [53]

D<
⊥ = D>

⊥, (4.1a)

B<
⊥ = B>

⊥, (4.1b)

E<
∥ = E>

∥ , (4.1c)

H<
∥ = H>

∥ . (4.1d)

For convenience we suppose here that the fields are all plane waves of fre-
quency ω, and we suppress the (x, t ) dependence. The media are linear and
we use the constitutive relationsD = ε ·E andB =µ ·H .

Instead of the Maxwell equations we consider a mapping of the energy den-
sity of the electromagnetic fields on the energy density of a scalar field. In our
scalar model the displacementD is related to ∇ψ, whereas |H | is related to
∂ψ/∂t . Since we can not incorporate magnetic anisotropy in our mapping, we
take µ to be a scalar permeability, which can be inhomogeneous. The Max-
well equations are not satisfied by our identifications of electric and magnetic
fields, and boundary conditions (4.1) should not be applied directly to the
electromagnetic fields derived from ψ. To arrive at boundary conditions for
the scalar field we need to consider the effect of Eqs. (4.1) on the energy den-
sity and flux of the electromagnetic fields.

The electromagnetic fields which appear in the Maxwell equations can be
partitioned in fields polarized parallel or perpendicular to the plane of inci-
dence. For vector waves the plane of incidence is defined by normal vector
ek ×n⊥. Following [53] we say an electromagnetic wave is polarized paral-
lel to the plane of incidence if B⊥ = 0, and polarized perpendicular to the
plane of incidence when E⊥ = 0. These polarizations are indeed orthogonal
as Faraday’s law transformed to Fourier space yields p×E =ωB. We can not
apply this terminology to the fields derived fromψ, becauseE∝ ε−1 ·kψ and
B ∝ ψ, but we can consider the energy density of parallel or perpendicular
polarized vector waves separately.
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Chapter 4 Wave transport in the presence of boundaries

The energy density per frequency band Hω is equally distributed over the
electric and magnetic fields. The parallel polarized (B⊥ = 0) waves give rise
to a discontinuity of the energy density at the interface, given by

3µ0

Tr[µ<]
H <

ω = 3µ0

Tr[µ>]
H >

ω . (4.2a)

Here we introduced the permeability of the vacuum µ0 in order to make the
proportionality factors dimensionless. Introducing the permittivity of vac-
uum ε0 we have for perpendicularly polarized waves (E⊥ = 0) for the two
orthogonal orientations ofE along ex and ey ,

ε0

ε<xx
H <

ω = ε0

ε>xx
H >

ω , (4.2b)

ε0

ε<y y
H <

ω = ε0

ε>y y
H >

ω . (4.2c)

In general we require a superposition of Eqs. (4.2). We introduce the dimen-
sionless weights wi which satisfy 0 ≤ wi ≤ 1 and w1 +w2 +w3 +w4 = 1. The
weight w1 represents the amount of perpendicular polarized light oriented
withE∝ ex , weight w2 the amount of perpendicular polarized light oriented
withE∝ ey , w3 is the amount of parallel polarized light withB∝ ex and w4

is the amount of parallel polarized light withB∝ ey . Equations (4.2) can be
combined in a single equation by defining a dimensionless quantity B, which
can not be confused with B = |B|, since the magnitude of the electric flux is
not used, representing the distribution of polarizations by(

ci

c0B

)2

Hω ≡ ε0

εxx
w1Hω+ ε0

εy y
w2Hω+ 3µ0

Tr[µ]
[w3 +w4]Hω. (4.3)

Here we used ci
2 = Tr[ε−1]/Tr[µ]. In isotropic media we find for parallel po-

larized (w3 + w4 = 1) light B2 = ε0/ε, whereas for perpendicular polarized
(w1 +w2 = 1) light B2 = µ0/µ, which reflect the discontinuity in E⊥ and H⊥
for parallel and perpendicular polarized light respectively. Equation (4.3) is
closely connected to the Stokes parameters, which describeEω ·Eω. The four
Stokes parameters {si } for plane waves satisfy s0

2 = s1
2 + s2

2 + s3
2. Here s0

2

represents Eω ·Eω, and the other si form a coordinate s on the surface of a
sphere with radius s0. This sphere is known as the Poincaré sphere [54]. The
total energy density of the electric field and the medium is Eω · ε ·Eω, not
Eω ·Eω, which explains the ratios. Using B we can write a single boundary
condition on the energy density which guarantees that boundary conditions
(4.1) are satisfied, (

ci
<

c0B<

)2

H <
ω ≡

(
ci

>

c0B>

)2

H >
ω . (4.4)
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4.2 Conditions at an interface

In real situations even monochromatic light is not truly monochromatic, but
consists of a sum of a large number of plane waves, and s0

2 ≥ s1
2 + s2

2 + s3
2

[53, 54, 98]. To obtain that result we must integrate (4.3) over frequency band
dω.

For the energy density flux we do not need to consider each polarization
separately. From Eqs. (4.1c) and (4.1d) we immediately obtain continuity of

n⊥ ·S<
ω = n⊥ ·S>

ω . (4.5)

The parallel components of the energy density flux have a discontinuity, but
do not provide new information.

Equations (4.4) and (4.5) have implications on the scalar fieldψ. In the limit
of vanishing index mismatch the transmitted wave must be in phase with the
incident wave, and for ψ boundary condition (4.4) reads

ψ<

B< = ψ>

B> . (4.6a)

The continuity of the perpendicular flux component, Eq. (4.5), implies a dis-
continuity inn⊥ ·∇ψ= ∂ψ/∂z at the interface,

∂ψ<

∂z
= B>

B<
n⊥ ·A> ·κB>2 −n⊥ ·A< ·k∥B<2

n⊥ ·A< ·κ⊥B>2

∂ψ>

∂z
. (4.6b)

Here Azz is a component of the anisotropy tensor A = 3ε−1/Tr[ε−1]. For iso-
tropic media Azz = 1. If the incident light is polarized parallel to the plane of
incidence, then B =

√
ε0Tr[ε−1]/3.

In the past, the analogy of classical waves with Schrödinger waves or prob-
ability amplitudes has been used extensively, and often continuity of both ψ

and ∂ψ/∂z has been imposed. These latter boundary conditions are obviously
correct in the absence of index mismatch as B< = B> and A< = A>. They are
approximately correct if the index mismatch is due to a low density of scatter-
ers on one side of the interface. We will come back to the difference between
these boundary conditions in more detail in sections 4.2.c and 4.2.e. In order
to follow the analogy with Schrödinger waves we could absorb the B’s in the
ψ’s by redefining the field according to ψ̃≡ψ/B. The resulting boundary con-
ditions for ψ̃ are ψ̃< = ψ̃> and ∂ψ̃</∂z = (n⊥ ·A> ·κB>2−n⊥ ·A< ·k∥B<2)/(n⊥ ·
A< ·κ⊥B<2)∂ψ̃>/∂z. The new field ψ̃ behaves as a Schrödinger wave, and the
boundary as a scattering potential V (z) ∝ δ(z). This scattering potential is not
a potential well, but a potential barrier, and does not give rise to bound states.
Our main interest is the effect of anisotropy on transport of light through dis-
ordered media, not the analogy with Schrödinger waves, and for this reason
we proceed to work with the field ψ.
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Chapter 4 Wave transport in the presence of boundaries

The presence of a boundary with an index mismatch causes an imping-
ing, a reflected, and a transmitted plane wave, so all fields have the structure
Aiei(ki·x−ωt ) +Arei(kr·x−ωt ) =Atei(kt·x−ωt ) on the interface at z = 0, and there-
fore also in anisotropic media

ki∥ = kr∥ = kt∥. (4.7)

Equation (4.7) indicates that the incident, reflected and transmitted (or re-
fracted) wave vectors all lie in the plane of incidence. For the incident and
reflected waves Eq. (4.7) also shows that the angle withn⊥ is identical, which
is known as the law of reflection. These two implications of Eq. (4.7) are both
well known results in isotropic media [53, 54].

Had we switched the interpretation of the electromagnetic fields according
toB↔D andE↔H , and used the relevant identifications of the anisotropy
matrix with the anisotropy in µ−1, we had recovered identical boundary con-
ditions on ψ. The model with these switches is a generalization of the scalar
model employed in [68] to anisotropic magnetic permeability. Since ψ is in-
different to switching the interpretation, our results are equally applicable to
problems with anisotropic permeability and isotropic permittivity instead of
anisotropic permittivity and isotropic permeability.

4.2.b Snell’s law for anisotropic disordered media

In this section we study the discontinuity in the wave vector at the interface,
and generalize Snell’s law, also known as the law of refraction, to disordered
anisotropic media.

In the homogeneous medium the scalar wave amplitude is governed by a
possibly anisotropic wave equation (2.4), which gives rise to a wave vector k.
In section 4.2.a we found the wave vector components parallel to the interface
to be continuous at the interface,

k∥ = κ∥, (4.8)

where κ is the complex wave vector in the disordered medium. Propagation
in the ensemble averaged inhomogeneous medium is governed by the Dyson
equation (2.27)[87, 99].

As warming up we present the well known conditions at interfaces between
an isotropic homogeneous medium and an isotropic disordered medium. In
an isotropic host medium with arbitrary scatterers the Dyson equation im-
plies the dispersion relation

0 = ω2

ci
2 −κ ·κ−Σω(κ). (4.9)
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4.2 Conditions at an interface

Here ci is the (phase) velocity of light in the homogeneous isotropic medium
where Σ= 0. From dispersion relation (4.9) and wave vector requirement (4.8)
it is well known that the implicit equation for the perpendicular component
of the wave vector inside the multiple scattering medium is

Re[κ⊥(eκ)] ≡ ω

ci

√
Re[ε̃ω(κ)]+|ε̃ω(κ)|

2ε
, (4.10a)

Im[κ⊥(eκ)] ≡ ω

ci

Im[ε̃ω(κ)]

2µ

√
2ε

Re[ε̃ω(κ)]+|ε̃ω(κ)| , (4.10b)

ε̃ω(κ)

ε
≡ 1− ci

2

ω2Σω(κ)− ci
2

ω2κ∥ ·κ∥. (4.10c)

The quantity ε̃ω is introduced for notational convenience, because the dielec-
tric constant modified by scattering effects is actually given by ε̃ω(κ)+εci

2κ∥ ·
κ∥/ω2. Equations (4.10) describe refraction of light at the interface with a mul-
tiple scattering medium. When there are no extinction effects due to the dis-
order, i.e. when Im[Σ] = 0, then for the refracted wave the phase velocity is

vr(κ) = ci/
√

1−c2
i Re[Σ(κ)]/ω2, and we recover Snell’s law for incident light

with phase velocity vi,

sinθi

sinθr
=

√
Re[κ⊥]2 +κ∥ ·κ∥

k ·k = vi

vr(κ)
. (4.11)

We want to generalize the above treatment for isotropic media to anisotro-
pic media with a tensorial dielectric. However such a dielectric can not be
incorporated it in the above model 2.2. Therefore, instead of dielectric scat-
terers, we consider magnetic scatterers. Then we can introduce an anisotropic
permittivity tensor ε and anisotropy tensor A = 3ε−1/Tr[ε−1]. The dispersion
relation (4.9) becomes

0 = ω2

ci
2 −κ ·A ·κ−Σω(κ). (4.12)

Again the discontinuity in the wave vector at the interface can be deter-
mined. Using the anisotropic dispersion relation (4.12) together with wave
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vector requirement (4.8), we obtain for anisotropic media the result

Re[κ⊥(eκ)] ≡ ω

vp(n⊥)

[√
Re[µ̃ω(κ)]+|µ̃ω(κ)|

2µ
− vg(n⊥) ·eκ∥

vi(eκ)
eκ∥ ·eκ

]
,

(4.13a)

Im[κ⊥(eκ)] ≡ ω

vp(n⊥)

Im[µ̃ω(κ)]

2µ

√
2µ

Re[µ̃ω(κ)]+|µ̃ω(κ)| , (4.13b)

µ̃ω(κ)

µ
≡ 1− ci

2

ω2Σω(κ)−
[(

vp(eκ∥)

vi(eκ)

)2

−
(
vg(n⊥) ·eκ∥

vi(eκ)

)2
]

(eκ∥ ·eκ)2.

(4.13c)

Here vp is the phase velocity in the disordered anisotropic medium without
the scattering effects Σ, vi is the phase velocity of the incident wave, n⊥ is
the unit normal to the interface and pointing towards the inhomogeneous
medium, and µ⊥(κ) is an effective permeability related to κ⊥. Given an ex-
plicit self energy Σ, Eqs. (4.13) can be solved for κ⊥. We can not guarantee
that the square root in Eqs. (4.13) remains real valued for all wave vector di-
rections for any possible combination of neighboring media. When this hap-
pens, it means that there exists no wave vector, hence no propagation in those
directions. If there is no propagation into the medium, it means the incoming
wave vector is totally reflected.

In the independent scattering approximation, the disorder term Σ and the
related vectorial extinction mean free path are, using Eq. (2.37a),

Σω(κ) = nTω(eκ,eκ), (4.14a)

leω(eκ) = vg(eκ)

cinσeω(eκ)
= − ωvg(eκ)

ci
2nIm[Tω(eκ,eκ)]

. (4.14b)

The velocity vg is the group velocity in the homogeneous anisotropic medium
and σe is the extinction cross section. In the limit (4.14a) we have the simpli-
fication Re[µ̃ω(κ)]+|µ̃ω(κ)| = 2Re[µ̃ω(κ)]+O(n2). From now on we adopt the
independent scattering approximation (4.14a).

Due to the appearance ofn⊥ ·A·κ∥, in (4.13a) and (4.13c) there is no simple
expression for Snell’s law for media with arbitrary anisotropy. When we have a
material in whichn⊥ ·A·κ∥ = 0, then, for an incident wave with phase velocity
vi and identifying the “dressed” phase velocity (2.34a) of the refracted wave by

ṽp(κ) = vp(κ)/
√

1−c2
i nRe[T (eκ,eκ)]/ω2, Snell’s law is the relatively simple

expression

sinθi

sinθr
=

√
vi

2

ṽp(κ)2 + vi
2

ω2 κ∥ ·
[
1− A

n⊥ ·A ·n⊥

]
·κ∥. (4.15)
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4.2 Conditions at an interface

For isotropic media we have A = 1, and only then (4.15) reduces to (4.10).
The possibility exists that a negative value is obtained on the right hand side,
which means that there is total reflection. Incident waves coming in from an
anisotropic homogeneous medium will cause an additional dependence on
direction in vi.

4.2.c Fresnel’s equations for anisotropic disordered media

In a homogeneous medium the wave amplitude propagates without any hin-
drance. When it reaches an interface with an inhomogeneous medium, a part
of it may reflect due to a possible index mismatch, and the other part of the
wave is refracted (or transmitted). The wave vector component perpendicular
to the interface has a well defined discontinuity, which gives rise to the three
fundamental laws of geometrical optics. We use these three fundamental laws
of geometrical optics, which we established for disordered anisotropic media
in sections 4.2.a and 4.2.b, to determine the Fresnel coefficients for reflection
and transmission of the scalar wave ψ. We also determine the far field am-
plitude propagator for amplitude crossing an interface between a disordered
anisotropic medium to a homogeneous medium. We will need both of these
results when we calculate reflection and transmission properties such as the
enhanced backscattering cone.

In illumination experiments the light usually enters the disordered aniso-
tropic medium from air. Thus, in general there will be an index mismatch at
the interface. When there is an index mismatch at the boundary, then there
will be a reflected and a refracted wave, the amplitude of which is governed
by Fresnel coefficients [53]. We consider a plane wave ψ(k∥, z) of amplitude
ψ0 originating from a possibly anisotropic, but homogeneous medium, im-
pinging on an anisotropic material with low scatterer density. The interface
is located at z = 0 with unit normal n⊥ = ez , and we write the spatial coordi-
nate as x = x∥+ zn⊥. We write the plane wave solution in terms of Fresnel
reflection and transmission coefficients rF and tF, which are determined by
the boundary conditions. Outside the disordered medium (z < 0) we have the
incident and reflected wave amplitudes,

ψ<
k(x, t ) = ψ0 exp[−i

(
ωt −k∥ ·x∥

)
]

×[
exp[ik⊥(ek)z]− rF(k)exp[−ik⊥(ek)z]

]
. (4.16a)

Inside the disordered medium (z > 0) we have the refracted or transmitted
wave,

ψ>
k(x, t ) = tF(k)ψ0 exp[−i

(
ωt −k∥ ·x∥

)
]exp[iκ⊥(ek)z]. (4.16b)
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These equations look familiar, their appearance is identical to those for iso-
tropic media, but we need to realize that the wave vectors and Fresnel coeffi-
cients are different for anisotropic media.

In section 4.2.a we established that the boundary conditions on the scalar
wave are ψ</B< = ψ>/B> and n⊥ ·A< ·κ⊥B>B<∂ψ</∂z = (n⊥ ·A> ·κB>2 −
n⊥ ·A< ·k∥B<2)∂ψ>/∂z. The constants B are determined by the polarization
distribution incident on the interface, and A< and A>, the anisotropy matri-
ces of the media. A = 3ε−1/Tr[ε−1]. If the impinging wave is polarized par-
allel to the plane of incidence, B =

√
ε0Tr[ε−1]/3. We also noted that these

boundary conditions with discontinuities can be approximated by ψ< = ψ>

and ∂ψ</∂z = ∂ψ>/∂z when the media are almost perfectly index matched,
and the density of the disorder is very low, that is when we are in the indepen-
dent scattering limit (4.14a). For both boundary conditions we will establish
the Fresnel coefficients.

The approximated boundary conditionsψ< =ψ> and ∂ψ</∂z = ∂ψ>/∂z for
vanishing index mismatch, lead to the approximated Fresnel reflection and
transmission coefficients raF and taF

rF(k) ≈ raF(ek) ≡ κ⊥(ek)−k⊥(ek)

κ⊥(ek)+k⊥(ek)
, (4.17a)

tF(k) ≈ taF(ek) ≡ 2k⊥(ek)

κ⊥(ek)+k⊥(ek)
= 1− raF(ek). (4.17b)

If the anisotropy A> ≈ A< and B< ≈ B>, then Eqs. (4.17) hold by definition.
Fresnel reflection and transmission coefficients (4.17) are valid in other ani-
sotropic media, provided for all unit vectors e∥ in the plane defined byn⊥ the
media satisfy

n⊥ ·A< ·e∥ ≈ 0, (4.18a)

n⊥ ·A> ·e∥ ≈ 0, (4.18b)

n⊥ ·A< ·n⊥ ≈ n⊥ ·A> ·n⊥, (4.18c)

B< ≈ B>. (4.18d)

With the four requirements (4.18) it seems that the approximated Fresnel co-
efficients (4.17) are not very useful. However, when B< ≈ B> and one of the
principal axes of the anisotropy is perpendicular to the interface on both sides
of the boundary, such thatA<

zz ≈A>
zz , we can have arbitrary anisotropy in the

plane parallel to the interface, and Fresnel coefficients (4.17) remain valid.
The exact Fresnel coefficients can also be determined. Using k = k∥+k⊥,

kr =k∥−k⊥, and κ=k∥+κ⊥(ek), the Fresnel reflection and transmission co-
efficients for anisotropic disordered media derived from boundary conditions
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4.2 Conditions at an interface

(4.6) are

rF(k) ≡ n⊥ ·A> ·κB>2 −n⊥ ·A< ·kB<2

n⊥ ·A> ·κB>2 −n⊥ ·A< ·krB<2 , (4.19a)

tF(k) ≡ B>

B<
2n⊥ ·A< ·k⊥B<2

n⊥ ·A> ·κB>2 −n⊥ ·A< ·krB<2 = B>

B< [1− rF(ek)] .

(4.19b)

Taking B< → B> and A> → A<, or imposing requirements Eqs. (4.18), we re-
cover Eqs. (4.17). The Fresnel coefficients depend implicitly on frequency
ω, through the definitions of k and κ. Moreover, not only the perpendicular
component of the wave vectors is relevant, but also the parallel components
play a role in anisotropic media with optical axes at an angle with the inter-
face.

In many experiments the medium from which the incident light originates
is isotropic, and A< = 1. If the disordered medium is also isotropic, then
A> = 1, and these Fresnel coefficients become almost identical to those for
E had we used the Maxwell equations [53], including the Brewster angle for
parallel polarization, see Fig 4.1. In the transmission coefficient we observe
a difference which depends on the incoming polarization. For parallel polar-
ized waves the difference is given by the factor

√
µ</µ>. We can understand

this factor when we recall that in isotropic media for plane waves |E| = ci|B| =
iω

p
µψ, which is why the discontinuity inψ differs by the factor

√
µ</µ> from

the discontinuity in E for parallel polarized waves. For perpendicular polar-
izations a similar argument holds, leading to differences like

√
ε<xx /ε>xx .

The Brewster angle θB is defined by n⊥ ·A> ·κB>2 ≡ n⊥ ·A< ·kB<2, where
B =

√
Tr[ε−1] because the incident wave is parallel polarized. In experiments

usually the medium from which the waves impinge on the sample is homoge-
neous and isotropic, being air or vacuum. Isotropic media have A<

zz = 1, and
the incident phase velocity is vi. If we neglect the angular dependence of the
disorder and assume one of the optical axes is alongn⊥ = ez , then we have an
explicit and relatively simple expression for the Brewster angle θB

sin2θB =
1− ci

2

ω2 Re[Σω]−
(

viµ
<

vp(n⊥)µ>

)2

( vp(eκ∥ )

vi

)2
−

(
viµ<

vp(n⊥)µ>

)2
. (4.20)

In the absence of disorder (Σ= 0) and anisotropy (vp(eκ∥) = vp(n⊥) = vp), the
Brewster angle (4.20) for the scalar fieldψ is identical to the Brewster angle for
the electric field [53, 54].
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4.2.d Amplitude scattering out of anisotropic disordered
media

Inside the disordered material the wave will scatter many times and is gov-
erned by the radiative transfer equation or the diffusion equation, until finally
it scatters out of the disordered medium and escapes to infinity. For this final
scattering event we need the propagator from some point x0 inside the inho-
mogeneous medium to some point x in the homogeneous medium, far away
from the interface. Again the coordinates are such that the the homogeneous
medium is at z < 0, and the disordered medium at z > 0.

We calculated the real space Dyson Green function G for an infinite multi-
ple scattering medium in chapter 2. Under the assumption that |x|À |x0|, we
make a far field expansion of G for the amplitude escaping the multiple scat-

tering medium. Using |A− 1
2 ·(x−x0)| = |A− 1

2 ·x|−x0·nφ(x)/
√
nφ(x) ·A ·nφ(x),

where nφ is the unit normal of the wave surface φω(x) of the elliptical wave,
the asymptotic behavior of the amplitude (2.36) is

G (x,x0, t )
|x|À|x0|−→

∣∣vg(nφ(x))
∣∣

ci
p

detA

exp
{

iωci
[φω(x)−cit ]− |x|

2|leω(nφ(x))|
}

4π|x|

×exp

{
− iωnφ(x) ·x0

ṽp(nφ(x))
+ nφ(x) ·x0

2leω(nϕ(x)) ·nφ(x)

}
. (4.21)

Here ṽp(nϕ) is the phase velocity dressed with scattering effects (2.34a). Co-
ordinate x is outside the disordered medium, and in the first exponential we
must take le to infinity, because there are no scatterers outside the inhomoge-
neous medium. On the other hand, x0 is inside the medium, so in the second
exponential we have nφ(x) ·x0 ≤ 0 and therefore a the emerging amplitude
decays more when the last scattering event is deeper inside the disordered
medium. In the second exponential we can identify the complex wave vector
of the infinite medium (2.68) by

κ(nϕ(x)) = ωnφ(x)

ṽp(nφ(x))
+ i

nφ(x)

2leω(nϕ(x)) ·nφ(x)
. (4.22)

The normal to the wave surface nϕ(x) acts as wave vector, and we write ek =
nϕ(x). In the presence of a boundary we must express wave vector (4.22) in
terms of the wave vector outside the disordered medium. For this we use con-
tinuity requirement (4.8) for the parallel wave vector components, and Eqs.
(4.13) for the perpendicular component.

For notational convenience, we introduce two generalizations of cosθ =
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4.2 Conditions at an interface

−eκ ·n⊥ by

uω(eκ,n⊥) ≡
√

Re[µ̃ω(κ)]+|µ̃ω(κ)|
2µ

, (4.23)

ũω(eκ,n⊥) ≡ uω(eκ,n⊥)− vg(n⊥) ·eκ∥

vi(eκ)
eκ∥ ·eκ. (4.24)

For scatterer density n = 0 and isotropic media A= 1 both of these quantities
reduce to (1− (eκ ·eκ∥)2)1/2 =

√
(−eκ ·n⊥)2 = cosθ.

Using the asymptotic Green function (4.21), and boundary condition (4.6a)
for ψ, we finally obtain the Green function describing propagation across a
boundary,

Gbω (x,x0, t ) ≡ B>

B<

∣∣vg(ek)
∣∣

ci
p

detA

exp
{

iωci
[φω(x)−cit ]

}
4π|x|

×exp

{
ik∥ ·x0 + i

ωũω(eκ,n⊥)z0

|vg(n⊥)| − z0

2|leω(n⊥)|uω(eκ,n⊥)

}
.

(4.25)

In the second exponent we used vp(n⊥)/|vg(n⊥)| =nφ(z0n⊥) ·n⊥.
We will use the results of this section for calculations on reflection, en-

hanced backscattering and total transmission of multiple scattered light. We
disregard the reflections at the interface for the waves escaping the disor-
dered medium, because these internal reflections will be accounted for in the
boundary conditions on the (diffuse) radiance.

4.2.e Reflectivity and transmissivity

Not only the amplitude is reflected and refracted when crossing an interface,
but also the energy density flux (per frequency band) is partitioned in a re-
flected and a transmitted part. In this section we will determine the transmis-
sivity and reflectivity which quantify how much of the energy density actu-
ally traverses the boundary and how much is reflected. We will also introduce
reflection and transmission tensors, which are related to the reflectivity and
transmissivity.

We could call the energy flux density the intensity as it has units W m−2,
which is an intensity according to the SI . However the term intensity is in
the literature used for many different quantities, which do not always repre-
sent power per area. To prevent confusion with specific intensity W m−2 sr−1,
which appears a lot in the literature on radiative transfer, and which is radi-
ance according to the SI , we prefer to avoid the term intensity.
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Chapter 4 Wave transport in the presence of boundaries

The reflectivity and transmissivity are, for an incident harmonic plane wave
at frequency ω and wave vector k(ω) at each point x on the interface at z = 0,
defined by

Rk(x) ≡ −n⊥ ·Srk(x)

n⊥ ·Sik(x)
, (4.26a)

Tk(x) ≡ n⊥ ·Stk(x)

n⊥ ·Sik(x)
= 1−Rk. (4.26b)

Here Si, Sr, and St are the energy density flux of the incident, reflected and
transmitted harmonic plane respectively, which we will identify below. The
time dependence of the harmonic plane wave drops out of the equation, but
its direction does not.

In section 4.2.a we established flux conservation for the component per-
pendicular to the boundary in Eq. (4.5), which we repeat here for the energy
density flux of the harmonic plane wave,

lim
z↑0
n⊥ ·S<

k (x) = lim
z↓0
n⊥ ·S>

k (x). (4.27)

The energy density flux of a scalar wave in an anisotropic medium is S =
−∂ψ/∂tA ·∇ψ∗+c.c., where c.c. means complex conjugate. We send in a har-
monic plane wave originating from z →−∞, and traveling through a (possibly
anisotropic) homogeneous medium. A part of the incident wave amplitude is
reflected and another part is refracted, which is described by wave amplitude
(4.16). The wave vectors of the incident, reflected, and transmitted waves are
k = k∥+k⊥, kr = k∥−k⊥, and κ = k∥+κ⊥(ek), with κ⊥ given by (4.13). We
obtain for the energy density fluxes on each side of the boundary

lim
z↑0
S<
k (x) = 2ω|ψ0|2A< · [k+kr|rF(k)|2 − (k+kr)Re[rF(k)]

]
, (4.28a)

lim
z↓0
S>
k (x) = 2ω|ψ0|2A> ·Re[κ]|tF(k)|2. (4.28b)

It turns out that the flux does not depend on x, unless we were to make the
anisotropy A coordinate dependent, but this would at the same time destroy
the harmonic plane wave. At the boundary it makes sense that only the real
part of the complex wave vector κ appears, as infinitesimally close to the
boundary the transmitted energy has not had the chance to scatter.

In Eq. (4.28a) we identify three terms, an incident flux, a reflected flux pro-
portional to |rF(k)|2, and a term proportional to Re[rF] which represents inter-
ference of the incident and reflected wave. Note that k+kr = 2k∥, and in iso-
tropic media this is a flux parallel to the interface. The interference term does
not vanish when we average over surface area, nor when we cycle average. In
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4.2 Conditions at an interface

the absence of an interface, the interference term is also absent, and therefore
we count it as a contribution to the reflected flux, using k∥ = (1−n⊥n⊥) ·kr.
There is an ambiguity in counting the term containing Re[rF(k)] as a reflec-
tion, because that term can be expressed as

Re[rF(k)] = 1+|rF(k)|2 − B<2

B>2 |tF(k)|2. (4.29)

Inserting Eq. (4.29) in (4.28a) together with k+kr = 2k∥ shows that the par-
allel components of the wave vector are not reflected, provided we enlist the
term 2ω|ψ0|2(B</B>)2|tF(k)|2A< ·k∥ as contribution to the transmitted flux.
Nonetheless, we identify the incident, reflected, and transmitted flux, Si, Sr,
andSt respectively, by

Sik ≡ 2ω|ψ0|2A< ·k, (4.30a)

Srk ≡ 2ω|ψ0|2A< · [|rF(k)|21−2Re[rF(k)](1−n⊥n⊥)
] ·kr ≡ −Rk ·Sik,

(4.30b)

Stk ≡ 2ω|ψ0|2A> ·Re[κ]|tF(k)|2 ≡ Tk ·Sik. (4.30c)

The reflection and transmission tensors R and T are

Rk = A< · [|rF(k)|2n⊥n⊥− (|rF(k)|2 −2Re[rF(k)]
)

(1−n⊥n⊥)
] ·A<−1,

(4.31a)

Tk = A> ·
[

Re[κ⊥(ek)]

k⊥(ek)
|tF(k)|2n⊥n⊥+|tF(k)|2 (1−n⊥n⊥)

]
·A<−1.

(4.31b)

We start by considering boundary condition (4.27) for media which satisfy
requirements (4.18), i.e. n⊥ ·A< ·n⊥ ≈ n⊥ ·A> ·n⊥, n⊥ ·A< · e∥ ≈ n⊥ ·A> ·
e∥ and B< ≈ B>. The Fresnel coefficients rF and tF are approximated by raF

and taF respectively. The definitions (4.26) of reflectivity and transmissivity
definitions applied in these media lead to

Rk ≈ Rak ≡ |raF(k)|2, (4.32a)

Tk ≈ Tak ≡ n⊥ ·Re[κ]

n⊥ ·k |taF(k)|2 = 1−Rak. (4.32b)

The final equality is established using Eqs. (4.17) for the Fresnel coefficients.
We have total transmission Tk = 1 for all k only in the absence of both index
mismatch and scatterers. We can use the approximation Tk ≈ 1 if Re[κ] ≈ k,
which happens when we either are in the independent scattering approxi-
mation (4.14a), or when the scatterers are on resonance. In isotropic media
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Chapter 4 Wave transport in the presence of boundaries

n⊥ ·A< ·n⊥ = 1 =n⊥ ·A> ·n⊥, and reflectivity and transmissivity (4.26) reduce
to the well known result [53, 54, 100]. We note that the reflection and trans-
mission tensor R and T in these media become

Rk ≈ Rak ≡ Rakn⊥n⊥+ (
1−|taF(k)|2) [1−n⊥n⊥] , (4.33a)

Tk ≈ Tak ≡ Takn⊥n⊥+|taF(k)|2 [1−n⊥n⊥] = 1−Rak,(4.33b)

All components of the flux are continuous in media which satisfy require-
ments (4.18), so for every harmonic plane wave we have

Sik = Rak ·Sik+Tak ·Sik ≈ −Srk+Stk. (4.34)

We continue with the treatment for general anisotropic dielectrics. The re-
flectivity and transmissivity follow from definitions (4.26) using fluxes (4.30)
without any approximations, and are

Rk = −n⊥ ·A< ·{|rF(k)|21−2Re[rF(k)](1−n⊥n⊥)
} ·kr

n⊥ ·A< ·k , (4.35a)

Tk = n⊥ ·A> ·Re[κ]|tF(k)|2
n⊥ ·A< ·k = 1−Rk. (4.35b)

In contrast with the approximated reflectivity and transmissivity (4.32), the ex-
act reflectivity and transmissivity depend on the polarization of the harmonic
plane wave through the ratio B>2/B<2 present in Fresnel coefficients (4.19).
Thus, by taking the appropriate values for this ratio, as discussed in section
4.2.a, we obtain separate expressions for the reflectivity and transmissivity as
well as for the reflection and transmission tensors for waves polarized parallel
and perpendicular to the plane of incidence. In Fig. 4.2 we plotted the reflec-
tivity and transmissivity for parallel polarized waves in isotropic and anisotro-
pic media.

The reflection and transmission tensors R and T do not add up for all com-
ponents as only the flux component perpendicular to the interface is contin-
uous. However, we can write for all unit vectors e∥ in the planes defined by
normaln⊥

n⊥ ·Sik = −n⊥ ·Srk+n⊥ ·Stk = n⊥ ·Rk ·Sik+n⊥ ·Tk ·Sik.(4.36)

In the derivation of the reflectivity, transmissivity, and the reflection and
transmission tensors presented in this section, so far there is only a single
wave vector for a harmonic plane wave of some polarization. Often waves
consist of many wave vectors and many polarizations. If all these wave vec-
tors belong to the same frequency and the same polarization, we can integrate
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4.2 Conditions at an interface

Eqs. (4.36) over the distribution of wave vectors, and extract angle averaged
reflectivity and transmissivity tensors and the angle averaged reflected and
transmitted flux. If there is also a certain distribution of polarizations, then
we can write it as a superposition of the orthogonal polarizations discussed
in section 4.2.a, which we can send into the medium with certain weights wi ,
and add these up. The angle and polarization averaged fluxes are

Siω ≡
4∑

i=1
wi

∫
d2ekSi

i
k, (4.37a)

Srω ≡
4∑

i=1
wi

∫
d2ekSr

i
k ≡−Rω ·Siω, (4.37b)

Stω ≡
4∑

i=1
wi

∫
d2ekSt

i
k ≡Tω ·Siω. (4.37c)

Here k is the wave vector of the incident harmonic plane wave of frequencyω
and the index i identifies the polarization of the weights and fluxes.

The angle and polarization averaged fluxes (4.37) are also subject to bound-
ary condition (4.27) or (4.5), and therefore

n⊥ ·Siω = −n⊥ ·Srω+n⊥ ·Stω = n⊥ ·Rω ·Siω+n⊥ ·Tω ·Siω. (4.38)

The continuity of the perpendicular flux component (4.38) gives rise to angle
and polarization averaged reflectivity and transmissivity, which are by defini-
tion

Rω ≡ −n⊥ ·Srω

n⊥ ·Siω
= n⊥ ·Rω ·Siω

n⊥ ·Siω
, (4.39a)

Tω ≡ n⊥ ·Stω

n⊥ ·Siω
= n⊥ ·Tω ·Stω

n⊥ ·Siω
= 1−Rω. (4.39b)

We have only formally related the angle and polarization averaged reflec-
tivity and transmissivity to the reflectivity for plane waves through equations
(4.37) and (4.39). Explicit relations are only obtained when we are provided
with additional information about the angle and polarization distributions of
the plane waves which constitute the angle and polarization averaged fluxes.

Although the reflection and transmission tensors have the drawback that
they do not add up to yield the unit tensor, they do have one advantage over
the reflectivity and transmissivity. If we want to incorporate surface rough-
ness which is anisotropic on average, then adding anisotropy to the reflec-
tivity or transmissivity necessarily implies that all components of the energy
density flux are affected equally, but by adding it to the reflection or transmis-
sion tensor we can independently influence each component of the energy
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density flux. Angle and polarization averaged reflectivity, transmissivity and
reflection and transmission tensors are used in sections 4.2.f and 4.2.g in the
boundary conditions on the radiance and diffuse energy density, and in all
other sections on multiple scattered light.

4.2.f Radiance per frequency band

To determine the what happens at an interface between a homogeneous and a
disordered medium for the multiple scattered radiance, we suppose an initial
situation in which there is radiance in the disordered medium only. Such an
initial situation is achieved by switching on a light somewhere deep inside the
sample as in Fig. 4.3 We again choose coordinates such that the homogeneous
medium is at z < 0, and the inhomogeneous medium is at z > 0. There are no
scatterers in the homogeneous medium to change the propagation direction
of the energy density, so we know that at the interface there is no energy den-
sity flux coming in from the homogeneous medium. The energy density flux
S± crossing the interface in the ±n⊥ direction is

S±
ω (x, t ) ≡

∫
B±

d2ekIω (ek,x, t )
vg (ek)

|vg (ek) | , (4.40)

where the integration domain B± is the set of all wave vectors ek such that
±n⊥ ·vg

(
p
)≥ 0. The boundary condition which expresses that there is no flux

moving towards the inhomogeneous medium is [6]

0 = n⊥ ·S+
ω (x) = ω2

ci
2

∫
B+

d2ek
(2π)3

n⊥ ·vg (ek)

|vg (ek) | Iω (ek,x, t ) , (4.41)

where the integration domain B+ is the set of all wave vectors ek such that
n⊥·vg (ek) ≥ 0. However, there may be an index mismatch at the interface, and
then part of the flux moving towards the homogeneous medium will reflect.
As explained in section 4.2.f we can introduce angle and polarization averaged
reflection and transmission tensors R and T defined as (4.37). The boundary
condition becomes

n⊥ ·S+
ω (x) = −n⊥ ·Rω ·S−

ω (x) . (4.42)

We illustrate boundary condition (4.42) in Fig 4.3. Note that in contrast to the
situation described in section 4.2.f here the waves originate from the disor-
dered medium instead of the homogeneous medium. When R→ 0, then (4.42)
reduces to (4.40). In Eq. (4.42) we could use the identity −n⊥ ·Rω ·S−

ω (x) =
−Rωn⊥ ·S−

ω (x) with Rω an average reflectivity. The advantage of using an av-
erage reflection tensor R over an average reflectivity R is that a reflection ten-
sor makes it possible to incorporate anisotropic surface roughness, which can
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4.2 Conditions at an interface

affect each component ofS− in a different way if the anisotropy of the rough-
ness does not average out. Both boundary conditions, (4.41) and (4.42), will
be applied to the diffuse radiance in section 4.2.g.

4.2.g Diffuse energy density

The diffusion equation for the energy density of the waves is an approxima-
tion on the radiative transfer equation, and yields very accurate results for a
description of transport of light through most disordered media if (homoge-
neous) Dirichlet-Neumann boundary conditions are used [6, 101, 102]. The
Dirichlet-Neumann boundary conditions are also known under the names
impedance, Robin, or mixed boundary conditions. These boundary condi-
tions are direct consequence of the condition for the radiance (4.41).

Not only are Dirichlet-Neumann boundary conditions relevant for an ac-
curate description of the distribution of diffuse energy density, but they are
also essential for the definition of the transport mean free path, even in iso-
tropic media. The reason is that a stationary isotropic diffusion equation, for
energy density H , which reads D∇ ·∇H = 0, can be scaled by an arbitrary
multiplicative constant, without altering the diffusive behavior. A boundary
condition can fix this ambiguity. In isotropic media, in the absence of internal
reflections, the boundary condition looks like H = 2ln⊥ ·∇H /3, with l the
transport mean free path andn⊥ the normal to the surface [101]. The station-
ary diffusion equation then becomes l∇·∇H /3 = 0. Once we know the trans-
port mean free path, and we consider only stationary diffusion, we still can not
define the diffusion constant. For a proper definition of the diffusion constant
we must start with a dynamic diffusion equation ∂H /∂t −D∇ ·∇H = 0, and
use boundary condition (4.41). Boundary condition (4.41) applied to dynamic
diffuse radiance results, for isotropic diffusion, in vH /4+Dn⊥ ·∇H /2 = 0,
where v is the energy velocity of the waves, and H is the energy density [102].
The energy velocity v is the quantity that is not present in stationary diffu-
sion. Stationary diffusion is a special case of dynamic diffusion, so we identify
D = vl /3, and recover the stationary boundary condition H = 2ln⊥ ·∇H /3.
We will use a similar approach to determine the transport mean free path and
energy velocity in anisotropic media.

We again start with the assumption that at first there is radiance only in-
side the multiple scattering medium. If we calculate the right hand side using
(4.41) and the self consistent expansion of the radiance in anisotropic media,
which we derived in chapter 2, we find for the total diffuse energy density H

the boundary condition

0 ≡ 1

4

n⊥ ·vg (n⊥)

1+δω
Hω (x, t )− 1

2
n⊥ ·Dω ·∇Hω (x, t ) . (4.43)
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The factors 1/4 and 1/2 are always obtained in three dimensions for isotropic
media [68, 102]. We can write down (4.43) for boundaries of arbitrary orienta-
tionn⊥ with respect to the principal axes of the anisotropy {ei}. Therefore we
identify an energy velocity vector v and a transport mean free path vector l by

vω(ek) ≡ vg (ek)

1+δω
(4.44)

lω(ek) ≡ 3ek ·Dω

ek ·vω(ek)
= tω ·vg(ek). (4.45)

Had we not had boundary condition (4.43), we would not have been able to
unambiguously define a transport velocity and transport mean free path. For
example, the scattering delay could erroneously be absorbed in the transport
mean free path. The transport mean free path reduces to the extinction mean
free path when the scatterers scatter isotropic.

Transport mean free path (4.45) gives rise to the equivalent boundary con-
dition which has a completely stationary appearance

Hω(x, t ) = 2

3
lω(n⊥) ·∇Hω(x, t ). (4.46)

In chapter 3 we derived diffusion tensor D = t · 〈vgvg〉/(1+δ), were we in-
troduced the angular average over the surface of constant frequency by,

〈. . .〉ek =
∫

d2ek
4π

. . .√
(ek ·A ·ek)3 detA−1

. (4.47)

Using Eqs. (4.44), (4.45), and (4.47), we express the diffusion tensor in terms
of the transport mean free path and transport velocity, and a few interesting
variants,

Dω = 〈vω(ek)lω(ek)〉ek (4.48a)

= t−1
ω

1+δω
· 〈lω(ek)lω(ek)〉ek (4.48b)

= 〈(1+δω)vω(ek)tω ·vω(ek)〉ek (4.48c)

= 1

3

3∑
i=1

[ei ·vω(ei )ei lω(ei )] . (4.48d)

The second option (4.48b) explicitly separates a dynamic transport time ten-
sor from the stationary transport mean free path. In stationary experiments it
is only possible to measure the stationary mean free path. The dynamic time
scales are inaccessible in stationary measurements. Therefore it is impossi-
ble to measure the complete diffusion tensor in a stationary measurement.
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For a full characterization of the diffusion tensor dynamic measurements are
necessary to discover the anisotropy in the dynamic time scale.

The mean free path vector and the energy velocity vector are physically well
defined, but sometimes difficult to work with. We might also define a scalar
or tensorial mean free path and energy velocity, although these are much less
well defined as physical quantities. To obtain either of these we strip bound-
ary condition (4.41) from the normal vectorn⊥. There is no reason why there
should the flux components along the boundary should vanish, which is why
the tensor mean free path is ill defined. We know that vg(n⊥)/(1+δω) = ci

2A ·
n⊥/[vp(n⊥)(1+δω)]. Another normal vectorn⊥ can be stripped from the en-
ergy velocity, and we end up with an energy velocity tensor defined by vω ≡
ci

2A/[vp(n⊥)(1+δω)]. The transport mean free path tensor is then defined by
lω ≡ 3vω

−1 ·Dω. Obviously, instead of stripping n⊥ from the energy velocity
vector, we could also have stripped another vector, e.g. the unit direction of
the energy velocity A ·n⊥/|A ·n⊥|. Had we done the latter, the energy velocity
had been scalar, and the anisotropy in the diffusion tensor had been identical
to the anisotropy in the mean free path tensor. By separating still another vec-
tor we could even create a scalar mean free path and a tensor energy velocity.
Although not well defined physically, tensorial or scalar transport mean free
path and energy velocity might sometimes be more practical to work with,
because they can be inverted.

For boundary condition (4.43) we assumed that the media we perfectly in-
dex matched, which is very often not true. If the media are not perfectly index
matched we expect internal reflection. Thus, when we consider the flux in-
finitesimally close to the boundary inside the scattering medium, we apply
boundary condition (4.41) The resulting boundary condition for the energy
density is

Hω(x, t ) = 2

3

n⊥ · (1+Rω) ·vω(n⊥)

n⊥ · (1−Rω) ·vω(n⊥)
lω(n⊥) ·∇Hω(x, t ). (4.49)

If there is no internal reflection, R= 0, and we recover (4.46). We preferred to
use the angle and polarization averaged reflection tensor in boundary con-
dition (4.49) in order to be able to model disordered materials with aniso-
tropic surface roughness. As explained in section 4.2.f, if we do not want to
consider anisotropic surface roughness we could equally well have expressed
(4.49) in terms of an angle and polarization averaged reflectivity Rω, which
leads to Hω(x, t ) = (2/3)(1+Rω)/(1−Rω)lω(n⊥) ·∇Hω(x, t ). In isotropic me-
dia the transport mean free path becomes a scalar quantity, and we recover
the well known factor (2/3)(1+R)/(1−R)l [102]. At perfectly reflecting bound-
aries the total diffuse energy density flux S = 0 and the reflectivity Rω = 1, or
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equivalently ∇H =0, and the vanishing denominator of (4.49) has no conse-
quences.

In isotropic media the angle and polarization averaged reflectivity (4.39a)
and transmissivity (4.39b) have been expressed as integrals over the diffuse
radiance [102, 103]. We can follow a similar procedure, for which we introduce
the angular averages over two halves of the frequency surface, by

〈. . .〉±ek ≡
∫

B±

d2ek
2π

vp(e1)vp(e2)vp(e3)

v3
p(ek)

. . . . (4.50)

Here Here B± represents again the set of all wave vectors ek such that ±n⊥ ·
vg

(
p
) ≥ 0. Recalling Eqs. (4.37) and (4.26) which relate the reflectivity and

transmissivity of a single plane wave to the angle averaged reflectivity and
transmissivity, we define two auxiliary dimensionless quantities Q1, Q2 and
Q2 by

Q1ω ≡ n⊥ ·Q1ω ·vg (n⊥)

n⊥ ·vg (n⊥)
, (4.51a)

Q2ω ≡ n⊥ ·Q2ω ·vg(n⊥)

n⊥ ·vg(n⊥)
, (4.51b)

Q1ω ·vg (n⊥) ≡ 〈Rk ·vg (ek)〉−ek , (4.51c)

Q2ω ≡ 〈Rk ·vg (ek)ek
ek ·vg (ek)

〉
−

ek

. (4.51d)

In the isotropic limit the auxiliary quantities Q1 and Q2 become identical to
the quantities C1 and C2 as used in [102]. We recall that n⊥ ·Rk ·vg (ek) = Rk.
The angle and polarization averaged reflection tensor for anisotropic diffusing
light can be expressed in terms of the auxiliary quantities by

Rω = 3Qω2 +2Qω1

3Qω2 −2Qω1 +2
. (4.52)

The angle and polarization averaged reflectivity appears to identical to the
result found in isotropic media, except for the generalization of Q1 and Q2 to
anisotropic media.

Instead of the reflectivity we can also consider the reflection tensor. As both
S+ andS− are on the same side of the boundary, also the parallel components
of the flux are continuous. Therefore we can remove the projection onn⊥ and
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obtain at the boundary these equations,

[
1−2Q1ω

] ·v(n⊥)Hω(x, t ) = 2

3

[
1+3Q2ω

] ·v(n⊥)l(n⊥) ·∇Hω(x, t ),

(4.53a)

[1−Rω] ·v(n⊥)Hω(x, t ) = 2

3
[1+Rω] ·v(n⊥)l(n⊥) ·∇Hω(x, t ).

(4.53b)

Equations (4.53a) and (4.53b) can differ at most by an overall scaling factor.
Provided the inverse of 3Q2ω/2 −Q1ω + 1 exists, it is easy to check that the
angle and polarization averaged reflection tensor can be expressed in terms
the reflection tensor for harmonic plane waves Rk with the help the auxiliary
tensors Q1 and Q2 by

Rω =
[

3

2
Q2ω−Q1ω+1

]−1

·
[

3

2
Q2ω+Q1ω

]
. (4.54)

The advantage of Eq. (4.54) over Eq. (4.52) is that it can incorporate anisotro-
pic surface roughness both through altered k dependence of the individual
Rk, but it can also affect each component of the energy density flux vector
independently, which is impossible by altering the reflectivity.

4.3 Extracting anisotropy from diffusion

In the previous section we obtained the anisotropic diffusion tensor in terms
of a transport mean free path vector and an energy velocity, which were both
vector quantities. In isotropic media the angle dependence is integrated out,
and the transport mean free path and energy velocity reduce to scalars. In
this section we want to partition the diffusion tensor in an isotropic diffusion
constant and an anisotropy tensor.

In isotropic media the isotropic diffusion tensor Di is expressed in an iso-
tropic transport mean free path li and an isotropic energy velocity vi (which
we do not expect to be confused with the earlier specified phase velocity of
the incident non-scattered wave, which was also vi). These isotropic trans-
port quantities are defined by [68],

liω ≡ τω 〈vp(ek)〉ek (4.55a)

viω ≡ ci
2

[1+δω]〈vp(ek)〉ek
(4.55b)

Diω ≡ 1

3
liωviω, (4.55c)
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which are all scalar quantities, and τ is a transport mean free time [50]. Note
that when we use a homogeneous and isotropic dispersion relation with unit
anisotropy tensor A= 1 then 〈vp〉 = ci, and our result for the anisotropic diffu-
sion tensor (3.11) reduces to Di = Di1.

We can express the anisotropic diffusion tensor D, (4.48a)

in terms of the isotropic diffusion tensor Di by extracting the time scale τ
from the transport time scale tensor t. We find

Dω = Diω
tω
τω

·A, (4.56)

where the anisotropy tensor is related to the anisotropy in the dielectric by A≡
3ε−1/Tr

(
ε−1

)
, (2.6a). We can express (4.56) in terms of an angular averaged

momentum transfer cross section tensor s, which, is defined by ns ≡ (cit)−1,
so then

Dω = Diω

(
sω

1
3 Tr[sω]

)−1

· ε−1

1
3 Tr[ε−1]

. (4.57)

We see that the anisotropy in the momentum transfer cross section must be
inversely proportional to s ∝ ε−1 in order to exactly cancel the anisotropy ε
of the host medium. From (4.57) we conclude that any problem with isotro-
pic homogeneous permeability µ and isotropic homogeneous permittivity ε
to which local anisotropic dielectric scatterers are added can be replaced by
a problem with anisotropic dielectric host and isotropic magnetic scatterers.
Also any problem which appears to be a combination of anisotropic scatterers
and anisotropic host can be replaced by a problem in which only the host is
anisotropic.

4.4 Propagators for the diffuse energy density

In this section we calculate Green functions for the diffuse energy density in a
semi-infinite medium and in a slab geometry. Together with the Green func-
tions for the wave amplitudes coupling in and out of a medium, the Green
function for the energy density is a required ingredient for the calculation of
the bistatic coefficients, which describe the reflection and transmission prop-
erties of disordered media. Moreover, given the Green function for the diffuse
energy density, the solution to a problem with an arbitrary source inside the
disordered medium can easily be calculated, as it is just an integral over the
Green function.
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In order to calculate reflection and transmission properties of multiple scat-
tering media, we require solutions to the diffusion equation,

∂Hω(x, t )

∂t
−∇ ·Dω ·∇Hω(x, t ) = sω(x, t ). (4.58)

In illumination experiments the source s is a part of the incoming energy
which has scattered once. In the rest of this section we will suppress the ω
dependencies, for reasons of legibility of the formulas to come. It is under-
stood that all newly introduced quantities depend on ω.

We need to solve the diffusion equation for an arbitrary source, because we
do not specify a specific scatterer yet. Therefore we require the Green function
defined by

∂GH (x, t ,x0, t0)

∂t
−∇ ·D ·∇GH (x, t ,x0, t0) = δ3(x−x0)δ(t − t0).(4.59)

We impose boundary conditions to find the solutions for specific geometries.
In the next subsections we solve for semi-infinite media and slab geometries.

4.4.a Diffusive Green functions for semi-infinite media

We consider a semi-infinite disordered anisotropic medium. The boundary is
at z = 0, the disorder at z > 0, and the inward pointing unit normal isn⊥ = ez .
The diffusion equation is supplied with a boundary condition at z = 0, and an
initial condition at t = 0,

H (x, t ) = C ·∇H (x, t ), (4.60a)

H (x, t0) = C0(x). (4.60b)

Here C is a shorthand for the quantity in boundary condition (4.49), and
C0(x) is some initial distribution of diffuse energy density. In the absence of
internal reflections, R = 0, we take C = 2l(n⊥)/3 and recover boundary con-
dition (4.46). If we do want to incorporate internal reflections we must take
the more complicated vector from the modified boundary condition (4.49).
Furthermore, for any source at finite depth the energy density must achieve a
finite value when z →∞.

For t 6= t0 and x 6=x0, we can separate time and space coordinates, and we
write Hω(x, t ) = hω(x)hω(t ), such that

1

h(t )

∂h(t )

∂t
= 1

h(x)
∇ ·D ·∇h(x) ≡ −C1. (4.61)

For stationary diffusion C1 = 0, otherwise C1 > 0. The solution for the dynamic
part h(t ) is almost trivial, it is an exponential decay h(t ) = exp[−C1(t − t0)].
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We will now proceed with the calculation of the stationary Green function
GH (x,x0), which is related to h(x).

Due to the translational symmetry parallel to the interface, momentum is
conserved in those directions, and it is convenient to transform the parallel
coordinates to Fourier space. We end up with a function which depends only
on a single q∥, which is the Fourier transform of x∥−x0∥. It is convenient to
introduce

b1(q∥,n⊥) ≡
√
q∥ ·D ·q∥
n⊥ ·D ·n⊥

−b2
2(q∥,n⊥)+C1, (4.62a)

b2(q∥,n⊥) ≡ − q∥ ·D ·n⊥
n⊥ ·D ·n⊥

. (4.62b)

When an axis of the anisotropy is perpendicular to the boundary or when
D = D1, then b2 = 0. With the parallel coordinates Fourier transformed away
we have a one dimensional second order differential equation for h(z). Our
b1 and b2 can be used to create the eigenvalues of the second order partial
differential equation, −ib2±b1. In contrast to the isotropic diffusion equation
where b2 = 0, our eigenvalues have an imaginary part. In Eq. (4.62a) we have
a subtraction of different ratios of diffusion tensor components, and we can
wonder if the subtraction can become negative, thus leading to a complex b1.
We do not need to worry about the constant C1, because it satisfies C1 ≥ 0, be-
ing zero only for stationary diffusion. The diffusion tensor D is symmetric, its
trace is invariant, and therefore there exists no anisotropy in which q∥ ·D ·q∥
approaches zero more rapidly than (q∥ ·D ·n⊥)2, not even when we shrink one
direction to zero and another to infinity while keeping the trace fixed. There-
fore both b1 and b2 are always real valued.

The Fourier transformation of the x∥ components also affects boundary
condition (4.60a), which becomes

H (q∥,0, t ) = C ·n⊥
1+ iq∥ ·C

∂H (q∥,0, t )

∂z
, (4.63a)

≡ C⊥
1+ iC∥(q∥)

∂H

∂z
(q∥,0, t ). (4.63b)

If the initial energy density is homogeneously distributed in the parallel di-
rections, then there is nothing to break the translational symmetry along the
interface and C∥(q∥) = 0. In the absence of internal reflections we end up with
a single component of the mean free path,C ·n⊥ = 2l⊥(n⊥)/3.

We start with the solution for a situation which is stationary, and is com-
pletely homogeneous parallel to the interface. Although equations of the form
∂2 f (z)/∂z2 = 0 are elementary, the Green for this problem is a required result
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if we want to calculate the escape function, which we will do in section 4.5.a.
In the stationary limit, C1 = 0, and the homogeneity along the interface im-
plies q∥ = 0. Using the Heaviside unit step function θ(z), which is 0 for z < 0
and 1 for z > 0, and 1/2 at z = 0, the solution for the Green function at q∥ = 0
is

GH (0, z, z0) = z0 +C⊥
Dzz

θ(z − z0)+ z +C⊥
Dzz

θ(z0 − z). (4.64)

This Green function satisfies reciprocity, GH (0, z, z0) =GH (0, z0, z) and is va-
lid for both z and z0 greater than 0.

It is well known that the Green function is a very general solution which
can be used to calculate solutions for a given source. As illustration, we will
now give an example of a solution for a particular source. In stationary illumi-
nation experiments we often have the energy density flux n⊥ ·v(n⊥)H0 of a
plane wave impinging perpendicular to the surface as the source. This energy
density travels at energy velocity v, which inside the anisotropic disordered
medium is not directed along n⊥, unless a principal axis of the anisotropy
is along n⊥. Inside the disordered medium the flux of the plane wave de-
cays exponentially with the extinction mean free path in agreement with the
Bouguer-Lambert-Beer Law. Therefore in each illuminated area A we have
for the the probability density exp(−z/|le(n⊥)|)/(|le(n⊥)| ∫A d2x∥) to find flux
n⊥ ·v(n⊥)H0. Thus the source s in Eq. (4.58) for the diffuse energy density is

s(x∥, z) = n⊥ ·v(n⊥)H0
e
− z

|le(n⊥)|

|le(n⊥)| ∫A d2x∥
. (4.65)

Here we assume that the real part of the refractive index of the homogene-
ous and inhomogeneous are index matched, otherwise there is a transmission
tensor sandwiched betweenn⊥ and v(n⊥).

Solving for H is straightforward using source (4.65) and Green function
(4.64). We keep the illuminated area ∫A d2x∥ finite and take this area to infinity
at the end of the integration, i.e.

H (0, z)

H0
= lim

A→∞

∫
A

d2x∥
∫ ∞

0
dz0GH (0, z, z0)

s(x∥, z0)

H0
(4.66a)

= 2+ 3|le(n⊥)|
l(n⊥) ·n⊥

(
1−e

− z
|le(n⊥)|

)
. (4.66b)

The constant 2 originates from the integration of extrapolation length C⊥ =
2l(n⊥)·n⊥/3 over the exponential. We also used Dzz =n⊥ ·v(n⊥)l(n⊥)·n⊥/3.
In Fig. 4.4.a we illustrate the extrapolation length C⊥, and the effective source
depth |le|. The incoming plane wave decays with the extinction mean free
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path. In some texts the extinction mean free path is replaced by the transport
mean free path. This latter situation is depicted in Fig. 4.4.b and we see that
the effective source depth is the transport mean free |l| in that case. We plotted
the result for a transport mean free path which is longer than the extinction
mean free path, and we also see in Fig. 4.4.b that then more diffuse energy
density is predicted than in 4.4.a. We can also see that for shorter transport
mean free path the predicted energy density is lower when we let the incoming
plane wave decay with the transport mean free path. However, the incoming
plane wave always decays with the extinction mean free path, and replacing
the extinction mean free path by the transport mean free path, as in Fig. 4.4.b
is an error.

Solution (4.66b) is very useful for problems homogeneous along the inter-
face, but this symmetry is often broken because the source is not homogene-
ous along the interface, e.g. when we focus a laser on or in a sample. Moreover
when we want to use the diffusive propagator to to calculate the enhanced
backscattering cone, we require the the diffusive propagator at q∥ 6= 0 to ob-
tain the shape of the cone. Although in the experiment itself the impinging
intensity can be considered planar, in the calculation of the cone shape the
source is scattered light from two plane waves traveling in different directions.

For q∥ 6= 0 the calculation of the Green function is much more involved,
the methods for this calculation can be found in the literature, such as in [6,
9, 104]. We obtain for an anisotropic disordered semi-infinite medium with
boundary at z = 0 for q∥ 6=0 the result

GH z>z0
(q∥, z, z0) = e−i(z−z0)b2

2Dzz b1

×
{

e−(z−z0)b1 −e−(z+z0)b1

+ 2b1C⊥
[
1+b1C⊥−2ib1

(
C∥+b2C⊥

)]
1+C2

∥+2
(
b1 +b2C∥

)
C⊥+ (

b2
1 +b2

2

)
C2
⊥

e−(z+z0)b1

}
,

(4.67a)

GH z<z0
(q∥, z, z0) = e−i(z−z0)b2

2Dzz b1

×
{

e−(z0−z)b1 −e−(z+z0)b1

+ 2b1C⊥
[
1+b1C⊥−2ib1

(
C∥+b2C⊥

)]
1+C2

∥+2
(
b1 +b2C∥

)
C⊥+ (

b2
1 +b2

2

)
C2
⊥

e−(z+z0)b1

}
.

(4.67b)

The above Green functions for z > z0 and z < z0 have an imaginary part and it
is not obvious if these Green functions combined satisfy the reciprocity sym-
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metry GH (q∥, z, z0) = GH (−q∥, z0, z). However b2(q∥) = −b2(−q∥) and also
C∥(q∥) =−C∥(−q∥) switch sign. Moreover using the definition of the transport
mean free path (4.45), we can write D·n⊥ =n⊥ ·v(n⊥)l(n⊥)/3, and it is easy to
show that boundary conditions (4.46) or (4.49) lead to C∥ =−b2C⊥, and there-
fore that reciprocity holds. In media with a principal axis of the anisotropy
perpendicular to the boundary, both C∥ and b2 vanish by themselves.

Both our boundary condition without internal reflection as the one with
internal reflections have the property that C∥ =−b2C⊥. When we eliminate C∥
in favor of b2 and C⊥, and we obtain a single equation

GH (q∥, z, z0) = e−i(z−z0)b2

2Dzz b1

{
e−(z−z0)b1 − 1−b1C⊥

1+b1C⊥
e−(z+z0)b1

}
. (4.68)

It is clear that this equation satisfies reciprocity. Due to the fact that the eigen-
values of the anisotropic diffusion equation had an imaginary part, also our
Green function has an imaginary part. In anisotropic media the product b1C⊥
is, in the absence of internal reflections

b1(q∥)C⊥ = 2

3
|q∥|n⊥ · l(n⊥)

√
e∥ ·v(e∥)l(e∥) ·e∥
n⊥ ·v(n⊥)l(n⊥) ·n⊥

−
(
l(n⊥) ·e∥
l(n⊥) ·n⊥

)2

+C1.

(4.69)

Apart from the ratio of transport mean free path, we also see a ratio of en-
ergy velocities. If the transport cross section tensor is isotropic, then we can
replace the ratio energy velocities by a ratio of transport mean free path.

A final indication of the correctness of Eqs. (4.67) and (4.68) is the stationary
isotropic limit. In this limit C∥ = 0, b2 = 0, D = vl1/3, b1 = |q∥|, and, in the
absence of internal reflections, C⊥ = 2l/3. Thus equations (4.67) reduce to the
well known result for isotropic media, [101]

GH (q∥, z, z0) = 3

2vl |q∥|
{

e−|z−z0||q∥|− 1− 2l
3 |q∥|

1+ 2l
3 |q∥|

e−(z+z0)|q∥|
}

. (4.70)

We use equation (4.68) in the calculation of the enhanced backscattering cone
for anisotropic disordered semi-infinite media.

4.4.b Diffusive Green function for a slab

When we want to calculate the bistatic cross section for the transmission of
radiance through a slab of disordered material, a calculation we will do in sec-
tion 4.6, then we require the diffusive Green function for a slab. In slab ge-
ometries we have an additional boundary at z = L which we must take into
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account. The boundary condition at L is similar to the boundary condition
(4.60a) at z = 0. The inward pointing normal to the interface at z = L differs
by a sign with respect to the inward pointing normal of the interface at z = 0.
Therefore we have boundary condition

H (x, t ) = −C ·∇H (x, t ), (4.71a)

H (q∥,L, t ) = −C⊥
1− iC∥(q∥)

∂H (q∥,L, t )

∂z
. (4.71b)

Again it is useful to calculate the solution for q∥ =0 first, and employing the
extra boundary condition (4.71) we obtain

GH (0, z, z0) = (L− z +C⊥) (z0 +C⊥)

Dzz (L+2C⊥)
θ(z − z0)

+ (z +C⊥) (L− z0 +C⊥)

Dzz (L+2C⊥)
θ(z0 − z). (4.72)

When we take L → ∞, we recover the Green function for the semi-infinite
medium. Green function (4.72) gives rise to the well known tent shape for
the light emerging from a source plane somewhere inside the slab. In Fig. 4.5
we plot this tent shape and compare it with the solution given source (4.65),
and observe only notable differences near the maxima of both curves. Using
this source, we find in the absence of internal reflections

H (0, z)

H0
= 2+ 3|le(n⊥)|

l(n⊥) ·n⊥

(
1−e

− z
|le(n⊥)|

)

−
2|le(n⊥)|+ (2

3 l(n⊥) ·n⊥−|le(n⊥)|)(1+e
− L

|le(n⊥)|
)

L+ 4
3 l(n⊥) ·n⊥

×
(
2+ 3z

l(n⊥) ·n⊥

)
. (4.73)

The first two terms are exactly the solution for the semi-infinite medium, the
third term is a correction of order z with negative sign. It simply means that at
the second boundary energy is transmitted to infinity, which is shown in Fig.
4.5.

Also for slabs we can not expect that the q∥ = 0 solution suffices for any
given problem. We again use Green function methods from [6, 9, 104] to cal-
culate the propagator for q∥ 6= 0. A lengthy calculation for a slab of thickness
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L and boundaries at z = 0 and z = L leads to the result

GH z>z0
(q∥, z, z0) =

[cosh(b1L)]−1 e−i(z−z0)b2

2Dzz b1

{
2b1C⊥+

[
1+C2

∥+2b2C∥C⊥+ (
b2

1 +b2
2

)
C2
⊥
]

tanh(b1L)
}

×
{[

1+C2
∥+2b2C∥C⊥+ (

b2
1 +b2

2

)
C2
⊥
]

cosh(b1L−b1z +b1z0)

−
[

1+C2
∥+2b2C∥C⊥− (

b2
1 −b2

2

)
C2
⊥
]

cosh(b1L−b1z −b1z0)

+2b1C⊥ sinh(b1L−b1z +b1z0)

−2ib1C⊥
(
C∥+b2C⊥

)
sinh(b1L−b1z −b1z0)

}
, (4.74a)

GH z<z0
(q∥, z, z0) =

[cosh(b1L)]−1 e−i(z−z0)b2

2Dzz b1

{
2b1C⊥+

[
1+C2

∥+2b2C∥C⊥+ (
b2

1 +b2
2

)
C2
⊥
]

tanh(b1L)
}

×
{[

1+C2
∥+2b2C∥C⊥+ (

b2
1 +b2

2

)
C2
⊥
]

cosh(b1L+b1z −b1z0)

−
[

1+C2
∥+2b2C∥C⊥− (

b2
1 −b2

2

)
C2
⊥
]

cosh(b1L−b1z −b1z0)

+2b1C⊥ sinh(b1L+b1z −b1z0)

−2ib1C⊥
(
C∥+b2C⊥

)
sinh(b1L−b1z −b1z0)

}
. (4.74b)

The reciprocity symmetry GH (q∥, z, z0) =GH (−q∥, z0, z) can be verified by the
same method as for (4.67).

Our boundary conditions again give rise to the simplification C∥ = −b2C⊥,
and much simpler equations are recovered for the slab,

GH z>z0
(q∥, z, z0) = e−i(z−z0)b2

2Dzz b1
{
2b1C⊥ cosh(b1L)+ [

1+b2
1C2

⊥
]

sinh(b1L)
}

×
{[

1+b2
1C2

⊥
]

cosh(b1L−b1z +b1z0)

+2b1C⊥ sinh(b1L−b1z +b1z0)

−[
1−b2

1C2
⊥
]

cosh(b1L−b1z −b1z0)
}

, (4.75a)

GH z<z0
(q∥, z, z0) = e−i(z−z0)b2

2Dzz b1
{
2b1C⊥ cosh(b1L)+ [

1+b2
1C2

⊥
]

sinh(b1L)
}

×
{[

1+b2
1C2

⊥
]

cosh(b1L+b1z −b1z0)

+2b1C⊥ sinh(b1L+b1z −b1z0)

−[
1−b2

1C2
⊥
]

cosh(b1L−b1z −b1z0)
}

. (4.75b)

This final Green function is what we need to calculate the enhanced backscat-
tering cone for disordered slabs of arbitrary anisotropy.
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4.5 Escape and reflection from semi-infinite media

Optically thick media can be modeled very well by a semi-infinite medium
geometry. The main advantage of considering a semi-infinite medium is that
there is only a single planar interface. Thus the theory is not complicated by
reflections from the back side of the medium, or other parts of the boundary
which could occur were the boundary concave or convex. Already in (isotro-
pic) media thicker than two transport mean free path [8] we can use the dif-
fusion approximation, while keeping the error with solutions to the radiative
transfer equation very small.

There are two key observables for disordered semi-infinite media, the es-
cape function, which describes the redistribution of light over angles by the
disorder, and the bistatic coefficient, which is quite similar to a scattering
cross section. In this section we will consider two situations. In the first situ-
ation we place a source infinitely deep inside an anisotropic disordered semi-
infinite medium. The anisotropic disordered medium will redistribute the ra-
diance over all possible angles, and we will calculate the angular distribution
of escaping radiance. This probability distribution is known as either the es-
cape or as the injection function, because the reciprocal problem yields the
same result. The second type of problem is an illumination experiment. We
will calculate the reflection function or bistatic cross section for single scatter-
ing, diffuse multiple scattering and for the enhanced backscattering cone for
anisotropic disordered semi-infinite media.

4.5.a Escape function

The disordered media we consider consist of elastic scatterers, and are there-
fore called white media. It is well known that most white surfaces, such as
a layer of (non glossy) white paint, show diffuse reflection of light, following
Lambert’s law [54, 98]. Lambert’s law states that the surface brightness of a
white surface is isotropic, independent of the illumination direction. This law
implies that the reflected light is unpolarized, even if the incident light was
polarized. When an energy density flux per frequency band Sω impinges on
an area element d2x∥ with normal vectorn⊥, it receives the amount of energy
|Sω|d2x∥, and reflects an amount of energy |Sω|ek ·n⊥d2x∥/π in direction ek.
The inner product ek ·n⊥ is the reason why Lambert’s law is also known as
Lambert’s cosine law. When radiance emerging from a surface satisfies Lam-
bert’s law one speaks of diffuse reflection or diffuse emission. Instead of a
rough surface, we consider a smooth surface with disorder behind it. This
bulk disorder also causes diffuse reflection or diffuse emission of light, but
does not exactly follow Lambert’s law, but bears a close resemblance to it. The
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diffuse emission of bulk disorder is described by the escape function [75].
To determine the escape function we place a source of radiation at infinite

optical depth in a semi-infinite multiple scattering medium, such as depicted
in Fig 4.3. The source must be placed at infinite depth, otherwise not all radi-
ance escaping the medium is diffuse. We detect the radiance in the far field,
i.e. far away from the slab. The unit normal to the interface pointing into the
disordered medium is n⊥. In the process of multiple scattering, the radiance
from the source is redistributed over angles, this probability distribution is

K (x) ≡ |x|2 〈〈|ψ(x)|2〉〉
Nn⊥

∫
d2x∥

. (4.76)

The quantity 〈〈|ψ(x)|2〉〉 is the ensemble averaged product of wave ampli-
tudes, ∫d2x∥ is the area of observation, and Nn⊥ is some normalization con-
stant. In isotropic media this distribution of radiance over escape angles is
always a Lambertian distribution [75, 105],

Ki(θ) = cosθ

[
1+ 3

2
cosθ

]
. (4.77)

Here cosθ =−n⊥ ·ex. Equation (4.77) is not equal to Lambert’s law for diffuse
reflection, in which only the first term appears. The difference arises from the
fact that the light escaping a disordered medium still has to travel a certain
distance from its last scattering event to the interface. This distance to the
interface becomes longer for larger angle θ, and along the way the radiance
decays with 1/(l cosθ), and is the isotropic limit of the factor which we also
observe in the Green function for propagation amplitude across an interface
Eq. (4.25). The Lambertian distribution is considered to be universal for dis-
ordered media, and often also applied to anisotropic media.

When there is an index mismatch, then internal reflections can be incorpo-
rated by

Ki(θ) = [1−R(cosθi)]cosθ

[
1+Rω

1−Rω
+ 3

2
cosθi

]
. (4.78)

Note that one reflectivity and one cosine depend on θi, the angle inside the
sample, and accounts for refraction at the interface [105].

To calculate the escape function we need three quantities. First we require
the diffuse wave energy density. Second a type of scatterer σeω(ek) =σeω and
scatterer density n to generate the disorder, and third the amplitude propaga-
tor to couple out of the medium after the final scattering event. The boundary
of the semi-infinite medium is at z = 0, and the inward pointing unit normal
isn⊥ = ez .
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Chapter 4 Wave transport in the presence of boundaries

Performing the integrations over the illuminated surface area and over the
Bethe-Salpeter irreducible vertex or differential scattering cross section in Eq.
4.76, we find end up with

K (x,n⊥) = 4πci

p
detA|x|2

∫ ∞

0
dz1Gb

∗
ω(x, z1)Gbω(x, z1)

nσeω

Nn⊥

Hω(z1)

1+δω
.

(4.79)

Here Hω(z1)/(1+δω) is the radiative diffuse energy density coming from the
source plane at infinite optical depth,and Gbω(x, z1) =Gbω(x, z1,0) is the am-
plitude Green function for x far away from the interface, as defined in Eq.
(4.25). The

p
detA is the result of the integral over the Bethe-Salpeter irre-

ducible vertex. In the absence of internal reflections the diffuse energy den-
sity is obtained from Eq. (4.64) in the by taking the coordinate z0 of the planar
source to infinity,

cinσeω
Hω(z1)

1+δω
= 3C

z1 + 2
3 lω(n⊥) ·n⊥

leω(n⊥) ·n⊥lω(n⊥) ·n⊥
. (4.80)

The constant C governs the strength of the source radiance at infinite depth.
The normal to the wave surface at nϕ(x) will appear many times as argu-

ment to a function, so for brevity we write in this section ek =nϕ(x). For the
product of amplitude Green functions we use Eq. (4.25),

|x|2Gb
∗
ω(x,x1)Gbω(x, z1) =

(
B>

B<

)2 |vg(ek)|2
(4πci

p
detA)2

exp

[ −z1

|leω(n⊥)|u(ek,n⊥)

]
.

(4.81)

The function u is the generalization to anisotropic media of the angle with the
outward normal to the surface defined by cosθ ≡−ek ·n⊥.

When we absorb all constants in Nn⊥ , we find for the semi-infinite medium
the probability to escape in direction ek, or the escape function

K (ek,n⊥) = 3

2Nn⊥

∣∣∣∣vg (ek)

ci

∣∣∣∣2

u (ek,n⊥) [ τe (n⊥)+u (ek,n⊥) ] . (4.82)

Here Nn⊥ is defined by 〈K (ek,n⊥)〉ek ≡ 1 with ek limited to all outgoing flux
components,n⊥ ·vg (ek) ≤ 0, and τe is the extrapolation ratio

τe (n⊥) ≡ 2lω (n⊥) ·n⊥
3|leω (n⊥) | . (4.83)

For isotropic scatterers in the absence of internal reflections the extrapolation
ratio is τe = 2/3 and |vg/ci|2=1.
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4.5 Escape and reflection from semi-infinite media

We can incorporate internal reflections by when we take Eq. (4.64) with
3C⊥ = 2lω (n⊥)·n⊥n⊥ ·(1+Rω)·vω(n⊥)/n⊥ ·(1−Rω)·vω(n⊥) instead of 3C⊥ =
2lω (n⊥)·n⊥. We can include the internal reflections in the extrapolation ratio,
which becomes

τe (n⊥) ≡ 2lω (n⊥) ·n⊥
3|leω (n⊥) |

n⊥ · (1+Rω) ·vω(n⊥)

n⊥ · (1−Rω) ·vω(n⊥)
. (4.84)

The escape function which incorporates internal reflections is also given by
Eq. (4.82) provided we use extrapolation ratio (4.84).

In isotropic random media the escape function is universal, independent
of the phase function of the scatterers [75]. We calculate the escape function
in anisotropic media for realistic values of the anisotropic permittivity and
isotropic scatterers, and we see unexpected behavior, see Figs. 4.6 and 4.7,
where we set Rω = 0 or equivalently Rω = 0. Anisotropic media can not satisfy
requirement Rω = 0 for all angles. If the director is perpendicular to the output
surface we observe a bell shaped curve, which resembles the isotropic result.
When we tilt the director with respect to the boundary surface normal, the
bell shape disappears, which is related to the fact that the transport length
has its minimum where

∣∣vg
∣∣ and |v| are minimal. The energy density current is

deflected in the direction perpendicular to the surface normal. We see that it is
only possible to perfectly index match the anisotropic medium with isotropic
scatterers to the outside anisotropic world if the anisotropy axes are parallel
or perpendicular to the boundary.

4.5.b Reflection from a disordered medium

Instead of a source at infinite depth, we will now illuminate the anisotropic
disordered medium with a plane wave, and calculate how much of the light
is reflected. The reflection function for the disordered medium is the limit of
the N particle cluster differential scattering cross section per geometric cross
section of the cluster A = ∫d2x∥, when we take both N → ∞ and A → ∞ at
constant particle number density n. The bistatic coefficient γ is defined by

|tF(k)|2 cosθiγ(κi,xo,n⊥) ≡ |x|2 〈〈|ψ(x)|2〉〉
|ψ0|2

∫
d2x∥

. (4.85)

Here we extracted the effect of internal reflections,κi is the wave vector of the
incoming plane wave, and cosθi = ei ·n⊥ is the projection of the illuminated
area on the incoming wave vector direction.

In the bistatic coefficient three contributions can be identified, the single
scattered contribution, the diffuse multiple scattered contribution, and an in-
terference contribution which gives rise to the enhanced backscattering cone,

γ(κi,xo,n⊥) = γs(κi,xo,n⊥)+γd(κi,xo,n⊥)+γc(κi,xo,n⊥). (4.86)
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Chapter 4 Wave transport in the presence of boundaries

These three contributions we will discuss next.

Single scattering

We calculate the bistatic coefficient for the single scattered light. As for the
escape function, we need to evaluate a product of amplitudes. This time the
radiance of an incoming plane wave is the source. Moreover, the reflection
function depends on both an incoming and a scattered direction, which are
ei and es respectively. Thus the quantity we must evaluate is,

cosθiγs(κi,xo,n⊥) = 4π
p

detA|x|2
|tF(k)|2|ψ0|2

∫ ∞

0
dz1

∣∣Gbω(x, z1)
∣∣2 nσeω|ψκi (z1)|2.

(4.87)

The incoming radiance is similar to the outgoing radiance in Eq. (4.81).
When we send in a plane wave of intensity |ψ0|2, then the transmitted radi-
ance is obtained from Eqs. (4.16) and (4.39b)

|ψκi (z1)|2 = |tF(k)|2|ψ0|2 exp

[
z1

|leω(n⊥)|u(ei,n⊥)

]
. (4.88)

We define for future convenience a transformation of variables

2v(ei,eo,n⊥) ≡ 1

u(eo,n⊥)
− 1

u(ei,n⊥)
, (4.89a)

2w(ei,eo,n⊥) ≡ 1

u(eo,n⊥)
+ 1

u(ei,n⊥)
. (4.89b)

In the bistatic coefficient for reflection we have v > 0 because 1/ui < 0 and
1/uo > 0. We can not guarantee that w > 0, but for reflection we do have the
inequalities v +w > 0 and v −w > 0. We obtain the single scattering bistatic
coefficient for the semi-infinite medium

cosθiγs(ei,eo,n⊥) = 1

4π
p

detA

(
B>

B<

)2 vp(n⊥)

vi(n⊥)

|leω(n⊥)|
leω(n⊥) ·n⊥

×
∣∣∣∣vg (eo)

ci

∣∣∣∣2 1

2v(ei,eo,n⊥)
. (4.90)

Here vi is the phase velocity in the isotropic homogeneous medium. We plot-
ted the bistatic coefficient for single scattered reflection from anisotropic dis-
ordered semi-infinite medium as a function of the angle θ defined by cosθ ≡
−n⊥ ·eo and compared it with the isotropic result in Fig. 4.8.
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4.5 Escape and reflection from semi-infinite media

Diffuse multiple scattering

The bistatic coefficient for diffuse multiple scattered light in a semi-infinite
medium has similarities with the one for single scattered light. Coupling in
and out of the disordered medium is the same, but in between those events
light propagates diffusely through the medium. We need to calculate

cosθiγd(κi,xo,n⊥) = (4πnσeω

p
detA|x|)2

|tF(k)|2|ψ0|2

×
∫ ∞

0
dz2

∫ ∞

0
dz1

∣∣Gbω(x, z2)
∣∣2 GH (z2, z1)

1+δω
|ψκi (z1)|2.

(4.91)

The Green function for the diffuse energy density in the semi-infinite medium
is

GH (z2 < z1) = Hω(z2) (4.92a)

GH (z2 > z1) = Hω(z1) (4.92b)

In terms of the variables defined in Eqs. (4.89) we derive the bistatic coefficient
for diffuse multiple scattering,

cosθiγd(ei,eo,n⊥) = 3Cn⊥
∣∣vg (eo)

∣∣2
[1+2v(ei,eo,n⊥)τe(n⊥)]

2v(ei,eo,n⊥)ci
2
[
v2(ei,eo,n⊥)−w2(ei,eo,n⊥)

] .

(4.93)

Here the constant Cn⊥ is given by

Cn⊥ =
(

B>

B<

)2 (
vp(n⊥)

vi(n⊥)

)2 |leω(n⊥)|3
lω(n⊥) ·n⊥(leω(n⊥) ·n⊥)2 . (4.94)

In isotropic media in the absence of internal reflections we have 3Cn⊥/2 =
1/τe(n⊥). We plotted the bistatic coefficient for multiple scattered reflected
radiance from anisotropic disordered semi-infinite medium as a function of
the angle θ defined by cosθ ≡ −n⊥ · eo and compared it with the isotropic
result in Fig. 4.10.

Enhanced backscattering

The bistatic coefficient of the cone is obtained from the bistatic coefficient for
diffuse multiple scattered light by taking the reciprocal of one of the amplitude
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paths. We then have

cosθiγc(κi,xo,n⊥) = (4πnσeω

p
detA|x|)2

|tF(k)|2|ψ0|2

×
∫ ∞

0
dz2

∫ ∞

0
dz1

{
Gb

∗
ω(x, z1)Gbω(x, z2)

×GH (q∥, z2, z1)

1+δω
ψ∗
κi

(z2)ψκi (z1)
}

.

(4.95)

Here q∥ = ki∥+ko∥. This time also the imaginary parts of the exponents sur-
vive, and therefore, to obtain a relatively simple expression it is convenient to
work with

ṽ(ei,eo,n⊥) ≡ ω|leω(n⊥)|
|vg(n⊥)| [ũ(eo,n⊥)− ũ(ei,n⊥)] , (4.96a)

w̃(ei,eo,n⊥) ≡ ω|leω(n⊥)|
|vg(n⊥)| [ũ(eo,n⊥)+ ũ(ei,n⊥)] , (4.96b)

β1(q∥,n⊥) ≡ b1(q∥,n⊥)|leω(n⊥)|, (4.96c)

β2(q∥,n⊥) ≡ b2(q∥,n⊥)|leω(n⊥)|. (4.96d)

The quantities b1 and b2 are related to anisotropic diffusion, and were defined
in Eqs. (4.62).

Upon performing the integrations we find the result

cosθiγc(κi,xo,n⊥) =∣∣∣vg(eo)
ci

∣∣∣2 3Cn⊥
2v(ei,eo,n⊥)

[
1+ 2v(ei,eo,n⊥)τe(n⊥)

1+β1(q∥,n⊥)τe(n⊥)

]
[v(ei,eo,n⊥)+β1(q∥,n⊥)]2 + [w̃(ei,eo,n⊥)+β2(q∥,n⊥)]2 .

(4.97)

Here the constant Cn⊥ is again given by (4.94). At exact backscattering, i.e.
ei = −eo, we have β1 = 0, β2 = 0, w = 0, and w̃ = 0, so there γd = γc, which is
why the maximal enhancement is two.

In Fig 4.10 the cone is plotted as a function of θ, here −eo ·n⊥ = cosθ. In iso-
tropic media it is well known that the enhanced backscattering cone is cusped,
and the derivative with respect to θ has a discontinuity at θ = 0. We consider
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4.6 Reflection from and Transmission through a Slab

an incoming plane wave with cosθi = 1 and expand (4.97) around θ = 0,

2ci
2γc(n⊥,θ,eo∥)

3|vg(n⊥)|2Cn⊥
≈ 1+2τe(n⊥)+2β1(eo∥,n⊥) [1+τe(n⊥)]2 |θ|

+4
vg(n⊥)

|vg(n⊥)| ·
[
1− vg(n⊥)n⊥

vp(n⊥)

]
× vg(eo∥)

|vg(n⊥)|
vp(eo∥)

vp(n⊥)
[1+2τe(n⊥)] |θ|. (4.98)

We see that also in anisotropic media the derivative with respect to θ is discon-
tinuous at θ = 0. The first term in Eq. (4.98) is the size of the cone at θ = 0, and
the only difference with isotropic media is that it depends on the orientation
of the boundary with respect to the principal axes of the anisotropic medium.
The second term in (4.98)is a generalization of another term that is also pre-
sent for isotropic media, where β1(q∥) = |q∥||le|. If the anisotropy is perpen-
dicular to the boundary, β1/|le| can be obtained from the isotropic medium
by scaling q∥ according to q̃∥ = D1/2 ·q∥/

√
n⊥ ·D ·n⊥. Note that to obtain β1

we should also scale |l⊥| and take its value along the n⊥ direction, which is
easily overlooked. In media with anisotropy at an angle with the boundary, β1

can not be obtained by a scaling, because we have an additional term,

β1(eo∥,n⊥) = ω

vi
|le(n⊥)|

√
eo∥ ·v(eo∥)l(eo∥) ·eo∥
n⊥ ·v(n⊥)l(n⊥) ·n⊥

−
(
l(n⊥) ·eo∥
l(n⊥) ·n⊥

)2

.(4.99)

The second term in (4.99) can not be obtained be scaling the isotropic result.
The third term in the expansion of the cone (4.98) originates from |vg(eo)|, and
is not present for isotropic media. Also in anisotropic media with a principal
axis of the anisotropy perpendicular to the surface, this term vanishes, and the
shape of the cone is fully determined by β1.

4.6 Reflection from and Transmission through a
Slab

In slab geometries we can not only measure reflection from the slab, but also
transmission through the slab. The bistatic coefficient for reflection will de-
crease, as some light will be transmitted. We will calculate the bistatic coeffi-
cients for both reflection and transmission.

We define the optical thickness of the slab by

L ≡ L

|leω(n⊥)| . (4.100)
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In order to keep the equations for the slab of a reasonable size, we introduce
the factors

f1(ei,eo,n⊥) ≡ [
v(ei,eo,n⊥)+β1(q∥,n⊥)

]2 + [
w̃(ei,eo,n⊥)+β2(q∥,n⊥)

]2,

(4.101a)

f2(ei,eo,n⊥) ≡ [
v(ei,eo,n⊥)−β1(q∥,n⊥)

]2 + [
w̃(ei,eo,n⊥)+β2(q∥,n⊥)

]2,

(4.101b)

f3(ei,eo,n⊥) ≡ 2β1(q∥,n⊥)τe(n⊥)cosh
(
L β1(q∥,n⊥)

)
+[

1+β2
1(q∥,n⊥)τ2

e(n⊥)
]

sinh
(
L β1(q∥,n⊥)

)
. (4.101c)

Using the above abbreviations we will present in the next subsections the re-
sults for the bistatic coefficients in reflection and transmission.

4.6.a Bistatic coefficients for reflection

The procedure for calculating the bistatic coefficient for reflection from a slab
is analogous to the calculation for semi-infinite media, only now we use the
Green function for the slab in stead of the one for the semi-infinite medium
The bistatic coefficients for reflection from a slab of optical thickness L are

cosθiγs(ei,eo,n⊥) = 1

4π
p

detA

|leω(n⊥)|
leω(n⊥) ·n⊥

∣∣∣∣vg (eo)

ci

∣∣∣∣2 1−e−2L v(ei,eo,n⊥)

2v(ei,eo,n⊥)
,

(4.102a)

cosθiγd(ei,eo,n⊥) =
∣∣∣∣vg (eo)

ci

∣∣∣∣2 3Cn⊥e−L v

2v(v2 −w2)2(L +2τe)

×
{

8v wτe sinh(L w)

+2
[
(L −2τe) v2 − (L +2τe) w2]sinh(L v)

+4v
[
1−τe (L +τe)

(
v2 −w2)]cosh(L v)

−4v
[
1−τ2

e(v2 −w2)
]

cosh(L w)
}

, (4.102b)

cosθiγc(ei,eo,n⊥) =
∣∣∣∣vg (eo)

ci

∣∣∣∣2 3Cn⊥e−L v

2v f1 f2 f3

×
{

2 f2(v +β1)τe sinh
(
L v +L β1

)
−2 f1(v −β1)τe sinh

(
L v −L β1

)
+ f2

[
1+ (

2vτe +β1τe
)
β1τe

]
cosh

(
L v +L β1

)
− f1

[
1− (

2vτe −β1τe
)
β1τe

]
cosh

(
L v −L β1

)
+4vβ1τ

2
e

{
1− [

v2 + (w̃ +β2)2]τ2
e

}
cos

(
L w̃ +L β2

)
−8vβ1(w̃ +β2)τe sin

(
L w̃ +L β2

)}
. (4.102c)
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4.6 Reflection from and Transmission through a Slab

When we take the limit L →∞ we recover the semi-infinite medium result.
In Figs. 4.11, 4.12, and 4.13 these bistatic cross sections are plotted.

4.6.b Bistatic coefficients for transmission

Slabs also have a bistatic coefficient for transmission of radiance. In transmis-
sion, after the final scattering event, the radiance couples out with

Gbω (x,x0 −Ln⊥, t ) ≡
∣∣vg(nφ(x))

∣∣
ci
p

detA

exp
{

iωci
[φω(x)−cit ]

}
4π|x|

×exp
{

ik∥ ·x0 + i
ωũω(ek,n⊥)(z0 −L)

|vg(n⊥)|
− z0 −L

2|leω(n⊥)|uω(ek,n⊥)

}
. (4.103)

Here ũ(eo,n⊥) and u(eo,n⊥) are both negative, being defined as the general-
ization of cosθ =−ek ·n⊥. Then w < 0, as well as v +w < 0 and w − v < 0.

The bistatic coefficients for transmission through anisotropic slabs are

cosθiγs(ei,eo,n⊥) = e
L

u(eo,n⊥)

4π
p

detA

|leω(n⊥)|
leω(n⊥) ·n⊥

∣∣∣∣vg (eo)

ci

∣∣∣∣2 1−e−2L v(ei,eo,n⊥)

2v(ei,eo,n⊥)
,

(4.104a)

cosθiγd(ei,eo,n⊥) =
∣∣∣∣vg (eo)

ci

∣∣∣∣2 3Cn⊥e
L

u(ei ,n⊥)

2v(v2 −w2)2(L +2τe)

×
{

8v wτe sinh(L w)

+2
[
(L −2τe) v2 − (L +2τe) w2]sinh(L v)

+4v
[
1−τe (L +τe)

(
v2 −w2)]cosh(L v)

−4v
[
1−τ2

e(v2 −w2)
]

cosh(L w)
}

, (4.104b)

cosθiγc(ei,eo,n⊥) =
∣∣∣∣vg (eo)

ci

∣∣∣∣2 3Cn⊥e
L

u(ei ,n⊥)

2v f1 f2 f3

×
{

2 f2(v +β1)τe sinh
(
L v +L β1

)
−2 f1(v −β1)τe sinh

(
L v −L β1

)
+ f2

[
1+ (

2vτe +β1τe
)
β1τe

]
cosh

(
L v +L β1

)
− f1

[
1− (

2vτe −β1τe
)
β1τe

]
cosh

(
L v −L β1

)
+4vβ1τ

2
e

{
1− [

v2 + (w̃ +β2)2]τ2
e

}
cos

(
L w̃ +L β2

)
−8vβ1(w̃ +β2)τe sin

(
L w̃ +L β2

)}
. (4.104c)
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The bistatic coefficients for transmission differ by an exponential extinction
factor from the bistatic coefficients for reflection. This difference is explained
by the Bouguer-Lambert-Beer law for light propagating a distance L through
disordered media.

The bistatic coefficient for diffuse transmission (4.104b) reduces for thick
slabs to a product of escape functions, or rather an injection function times
an escape function. In the thick slab limit the angular resolved transmission
is

T (ei,eo,n⊥) = 4

3

l⊥(n⊥)K (ei)K (eo)

L+ 4
3 l⊥(n⊥)

. (4.105)

Here we have redefined both u such that they are positive. We see a product of
escape functions, which makes physical sense because the first is the injection
function, and the second the escape function. Slabs of many mean free path
thick are effectively infinite, and the incoming direction is totally scrambled.

The total transmission or all channel in all channel out transmission is eas-
ily obtained by using the fact that the escape functions are normalized to
unity,

T (ei,eo,n⊥) = 4

3

l⊥(n⊥)

L+ 4
3 l⊥(n⊥)

. (4.106)

The component of the transport mean free path perpendicular to the surface
governs the amount of transmitted light.

4.7 Conclusion

We have studied the effect of boundaries on propagation of light through dis-
ordered media, and collected all the ingredients required to calculate reflec-
tion and transmission properties of anisotropic disordered media.

The mapping of the electromagnetic energy density and flux on the energy
density and flux of a scalar model allows us to map the boundary conditions
on the electromagnetic fields, which follow from the Maxwell equations in
material media, onto the scalar model. The Fresnel reflection and transmis-
sion coefficients were derived for anisotropic media. It is possible to identify
polarization in the scalar model, and it predicts Brewster angles at the correct
locations for isotropic media. Usually scalar models can not predict the Brew-
ster angle because the scalar field and its derivative normal to the boundary
are taken to be continuous, as for Schrödinger waves. When the medium be-
comes anisotropic the Brewster angle can shift in location by tens of degrees.
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4.7 Conclusion

The propagator for the amplitude traveling from the disordered medium to
the homogeneous medium was calculated in the far field limit.

For the energy density flux we established the reflectivity and transmissiv-
ity, which also show the Brewster angle for parallel polarized light. Using con-
tinuity of the flux component perpendicular to the interface, we established
the transport mean free path and energy velocity. These quantities turned out
to be vectors, and we split up the diffusion constant using these vectors. We
incorporated internal reflections due to anisotropic index mismatch, and re-
lated the reflectivity and transmissivity, angle and polarization averaged, to
the reflectivity and transmissivity of individual plane waves. We did the same
for reflection and transmission tensors, which allow us to incorporate addi-
tional anisotropy due to surface roughness into the boundary conditions.

For semi-infinite media and slab geometries we calculated the Green func-
tions, and the solutions for plane waves. Having collected all the ingredients
for coupling light in and out of the medium and diffuse propagation, we cal-
culated the key observable for anisotropic disordered media, the escape func-
tion which describes how diffusion redistributes the radiance over angles. In-
stead of the Lambertian distribution, which is the distribution found for iso-
tropic diffusion of light, we found additional structure in the distribution over
angles, even leading to two maxima for certain anisotropic media. In addition
we were able to calculate the bistatic coefficients for anisotropic disordered
semi-infinite media and slabs. The bistatic coefficients were separated into
one for single scattering, one for diffusion and one for the interference effect
known as enhanced backscattering. The bistatic coefficient for single scat-
tering and diffusion clearly reveal the anisotropy in the escape function. In
the bistatic coefficient for enhanced backscattering we see that the enhanced
backscattering cone becomes narrower or broader, depending on the aniso-
tropy in the components of the transport mean free path vector.

109



Chapter 4 Wave transport in the presence of boundaries

0 Π �4 Π �2
Θ HradL

-0.2

0

0.2

0.4

0.6

0.8

1

Ψ
�Ψ

0 rF ,a=0
tF ,a=0
rF ,a=3
tF ,a=3

aL

0 Π �4 Π �2
Θ HradL

-0.5
-0.25

0
0.25

0.5
0.75

1

Ψ
�Ψ

0

rF ,a=0
tF ,a=0
rF ,a=-3�4
tF ,a=-3�4

bL

Figure 4.1 (color online).
Some examples of the Fresnel reflection and transmission coefficients rF and
tF for plane waves polarized parallel to the plane of incidence are plotted as
a function of cosθ = −ek · ez . The interface is between air and a uniaxial
medium with dielectric anisotropy, εxx = εy y = (1+ a)εzz , and compared to
the air-glass (a = 0) interface (solid and dotted), possibly the best known ex-
ample in the literature. In a) the anisotropy parameter is a = 3, and in b) it
is a = −3/4. Negative values imply a phase difference between the reflected
and transmitted wave, and we observe a vanishing of the reflected amplitude
at the Brewster angle, whose position shifts due to the anisotropy. The curves
are for homogeneous media.
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Figure 4.2 (color online).
Some examples of the reflectivity and transmissivity R and T for plane waves
polarized parallel to the plane of incidence are plotted as a function of cosθ =
−ek ·ez . The interface is between air and a uniaxial medium with dielectric
anisotropy, εxx = εy y = (1+a)εzz , and compared to the air-glass (a = 0) inter-
face (solid and dotted), possibly the best known example in the literature. In
a) the anisotropy parameter is a = 3, and in b) it is a = −3/4. We observe a
vanishing of the reflectivity at the Brewster angle, whose position shifts due to
the anisotropy. The curves are for homogeneous media.
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x

S<

S−

S+ = −R · S−

Figure 4.3.
The phenomenological picture behind the boundary condition of the (multi-
ple scattered) radiance or diffuse energy density. Deep inside the medium is
some light source, here depicted by the light bulb. Close to the boundary at
x we consider the flux components S− traveling outward, and S+ traveling
inward. Some partS< is refracted at the interface and escapes to z →−∞, an-
other part R ·S− is reflected back into the medium. Only the flux component
perpendicular to the interface is continuous. If there are no sources outside
the medium, and in the absence of internal reflection, i.e. R = 0, there will
be no flux contributions coming in from the outside, which is expressed by
S+(x, t ) =0.
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Figure 4.4 (color online).
In a) the exact result (solid) for the diffuse energy density, generated by an
incoming plane wave in an anisotropic disordered semi-infinite medium, is
compared to two approximations. A planar source placed at a depth of one
extinction mean free path z = |le| (dotted) approximates the exact result very
well. A planar source at a depth of a transport mean free path z = |l| (dashed)
can strongly deviate from the exact result. In b) the incoming plane wave
decays with the transport mean free path |l| (solid). A planar source at z =
|l| (dashed) is a good approximation. The planar source at z = |le| seems to
deviate. The plot is for a realistic uniaxial medium with the optical axis at an
angle of π/4 radians with the interface, and the permittivity along the optical
axis four times smaller than along the other two axes. The extrapolation length
is in both figures 2ez · l(ez )/3. a) is the correct picture.
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Figure 4.5 (color online).
The exact solution (solid) for the diffuse energy density resulting from an in-
coming plane wave is plotted. We compare the exact solution to the diffuse
energy density resulting from a planar source at a depth of one extinction
mean free path and observe very good agreement. The permittivity has one
axis four times smaller than the other two axes, and the optical axis is at at an
angle of π/4 radians with the interface.
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Figure 4.6 (color online).
Examples of escape functions for anisotropic disordered media compared to
the Lambertian escape function Kεr=1 (solid) for isotropic media. Scale fac-
tor a ≡ 2πKεr=1(0)/Kεr (0) and makes all θ = 0 values coincide. The angle
θ of wave vector ek and inward pointing surface normal n⊥ is defined by
cosθ ≡ −ek ·n⊥. The anisotropic medium is semi-infinite and uniaxial. We
plotted several orientations cosα≡ d ·n⊥ of optical axis d with respect to the
inward pointing normal to the interfacen. The principal axes of the dielectric
tensor are related by ε11 = ε22 = ε33/4 and the escaping radiance is observed
in vacuum, and we tried to index match. In (a) the wave vector is in the plane
with normal n⊥× (d×n⊥), and we see a deformed bell shape. In (b) in the
plane with normald×n⊥. We see an anisotropic bell shape forα=π/2. When
α = π/4 perfect index matching is impossible and we get internal reflection
for θ >π/4. Whenα= 0 we see two maxima, with symmetry around d. We see
total internal reflections and a strong deformation of the isotropic bell shape.
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Figure 4.7 (color online).
Examples of escape functions for anisotropic disordered media compared to
the Lambertian escape function Kεr=1 (solid) for isotropic media. Scale fac-
tor a ≡ 2πKεr=1(0)/Kεr (0) and makes all θ = 0 values coincide. The angle
θ of wave vector ek and inward pointing surface normal n⊥ is defined by
cosθ ≡ −ek ·n⊥. The anisotropic medium is semi-infinite and uniaxial. We
plotted several orientations cosα≡ d ·n⊥ of optical axis d with respect to the
inward pointing normal to the interfacen. The principal axes of the dielectric
tensor are related by ε11 = ε22 = 4ε33 and the escaping radiance is observed in
vacuum, and we tried to index match. In (a) the wave vector is in the plane
with normal n⊥× (d×n⊥). Index matching is impossible for θ > 7π/20, and
in addition we see two maxima when α→ 0. In (b) in the plane with normal
d×n⊥. For α = 0 we observe again the two maxima and index mismatch.
When α= π/4 the maxima shift and decrease in magnitude and if α= π/2 we
see a strongly deformed bell shape.
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Figure 4.8 (color online).
Examples of single scattering bistatic coefficients for disordered uniaxial
semi-infinite media are plotted, and compared to the result for isotropic me-
dia (solid). Scale factor a ≡ γsεr=1(0)/γsεr

(0) makes all θ = 0 values coincide.
The optical axis d is at angle cosα = d ·n⊥ with the normal to the interface
n⊥. The wave vector is in the plane with normal d×n⊥. In a) the dielectric
is on principal axes given by ε11 = ε22 = ε33/4, and in b) the dielectric is on
principal axes given by ε11 = ε22 = 4ε33. We used the phase function of point
scatterers.
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Figure 4.9 (color online).
Examples of the diffuse multiple scattering bistatic coefficients for disordered
uniaxial semi-infinite media are plotted, and compared to the result for iso-
tropic media (solid). Scale factor a ≡ γsεr=1(0)/γsεr

(0) makes all θ = 0 values
coincide. The optical axis d is at angle cosα = d ·n⊥ with the normal to the
interface n⊥. The wave vector is in the plane with normal d×n⊥. In a) the
dielectric is on principal axes given by ε11 = ε22 = ε33/4, and in b) the dielec-
tric is on principal axes given by ε11 = ε22 = 4ε33. We used the phase function
of point scatterers.
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Figure 4.10 (color online).
Examples of the enhanced backscattering cone for disordered uniaxial semi-
infinite media are plotted, and compared to the result for isotropic media
(solid). Scale factor a ≡ γsεr=1(0)/γsεr

(0) makes all θ = 0 values coincide. The
optical axisd is at angle cosα=d·n⊥ with the normal to the interfacen⊥. The
wave vector is in the plane with normal d×n⊥. In a) the dielectric is on prin-
cipal axes given by ε11 = ε22 = ε33/4, and in b) the dielectric is on principal
axes given by ε11 = ε22 = 4ε33. We used the phase function of point scatterers.
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Figure 4.11 (color online).
Examples of single scattering bistatic coefficients for disordered uniaxial slabs
are plotted, and compared to the result for isotropic media (solid). Scale factor
a ≡ γsεr=1(0)/γsεr

(0) makes all θ = 0 values coincide. The optical axis d is at
angle cosα = d ·n⊥ with the normal to the interface n⊥. The wave vector
is in the plane with normal d×n⊥. In a) the dielectric is on principal axes
given by ε11 = ε22 = ε33/4, and in b) the dielectric is on principal axes given by
ε11 = ε22 = 4ε33. We used the phase function of point scatterers. We used the
phase function of point scatterers.
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Figure 4.12 (color online).
Examples of the diffuse multiple scattering bistatic coefficients for disordered
uniaxial slabs are plotted, and compared to the result for isotropic media
(solid). Scale factor a ≡ γsεr=1(0)/γsεr

(0) makes all θ = 0 values coincide. The
optical axisd is at angle cosα=d·n⊥ with the normal to the interfacen⊥. The
wave vector is in the plane with normal d×n⊥. In a) the dielectric is on prin-
cipal axes given by ε11 = ε22 = ε33/4, and in b) the dielectric is on principal
axes given by ε11 = ε22 = 4ε33. We used the phase function of point scatterers.
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Figure 4.13 (color online).
Examples of the enhanced backscattering cone for disordered uniaxial slabs
are plotted, and compared to the result for isotropic media (solid). Scale factor
a ≡ γsεr=1(0)/γsεr

(0) makes all θ = 0 values coincide. The optical axis d is at
angle cosα = d ·n⊥ with the normal to the interface n⊥. The wave vector
is in the plane with normal d×n⊥. In a) the dielectric is on principal axes
given by ε11 = ε22 = ε33/4, and in b) the dielectric is on principal axes given by
ε11 = ε22 = 4ε33. We used the phase function of point scatterers.
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Chapter 5

Conclusion
The conclusions of this thesis are summarized.

We presented a scalar wave model for electromagnetic waves in anisotropic
disordered dielectric media. Our scalar model for light can predict a number
of measurable quantities of both homogeneous and disordered anisotropic
media, such as the Fresnel reflection and transmission coefficients, the Brew-
ster angle, the reflectivity and transmissivity, the escape function, the bistatic
coefficients, the cone of enhanced backscattering, the extinction, scattering
and transport mean free path, the energy velocity and the diffusion tensor.
In the isotropic limit our scalar model for light reduces to the results known
from the literature. Not only can we use this model to describe media with
an isotropic magnetic permeability and an anisotropic dielectric permittivity,
but we can switch the interpretations of the electric and magnetic fields and
describe media which have an anisotropic magnetic permeability and an iso-
tropic permittivity.

In order to calculate the values of the measurable quantities, we need some
information about the anisotropic disordered medium. The required ingredi-
ents for are the average permittivity, the average permeability, the differential
scattering cross section of the typical scatterer in the medium, and the den-
sity of the scatterers. We presented calculations for semi-infinite medium and
slab geometries, but the boundary conditions we used are also applicable to
more complicated geometries.

The scalar model gives rise to an anisotropic radiative transfer equation. If
one of the principal components of the dielectric tensor is smaller than the
other two components, the radiative transfer equation tends to steer the ra-
diance into the plane perpendicular to the axis with smaller dielectric con-
stant. If on the other hand one of the components is larger than the others,
the anisotropic radiative transfer equation tends to waveguide the light along
a single direction. We presented an outline for a numerical simulation of this
equation.

123



Chapter 5 Conclusion

In uniaxial media the ordinary wave satisfies an isotropic dispersion rela-
tion whereas the extraordinary waves satisfy an anisotropic dispersion rela-
tion. Our scalar model can describe both waves, but not at the same time.

For an accurate characterization of anisotropic disordered media we re-
quire the angle and polarization averaged reflectivity and transmissivity, the
transport mean free path, and the energy velocity. We related the angle and
polarization averaged reflectivity and transmissivity to the reflectivity and the
transmissivity of the plane waves, which we in turn related to the Fresnel re-
flection and transmission coefficients. Measurements of the Fresnel coeffi-
cients for plane wave amplitude can provide us the angle and polarization
averaged reflectivity and transmissivity. The transport mean free path vector
can be established from transmission experiments for the three principal axes
of the anisotropy. Time resolved transmission experiments for the three prin-
cipal axes of the anisotropy give us the energy velocity.

The location of the transition to Anderson localization shifts in anisotropic
media, such that the transition occurs at longer scattering mean free path. We
like to speculate about the possibility to design disordered anisotropic media
where all becomes easier.
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Appendix A

Derivation of the Ward identity

The Ward identity is a fundamental relation between the Dyson self energy
and the Bethe-Salpeter irreducible vertex. In this technical derivation of the
Ward identity for scalar waves we follow the appendix in [89], but we consider
anisotropic media and are more explicit.

We define the wave equation matrix elements Kω(x0,x) and Lω(x0,x) by

Kω(x0,x) ≡ δ3(x0 −x)[∇ ·A ·∇+ ω2

ci
2 ], (A.1)

Lω(x0,x) ≡ Kω(x0,x)−Vω(x0,x), (A.2)

where the scattering potential Vω(x0,x) has been defined in Eq. (2.9), and we
note that we can write

Vω(x0,x) = − fωṼ (x0)δ3(x0 −x), (A.3)

and furthermore note that fω = f ∗
ω and Ṽ (x0) = Ṽ ∗(x0). It is useful to define

a K̃ and L̃ by

Kω(x0,x) ≡ δ3(x0 −x)K̃ω(x), (A.4)

Lω(x0,x) ≡ δ3(x0 −x)L̃ω(x). (A.5)

We calculate the auxiliary result

fω− L̃∗
ω+(x)− fω+ L̃ω−(x) = fω− K̃ ∗

ω+(x)− fω+ K̃ω−(x), (A.6)

and we have by definition

δ3(x1 −x2)Gω(x3,x4) = L̃∗
ω(x1)G∗

ω(x1,x2)Gω(x3,x4), (A.7)

Thus we obtain

δ3(x−x1) fω−Gω−(x,x2)− fω+G∗
ω+(x,x1)δ3(x−x2) =

[ fω− K̃ ∗
ω+(x)− fω+ K̃ω−(x)]G∗

ω+(x,x1)Gω−(x,x2). (A.8)
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This equation is now ensemble averaged, and Fourier transformed with re-
spect to all coordinates, the functions of x and x1 to p+ and p̃+ respectively,
and the functions of x and x2 to p− and p̃− respectively, with p± = p±P /2
and p̃± = p̃± P̃ /2. The coordinate x appeared twice, which means that P is
integrated out automatically. Furthermore we integrate over p̃, we use (2.39a)
to identifyΦω(p, p̃,P̃ ,Ω̃), and replace P̃ byP and Ω̃ byΩ

fω−Gω−(p−)− fω+G∗
ω+(p+) =

∫
d3p̃

(2π)3Φω(p, p̃,P ,Ω)

×[ fω− K̃ ∗
ω+(p̃+)− fω+ K̃ω−(p̃−)],(A.9)

so in p̃± we have P , not P̃ . We divide (A.9) by G∗
ω+(p+)Gω−(p−), and use the

Dyson equation (2.29) and the Bethe-Salpeter equation (2.38) forΦ to obtain

fω−Σ
∗
ω+(p+)− fω+Σω−(p−) =

∫
d3p̃

(2π)3 Uω

(
p, p̃,P ,Ω

)
×[

fω+G∗
ω+

(
p̃+

)− fω−Gω−
(
p̃−

)]
. (A.10)

If we define δω(p,P ,Ω) by

δω(p,P ,Ω) ≡ −2
Σ∗
ω+(p+)+Σω−(p−)

fω+ + fω−
(A.11)

−2
∫

d3p̃

(2π)3 Uω

(
p, p̃,P ,Ω

) G∗
ω+

(
p̃+

)+Gω−
(
p̃−

)
fω+ + fω−

,

then, using fω = ω2/ci
2, the Ward identity for classical scalar waves in aniso-

tropic media can be written as∫
d3p

(2π)3γω
(
p,p0,P ,Ω

) = −iΩδω
(
p0,P ,Ω

)
, (A.12)

withγdefined by (2.43d), representing extinction and scattering, andδ related
to scattering delay. Our result is similar to results in the literature [68, 89, 90].
However in order to obtain a radiative transfer equation we need the result
also per solid angle element, hence we define a differential δ by∫

dp

(2π)3 p2γω
(
p,p0,P ,Ω

) = −iΩ
dδω

(
ep,p0,P ,Ω

)
d2ep

. (A.13)

When in the definition (A.11) of δω(p,P ,Ω) we first take the limit limP→0

and then limΩ→0 then we obtain

δω(p,0,0) = −∂Re[Σω(p)]

∂ fω
−

∫
d3p̃

(2π)3

∂

∂ fω

{
Uω(p, p̃,0,0)Re[Gω(p̃)]

}
,

(A.14)
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which, using again fω = ω2/ci
2, looks the same as usual, but is nonetheless a

generalization of a result found in [68], to anisotropic host media. The scatter-
ing potential we defined in (2.9) hasP = 0, and therefore there is no additional
nonlocal term proportional toP in (A.12).
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Appendix B

Linear response theory

In section 3.3 we derived an anisotropic diffusion equation from the aniso-
tropic radiative transfer equation using a multipole expansion for the radi-
ance. In section 3.6 we added interference corrections to the diffusion equa-
tion starting from a Green-Kubo type formula generalized to accommodate
anisotropic media. In this section we give the foundation for the self consis-
tent expansion of the radiance (3.6), and we will generalize the Green-Kubo
formula to anisotropic media.

In order to obtain the anisotropic diffusion solution to the Bethe-Salpeter
equation, we do not necessarily need to derive the anisotropic radiative trans-
fer equation first. Instead, we can consider the diffusive pole of the Bethe-
Salpeter equation and find the related eigenfunction. The diffusive pole is the
most relevant pole of the Bethe-Salpeter equation when Ω and P are small
with respect to transport mean free time and transport mean free path respec-
tively. Therefore we make an expansion in the parametersΩ andP . A similar
approach to ours has been considered by [89].

Starting with the generalized Boltzmann equation (2.44) which we multiply
by P ·P , and write Ψ̃ω ≡ P ·PΨω, so Ψ̃ω has no pole, nor is there a source
term forP → 0,

[
iΩ− ci

2

ω
p ·A · iP

]
Ψ̃ω

(
p,P ,Ω

) = P ·P ξω (ek,x, t )∣∣vg (ek)
∣∣ +∫

d3p0

(2π)3γω
(
p,p0,P ,Ω

)
Ψ̃ω

(
p0,P ,Ω

)
.

(B.1)
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Here the term γ describes scattering and extinction and is given by

γω
(
p,p0,P ,Ω

) ≡ ci
2

ω
∆Σω

(
p,P ,Ω

)
(2π)3δ3 (

p−p0
)

(B.2a)

−ci
2

ω
∆Gω

(
p,P ,Ω

)
Uω

(
p,p0,P ,Ω

)
,

∆Gω

(
p,P ,Ω

) ≡ Gω−
(
p−

)−G∗
ω+

(
p+

)
2i

, (B.2b)

∆Σω
(
p,P ,Ω

) ≡ Σω−
(
p−

)−Σ∗
ω+

(
p+

)
2i

. (B.2c)

We will look at the eigenvalues and eigenfunctions of equation (B.1). The
radiance per frequency band, Iω is related toΨ by

Iω
(
ep,P ,Ω

) ≡ ω2

ci
2

∫
dp

(2π)3 p2 |ci
2A ·p|
ω

Ψω

(
p,P ,Ω

)
. (B.3)

The relations for energy density and energy density flux, (3.3a) and (3.3b) give
rise to a continuity equation (3.4), therefore we know that for P = 0 we have
an eigenvalue proportional toΩ, and forΩ= 0 we have an eigenvalue propor-
tional to |P |2. It is very hard to find the exact eigenfunctions up to all orders,
so we will start in the situation with Ω = 0 and P = 0, where we expect a dif-
fusive pole if we expand to Ω and P . In this appendix we will consider only
the eigenfunction related to the diffusive pole, and start from the transport
quantityΦ introduced in section 3.5,

Φω(p,p0,P ,Ω) = Ψ0
∗
ω(p0,P ,Ω)Ψ0ω(p,P ,Ω)

iΩ− iP ·Dω · iP
. (B.4)

From (B.1), it follows that eigenfunctionΨ0ω(p,0,0) satisfies

0 =
∫

d3p0

(2π)3γω
(
p,p0,0,0

)
Ψ0ω

(
p0,0,0

)
. (B.5)

Using the Ward identity (A.12) forΩ= 0 andP =0, we find the eigenfunction,
it is

Ψ0ω(p,0,0) = M0ωIm[Gω(p)] (B.6)

where M0 is a normalization constant, we define

M0ω ≡ lim
Ω→0

lim
P→0

∫
d3p

(2π)3

Ψ0
∗
ω(p,P ,Ω)Ψ0ω(p,P ,Ω)

∆Gω(p,P ,Ω)
, (B.7)

and using (B.6) we have 1/M0ω = ∫d3p/(2π)3Im[Gω(p)].
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We expand equation (B.1) for eigenfunctionΨ0ω(p,P ,Ω) aroundΩ= 0 and
P =0 to first order,

0 =
[

iΩ− ci
2

ω
p ·A · iP

]
Ψ0ω

(
p,0,0

)
−

∫
d3p0

(2π)3γω
(
p,p0,0,0

)
Ψ0ω

(
p0,0,0

)
−Ω

∫
d3p0

(2π)3

∂γω
(
p,p0,P ,Ω

)
Ψ0ω

(
p0,P ,Ω

)
∂Ω Ω=0

P=0

−P ·
∫

d3p0

(2π)3

∂γω
(
p,p0,P ,Ω

)
Ψ0ω

(
p0,P ,Ω

)
∂P Ω=0

P=0

+O(Ω2,ΩP ,PP ). (B.8)

In equation (B.8) we collect the parts proportional to 1, Ω, and P , and we
can treat them as independent equations. The equation for order 1 is already
satisfied. Using the Ward identity and

∂∆Gω(p,P ,Ω)

∂Ω Ω=0
P=0

= i

2

∂Re[Gω(p)]

∂ω
, (B.9a)

∂∆Gω(p,P ,Ω)

∂P Ω=0
P=0

= i

2

∂Re[Gω(p)]

∂p
, (B.9b)

we find similar results for the leading corrections to γω(p, p̃,0,0),∫
d3p0

(2π)3

∂γω
(
p,p0,P ,Ω

)
∂Ω Ω=0

P=0

Ψ0ω
(
p0,0,0
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−iΨ0ω(p,0,0)δω(p,0,0)−M0ω
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(2π)3γω
(
p,p0,0,0

) i

2

∂Re[Gω(p0)]

∂ω
,

(B.10a)∫
d3p0

(2π)3

∂γω
(
p,p0,P ,Ω

)
∂P Ω=0

P=0

Ψ0ω
(
p0,0,0

) =

−M0ω

∫
d3p0

(2π)3γω
(
p,p0,0,0

) i

2

∂Re[Gω(p0)]

∂p0
.

(B.10b)

We obtain the order Ω correction to the eigenvalue by using completeness of
the set of eigenfunctions {Ψnω(p,P ,Ω)} at P = 0 and Ω = 0. We only have
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energy conservation, and there is only a single eigenfunction in the set, which
isΨ0, thusΨ0

∗
ω(p,0,0)Ψ0ω(p̃,0,0) = (2π)3δ3(p− p̃)Ψ0ω(p̃,0,0). We define

δω ≡
∫

d3p

(2π)3δω(p,0,0)Ψ0
∗
ω(p,0,0), (B.11)

which leads to the eigenvalue correct to orderΩ,

iΩ
[
1+δω(p,0,0)

]
Ψ0ω(p,0,0) = iΩ [1+δω]Ψ0ω(p,0,0), (B.12a)

and the orderΩ correction to the eigenfunction is

∂Ψ0ω
(
p,P ,Ω

)
∂Ω Ω=0

P=0

= M0ω
i

2

∂Re[Gω(p)]

∂ω
. (B.12b)

The correction linear in P is more difficult, we use (B.10b) to obtain the
equation for the orderP corrections,

0 =
[
−ci

2

ω
p ·A · iP

]
Ψ0ω

(
p,0,0

)
+P ·M0ω

∫
d3p0

(2π)3γω
(
p,p0,0,0

) i

2

∂Re[Gω(p0)]

∂p0

−P ·
∫

d3p0

(2π)3γω
(
p,p0,0,0

) ∂Ψ0ω
(
p0,P ,Ω

)
∂P Ω=0

P=0

. (B.13)

In Eq. (B.13) the correction to the eigenfunction linear in P is integrated to-
gether with γ. We can consider an auxiliary function of whichΨ0 is the result
when we integrate it together with γ. We introduce the auxiliary vector func-
tionΨa by

Ψaω(p,P ,Ω) ≡ ω

ci
2

∫
d3p0

(2π)3Φω(p,p0,P ,Ω)p0. (B.14)

The Boltzmann transport equation forΨa, at lowest order yields the result

Ψ0ω(p,0,0)p = M0ω

∫
d3p0

(2π)3γω
(
p,p0,0,0

)
Ψaω

(
p0,0,0

)
. (B.15)

We use Ψ0ω
(
p,P ,Ω

) =Ψ0ω
(
p,P ,Ω

)
w(P ) ·p/w(P ) ·p withw(P ) = ci

2P ·
A/ω, and we identify the correction to the eigenfunction up to orderP to be

P · ∂Ψ0ω
(
p,P ,Ω

)
∂P Ω=0

P=0

≡ −M0ω
ci

2

ω
iP ·A ·

[
Ψaω

(
p,0,0

)−p ∂Re[Gω(p)]

∂( ci
2

ω p ·A ·p)

]
.

(B.16)
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We used that for any function F we can write

∂F (p)

∂p
= 2A ·p ∂F (p)

∂p ·A ·p , (B.17)

for A = AT. Equation (B.16) is a generalization of formula (21) in [89], which
would have been obtained had we identified w = A ·p and isotropic media
(A= 1).

The vector quantityΨa only appears in inner products with the vector ci
2P ·

A/ω. To simplify calculations we introduce a scalar function Γ by ci
2P ·A ·

Ψaω(p,0,0)/ω ≡ |Gω(p)|2Γω(p,P ). Just like Ψa, also Γ satisfies a generalized
Boltzmann equation, which is

Γω(p,P ) = P · ci
2

ω
A ·p+

∫
d3p0

(2π)3 Uω(p,p0,0,0)|Gω(p0)|2Γ(p0,P ).(B.18)

When we insert our Ω,P expansion of the eigenvectors into the general-
ized Boltzmann equation, we see that the term of orderPP divided by 1+δω
determines diffusion. The diffusion tensor is

iP ·Dω · iP ≡ −M0ω

∫
d3p

(2π)3

[iP · ci
2

ω A ·p]2

1+δω
[ |Gω(p)|2Γω(p,P )

ci
2

ω P ·A ·p

− ∂Re[Gω(p)]

∂( ci
2

ω p ·A ·p)

]
. (B.19)

Eq. (B.19) is a generalization to anisotropic media of the equation known as
the Green-Kubo formula for the diffusion tensor [89]. The derivative of the
real part of the Green function removes the UV catastrophe of the first term.

Our generalization (B.19) of the Green-Kubo formula justifies our expan-
sion ofΨ in terms of the self consistent energy density H and self consistent
energy density flux S, (3.3a) and (3.3b). When we replace Im[G] by Im[g ],
i.e. when we take the dispersion relation without scattering effects, (2.7), then
we can neglect the derivatives of Re[G], and the eigenfunction expansion we
found becomes the multipole expansion containing only the monopole and
dipole terms

ω2

ci
2Ψω(p,P ,Ω) = MωIm[gω(p)]

[
Hω(P ,Ω)

1+δω
+ 3p ·Sω(P ,Ω)

p ·vg(p)

]
. (B.20)

Here we have set vg(p) = ci
2/ωA ·p, and the relations (3.3a) and (3.3b) of Ψ

with energy density and flux yield 1/Mω = ∫d3p/(2π)3Im[gω(p)]. Equation
(B.20) justifies our starting point (3.6) to obtain (3.11). The interpretation of
Im[g ] is that of the spectral density of the radiative states. Finally we note that
the diffusion tensor (B.19) coincides in this limit with (3.11).
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