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Summary

In this thesis we develop a mathematical model that describes the propaga-
tion of waves through anisotropic disordered matter. There are many wave
phenomena which can all be described by comparable mathematical equa-
tions, such as sound waves, water waves, and electromagnetic waves. The
model we study is aimed at electromagnetic waves and classical scalar waves.
Lightis an example of an electromagnetic wave, and we often employ the word
“light” instead of the much longer “classical scalar wave or electromagnetic
wave”.

Multiple scattered light for isotropic disordered media has been studied ex-
tensively, and it is well known that there are three energy transport regimes
in multiple scattering. Which regime to expect in a material depends on the
scattering strength of the material. Ballistic transport of energy occurs when
there are hardly any scatterers, i.e. low scattering strength, and light prop-
agates approximately undisturbed through a material. Diffuse transport of
the radiative energy occurs at intermediate scattering strengths, and interfer-
ence effects are negligible. Diffuse transport is most often observed, this is
when the light scatters multiple times, such as in the clouds in the sky, milk
or white paper. The light behaves as if it were milk diffusing through tea and
the radiation energy is distributed smoothly through the medium. The third
regime, Anderson localization of light, is hardly ever observed in three dimen-
sional media, but is relatively easy to find in one and two dimensional me-
dia. The minimal scattering strength at which the transition should happen is
predicted by the Ioffe-Regel criterion for Anderson localization. If the scatter-
ing cross section and the density of the atoms is high, the scattering strength
is high and interference effects between the incident and the multiple scat-
tered waves dominate transport in such a way that localized states appear
inside the disordered material. Anderson localization of energy is described
by a generalized Boltzmann equation containing all interference effects. This
equation has never been solved analytically. It is usually approximated by the
well known radiative transfer equation, but then all interference effects, and
therefore Anderson localization, are neglected. The Ioffe-Regel criterion is ob-
tained by correcting the diffusion equation with interference effects. The dif-
fusion equation is an approximation to the radiative transfer equation, and
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Summary

there are many analytic solutions known for the diffusion equation.

There exists no theory which is fully developed to encompass anisotropic
multiple scattering of light. In the real world there are many media, such as
teeth, muscle, bone and the white matter in the brain, in which propagation
oflight is governed by an anisotropic diffusion equation. Therefore we need to
develop such a theory, e.g. to understand if the energy of the electromagnetic
waves emanating from a mobile phone can cause brain damage, or if aniso-
tropy influences the scattering strength at which Anderson localization takes
place. Currently in biology and medicine often the radiative transfer equa-
tion is employed to describe anisotropic media and is supplied with incorrect
anisotropy corrections. Sometimes numerical simulation of such an incorrect
anisotropic radiative transfer equation even leads to the conclusion that ani-
sotropic diffusion does not exist, a statement in conflict with observations in
physical experiments.

The model we developed for multiple scattered waves in anisotropic dis-
ordered matter is based on the smallest scattering particles in the material,
the atoms. These atoms are treated as classical scatterers, and are described
by their scattering potential or by their (differential) scattering or extinction
cross section. We present purely dielectric anisotropy, and show the changes
required for a description of disordered materials with the anisotropy in the
magnetic permeability.

After introductory chapter 1, we start in chapter 2 from a classical wave
equation for the amplitude provided with scatterers. For anisotropic disor-
dered media we derive a generalized Boltzmann transport equation which
contains all interference effects. Since this equation has never been solved
analytically, not even for isotropic media, we proceed by neglecting the in-
terference effects, and derive an anisotropic radiative transfer equation. The
radiative transfer equation is extremely hard, if not impossible, to solve an-
alytically without additional approximations. Usually the isotropic radiative
transfer equations is solved numerically, and therefore we provide a recipe for
a Monte Carlo simulation of the anisotropic radiative transfer equation. In ad-
dition we provide some examples of the effects of anisotropy on the radiative
transfer equation.

From the anisotropic radiative transfer equation we derive in chapter 3 an
anisotropic diffusion equation. Examples of the effects of anisotropy on dif-
fusion are provided, and we can take limits of extreme anisotropy and obtain
either one or two dimensional diffusion. The anisotropic diffusion equation
is supplied with interference corrections, and we obtain the Ioffe-Regel crite-
rion for Anderson localization in anisotropic media. Our criterion is the first
criterion indicating that anisotropy in a disordered material is favorable for

Xii



Anderson localization.

In chapter 4 the boundary conditions for our model are derived from the
Maxwell equations, and applied to the anisotropic diffusion equation. We
identify the transport mean free path and energy velocity in anisotropic me-
dia, and these quantities turn out to be vectors. Internal reflections are also
in the model, and we express the reflectivity and transmissivity of anisotro-
pic disordered media in Fresnel coefficients for anisotropic disordered me-
dia. The angular redistribution of light due to diffusion through an anisotro-
pic material is calculated, and we find non-Lambertian behavior. For aniso-
tropic disordered semi-infinite and slab geometries we calculate the bistatic
coefficients. We partition the bistatic coefficient in three contributions, the
contribution of single scattering, of diffuse multiple scattering, and of maxi-
mally crossed multiple scattering, i.e. the enhanced backscattering cone. In
all of these bistatic coefficients we observe an effect of anisotropy.

Finally, in chapter 5, we present the key results of our model.

The work presented in this thesis is theory. The theory is often compared
to results for isotropic media which are well known in the literature. Our the-
ory is very well suited for predictions and descriptions of experiments. Our
model allows us to predict the behavior of the energy density and flux requir-
ing only little knowledge of the anisotropic multiple scattering material. The
input parameters for the model are the typical scatterer, the average refrac-
tive index along the principal axes of the anisotropy, and the geometry of the
sample. With only this information we can calculate every observable quan-
tity described above. If we are only interested in anisotropic diffusion of the
energy density, then the information is contained in the transport mean free
path and in the energy velocity, which together determine the diffusion con-
stant.

To conclude, we present a model which can straightforwardly be applied in
all fields where anisotropic multiple scattering of classical or electromagnetic
waves occurs.
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Samenvatting

In dit proefschrift ontwikkelen we een wiskundig model dat het voortbewe-
gen van golven door anisotrope wanordelijke materie beschrijft. Er zijn veel
golfverschijnselen, die allemaal door vergelijkbare mathematische modellen
te beschrijven zijn. Voorbeelden van golfverschijnselen zijn geluidsgolven,
watergolven, en elektromagnetische golven. Het model dat wij bestuderen is
gericht op elektromagnetische golven en klassieke golven. Licht is een voor-
beeld van een elektromagnetische golf, en we zullen vaak het woord “licht”
gebruiken in plaats van “klassieke golf of elektromagnetische golf”.
Veelvuldig verstrooide golven in isotrope wanordelijke materialen zijn uit-
gebreid bestudeerd, en het is inmiddels goed bekend dat er drie manieren zijn
waarop de energie van licht getransporteerd wordt door wanordelijke mate-
rialen. Welke manier we moeten verwachten hangt af van hoe sterk het ma-
teriaal verstrooid. Ballistisch transport van energie vindt plaats als er nau-
welijks verstrooiers aanwezig zijn, dat wil zeggen wanneer de verstrooiings-
sterkte van het materiaal laag is, en het licht praktisch ongehinderd door het
materiaal voortbeweegt. Diffuus transport van stralingsenergie vindt plaats
wanneer het materiaal de verstrooiingssterkte van een materiaal niet heel erg
zwak, maar ook niet heel er sterk is, en interferentieverschijnselen verwaar-
loosbaar zijn. Diffuus transport wordt het meest waargenomen, dit gebeurt
als het licht veelvuldig verstrooit, zoals in de wolken in de lucht of in wit pa-
pier. Het licht gedraagt zich dan alsof het melk is die in de thee diffundeert,
en de stralingsenergie is glad verdeeld over het medium. De derde manier
waarop licht zich voortbeweegt, Anderson lokalisatie, wordt bijna nooit waar-
genomen in drie dimensionale materialen, maar is relatief eenvoudig waar te
nemen in een en twee dimensionale media. De minimale verstrooiingssterk-
te waarop de overgang naar Anderson lokalisatie zou moeten plaatsvinden
wordt voorspeld door het Ioffe-Regel criterium. Als de verstrooiings werkza-
me doorsnede en de dichtheid van atomen hoog is, dan zullen de inkomende
en de veelvuldig verstrooide golven interfereren op een manier die er toe leidt
dat er op willekeurige plaatsen in het wanordelijke materiaal energieopho-
pingen ontstaan. Anderson lokalisatie van licht wordt beschreven door een
gegeneraliseerde Boltzmann vergelijking, die alle interferentie effecten om-
vat. Deze vergelijking is nog nooit analytisch opgelost. Normaliter wordt deze
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Samenvatting

vergelijking benaderd door de bekende stralingstransportvergelijking, maar
dan worden alle interferentie effecten verwaarloosd. Het loffe-Regel criteri-
um wordt gevonden door middel van het toevoegen van interferentie effecten
de diffusie vergelijking. De diffusie vergelijking zelf is een benadering van de
stralingstransportvergelijking, en er zijn veel analytische oplossingen bekend
voor de diffusievergelijking.

Er bestaat geen theorie die volledig ontwikkeld is en anisotrope veelvuldi-
ge verstrooiing van licht omvat. In de werkelijke wereld zijn er veel materia-
len, zoals tanden, spieren, bot, en de witte materie in de hersenen, waarin de
voortbeweging van licht beschreven wordt door een anisotrope diffusieverge-
lijking. Daarom moeten we deze theorie zelf ontwikkelen, bijvoorbeeld om
te begrijpen of de elektromagnetische golven veroorzaakt door mobiele tele-
foons hersenschade kunnen veroorzaken, of misschien beinvloed anisotropie
de verstrooiingssterkte waarbij Anderson lokalisatie plaatsvindt. Momenteel
wordt in biologie en geneeskunde vaak een stralingstransportvergelijking ge-
bruikt waarin anisotropie incorrect wordt meegenomen. Soms leiden nume-
rieke simulaties van deze incorrecte vergelijkingen zelfs tot de conclusie dat
anisotrope diffusie niet bestaat, een stelling die strijdig is met waarnemingen
in fysische experimenten.

Het model dat we ontwikkelen voor veelvuldige verstrooiing van golven in
wanordelijke materie is gebaseerd op de kleinste verstrooiers in het materi-
aal, de atomen. Deze atomen worden behandeld als klassieke verstrooiers,
en worden beschreven door hun verstrooiingspotentiaal of (differentiéle) ver-
strooiings of extinctie werkzame doorsnede. We presenteren puur diélektri-
sche anisotropie, laten zien welke veranderingen nodig zijn om materie te be-
schrijven die anisotropie in de magnetische permeabiliteit bevat.

Na het inleidends hoofdstuk 1 beginnen we in hoofdstuk 2 met een klassie-
ke golfvergelijking voor de amplitude, en we voegen verstrooiers toe aan de
vergelijking. Voor anisotrope wanordelijke materialen leiden we een gegene-
raliseerde Boltzmann transport vergelijking af, die alle interferentie effecten
omvat. Aangezien deze vergelijking nog nooit analytisch is opgelost, ook niet
voor isotrope materie, verwaarlozen we interferentie effecten en leiden een
anisotropie stralingstransportvergelijking af. Het is ook zeer moeilijk, zo niet
onmogelijk, om de stralingstransportvergelijking analytisch op te lossen zon-
der extra aannames te doen. Meestal wordt de isotrope stralingstransportver-
gelijking numeriek opgelost, en daarom presenteren we een recept voor een
Monte Carlo simulatie van de anisotrope stralingstransportvergelijking. Daar-
bij geven we enkele voorbeelden van het effect van anisotropie op de stra-
lingstransportvergelijking.

Van de anisotrope stralingstransportvergelijking leiden we een anisotrope
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diffusievergelijking af in hoofdstuk 3. Er worden voorbeelden gegeven van het
effect van anisotropie op diffusie. We nemen limieten met extreme anisotro-
pie, en kunnen op die manier een of twee dimensionale diffusie verkrijgen.
Aan de anisotrope diffusievergelijking voegen we interferentiecorrecties toe,
en we vinden het Ioffe-Regel criterium voor Anderson lokalisatie. Ons crite-
rium is het eerste criterium dat aangeeft dat anisotropie in een wanordelijk
materiaal helpt om Anderson lokalisatie te vinden.

In hoofdstuk 4 leiden we randvoorwaarden voor ons model af van de Max-
well vergelijkingen, en passen deze toe op de anisotrope diffusie vergelijking.
We identificeren de gemiddelde vrije weglengte voor energietransport, en de
energiesnelheid, en beide blijken vectoren te zijn. Interne reflecties zitten ook
in het model, en de reflectiviteit en transmissiviteit drukken we uit in termen
van de Fresnel coéfficiénten voor anisotrope wanordelijke materialen. De her-
distribuering van licht over hoeken wegens diffusie door een wanordelijk ma-
teriaal wordt uitgerekend, en we vinden niet-Lambertiaans gedrag. Voor ani-
sotrope half oneindige media en plakken berekenen we de bistatische coéffi-
ciént. Deze coéfficiént delen we op in drie bijdragen, enkelvoudige verstrooi-
ing, diffuse veelvuldige verstrooiing, en voor maximaal gekruiste verstrooiing,
ofwel de terugstrooikegel. In alle bistatische coéfficiénten zijn we het effect
van anisotropie.

Uiteindelijk sluiten we af in hoofdstuk 5 met de belangrijkste resultaten die
volgen uit ons model.

Het gepresenteerde werk in dit proefschrift is theorie. De theorie wordt vaak
vergeleken met resultaten voor isotrope wanordelijke materialen, die welbe-
kend zijn uit de literatuur. Onze theorie is zeer geschikt voor voorspellingen
en beschrijvingen van experimenten. Ons model staat ons toe het gedrag te
voorspellen van de energiedichtheid en de flux van de energiedichtheid, met
slechts weinig kennis van het anisotrope wanordelijke materiaal. De parame-
ters die nodig zijn voor het model zijn de typische verstrooier, de brekings-
index langs iedere hoofdas van de anisotropie, en de geometrie van het ma-
teriaal. Met deze parameters kunnen we alle hierboven beschreven fysische
grootheden bepalen. Als we enkel geinteresseerd zijn in de anisotrope diffu-
sie van de energiedichtheid, dan de informatie is bevat in de gemiddelde vrije
weglengte voor transport, en de energiesnelheid, die samen de diffusietensor
vastleggen.

Tot slot, wij presenteren een model dat rechttoe rechtaan toegepast kan
worden in ieder gebied waarin anisotrope veelvuldige verstrooiing van klas-
sieke of elektromagnetische golven voorkomen.
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Chapter 1

General introduction

The relevant concepts in multiple scattering of waves through
anisotropic disordered media are introduced through every-
day life examples. The basic equations describing propaga-
tion of electromagnetic waves through matter are introduced
and a short history of the scalar model which we use for light
is presented. The general introduction concludes with an
overview of this thesis.

1.1 Waves, disorder, and anisotropy

Exchange of information is an important part of everyday life. At the super-
market we talk about the price of the goods we wish to buy, with a colleague
about our work, family life, the latest news or the heat wave in the weather
report for your next holiday destination. This news we have either read in a
newspaper or magazine, we heard it on the radio, saw it on television or on the
internet. In all of these examples waves were used to transmit the information.
Sound waves inform the ears, electromagnetic waves inform the eyes. Out in
the open the waves travel in a straight line from a sender to areceiver. In build-
ings there is usually a large number of obstacles which can reflect, absorb,
or produce waves, such as walls, people, desks, filing cabinets, doors, which
open and close intermittently, etc. Many obstacles can be avoided when we
want to exchange information, by shutting the door of our office, by using a
wired connection, by moving closer to the sender or the receiver, or by moving
both sender and receiver out of the building into the open.

Avoiding obstacles is very often impossible, and there is no choice but to
deal with the effects of interference with the scattered waves. For example
when we want to setup a wireless connection from our laptop to the internet
in a building, it is not always possible to move closer to the wireless router, or
move the wireless router into the open. It can very well happen that the signal
from the wireless router is extinguished so much by the obstacles that only a
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Chapter 1 General introduction

diffuse signal and a much smaller ballistic signal reaches our network card.
The network card will tell us it has a bad reception, and is usually unable to
recover enough information from the faint ballistic signal nor can it translate
the diffuse signal into coherent information. Our internet browser will pre-
sent us an error message informing us that the server is unavailable. It would
be very nice if the network card could also recover information from the dif-
fuse signal, as that would increase the range of wireless networks in buildings,
especially if the obstacles predominantly scatter without absorbing the signal.

Many multistory office buildings look like huge concrete slabs, and inside
these slabs the hallways are usually all aligned. The aligned hallways can
waveguide signals, thus allowing signals to propagate longer distances along
the hallways, and shorter distances sideways. In both directions obstacles are
encountered. If we assume that the density and the strength of the scatterers
is similar in all directions, then averaging over realizations of this disorder in
our multistory office buildings will lead to anisotropic diffusion of both sound
and electromagnetic waves. This wave diffusion is described by a diffusion
tensor with the component along the hallways larger than the other compo-
nents. The above example might seem two dimensional for sound, but every-
one who has lived in such a building and has heard one of their neighbors drill
a hole in the concrete wall knows otherwise. It also seems that the structure of
the building is the sole cause of the anisotropy, but that is not necessarily true.
The obstacles blocking the waves hardly ever have spherical symmetry, and
give rise to a directionality in the scattered waves. In office buildings, walls,
filing cabinets, and doors mainly reflect sound moving along a floor. For the
other direction the floor, ceiling, desks and tables are the main scatterers, and
we have to take into account the distribution of the orientation of the scatter-
ing cross sections to be able to tell what caused the anisotropy.

Most people will be familiar with the phenomena described above where
the scatterers or reflecting surfaces are visible by eye. In fact such events can
occur for any type of wave, only the length scales and obstacles differ for dif-
ferent waves. Water waves could scatter from a piece of wood, seismic waves
can scatter from different types of rock embedded in Earth’s crust. In a more
abstract setting we can consider a probability density or Schrédinger wave for
some elementary particle, which scatters from inhomogeneities in the energy
density landscape. The picture of scatterers as inhomogeneities in the en-
ergy density landscape through which a wave propagates is best known from
quantum mechanics, but it is very general and applies to classical waves as
well. This thesis will focus on the theory of multiple scattering of classical
electromagnetic waves of arbitrary wavelength in anisotropic disordered me-
dia. For these waves the scatterers discussed in this thesis are mainly much
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1.1 Waves, disorder, and anisotropy

smaller than the wavelength of the electromagnetic waves. The wavelengths
visible by eye are in the range 350nm — 750nm, and typically these waves are
scattered by the dipole moment of the electron clouds of atoms, which have
diameters of the order of 0.1nm. Due to the difference in scale it is often cor-
rect to approximate the scattering dipoles by point scatterers. Although we
do not limit ourselves to the visible wavelengths, we use the term light inter-
changeably with the term electromagnetic wave, and all results are valid at any
wavelength, provided we identify the correct scatterers at these wavelengths.

At optical wavelengths we do not consider the disorder in multistory of-
fice buildings, as the size of the mentioned obstacles is orders of magnitude
larger than the wavelength. Instead we can think of infrared light propagating
through human tissue, such as teeth, bone, muscle and even the human brain,
which all exhibit anisotropic diffusion of light, albeit sometimes obscured by
boundary effects [1-5]. In this thesis we develop a model which has the po-
tential to accurately describe the energy density and flux of multiple scattered
waves in anisotropic disordered media.

From a theoretical viewpoint tissue samples are way too complicated as
these consists of many layers all with different scattering properties and differ-
ent anisotropy. If the sample is studied in vivo moving scatterers complicate
matters even more. It is well known that homogeneous isotropic media are
easiest to understand and easiest to describe mathematically. It is also feasi-
ble to analytically calculate simple scattering problems, but scattering from
small clusters of particles already requires approximations, and calculations
are usually performed numerically. It is no surprise that for materials which
consists of 10?3 scatterers nobody has succeeded nor tried to obtain exact an-
alytic solutions for each particular realization of the medium.

If averages over all possible realizations of scatterers are considered, then
we can obtain analytic solutions. For the radiance such a procedure eventu-
ally leads to the well known equation of radiative transfer, an equation which
was first derived heuristically using arguments based on the physical proper-
ties of single scatterers and statistical mechanics [6, 7]. Media averaged over
the disorder can be described by the density of the scatterers and their cross
sections, provided the wavelength under consideration is much smaller than
the transport mean free path. The radiative transfer equation is a Boltzmann
transport equation for waves, and it does not contain interference effects.

The radiative transfer equation is very general, and in general impossible
to solve analytically. Numerical simulations can be performed, but these cost
a lot of time. The radiative transfer equation can be approximated by a dif-
fusion equation up to very good agreement [6, 8]. The diffusion can often be
solved analytically [9] and results are therefore obtained much quicker [8, 10—
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Chapter 1 General introduction

12]. Only for media smaller than two mean free path the accuracy of the dif-
fusion equation becomes less accurate [8], as single scattering and ballistic
propagation start to dominate transport of light. The diffusion equation mea-
sures up so well to the radiative transfer equation due to the fact that both
equations neglect all interference effects.

Photonic crystals are periodic structures which could change the optical
density of states and localize light in certain frequency bands if they exhibit a
full band gap [13, 14]. In these periodic structures it turns out that wave dif-
fusion also occurs[15-18]. The reason for the disorder in photonic crystals is
the second law of thermodynamics, which states that in a closed system the
entropy increases over time. To reduce the entropy a such that all disorder is
removed from a crystal takes a lot of energy, and the current state of the art
crystals are not free from disorder. The band gap could be destroyed by the
disorder thus hampering their wave guiding abilities used for photonic inte-
grated circuits [19, 20]. However the disorder in the crystals was found to be
useful for the determination of photonic crystal properties, such as the deter-
mination of the with of the stop-band through speckle measurements [21]. In
this thesis a photonic crystal can be incorporated as the effective medium in
our model for multiple scattering of light in anisotropic disordered media.

Although naively one might expect all interference effects to wash out when
the waves are multiple scattered, it has been demonstrated through the en-
hanced backscattering phenomenon [22-26] that interference effects can sur-
vive scattering, and exhibit anisotropy [27-29]. There even exists a regime
known as the Anderson localization regime [30], where interference effects
dominate, and the waves form localized states inside the disordered medium.

The search for Anderson localization of classical scalar waves, used for de-
scriptions of light and sound, picked up momentum in the 1980’s [14, 31-33].
Direct observation of Anderson localization of light is very hard to achieve,
but indirect methods can also be used to establish if a material Anderson lo-
calizes [34]. Moreover it possible to obtain a state in which only the directions
transverse to to the propagation direction Anderson localize [33], which has
recently been observed experimentally [35]. The search for Anderson local-
ization, both theoretically and experimentally, is still going on for several wave
phenomena [36-41] and also anisotropic media are studied [42, 43]. Currently
many articles focus on Anderson localization of matter waves, i.e. cold atoms
in one and two dimensional disordered optical lattices [44-49].

Especially in three dimensional media Anderson localization remains elu-
sive for wave phenomena. One of our reasons for studying anisotropic three
dimensional media is that strongly anisotropic media could resemble lower
dimensional media, possible facilitating a transition to Anderson localization.
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Classical waves in three dimensional media are the subject of this thesis, and
we will explore the possibility of a transition to lower dimensional media. Our
model predicts indeed that Anderson localization is facilitated by anisotropy
[50]. Considering the journals in which recent publications on Anderson lo-
calization have appeared [35, 48, 49, 51, 52], we expect it will remain a hot
topic in the foreseeable future.

1.2 Electromagnetic fields in matter

This thesis is about a model for electromagnetic radiation in disordered me-
dia. The Maxwell equations, are the key ingredient from which we will derive
our results. In SI units the Maxwell equations in material media are [53]

V.-D@,1 = p,b), (1.1a)
V.B@ 1 = 0 (1.1b)
VxE@1 = —%, (1.10)
VxH( ) = J(m,t)+%. (1.1d)

Here D is the electric displacement, B is the magnetic flux, E the electric
field, H is the magnetic field, p is the free charge density, and J is the elec-
tric current density [54]. The Maxwell equations have been combined and
improved by Maxwell, but each individual equation also has a name, i.e. Eq.
(1.1a) is Gauss’s law of which (1.1b) can be considered a special case, Eq. (1.1c)
is Faraday’s law, and Eq. (1.1d) is Ampeéres law corrected by Maxwell with the
additional term 0D /dt.

The divergence of equation (1.1d) and application of (1.1a) leads to a con-
tinuity equation for the free electric charge. In optics the electromagnetic
waves scatter from electron clouds bound to atoms. Throughout this thesis
we assume that there are neither free charges, nor free currents, i.e.

0, (1.2a)
(1.2b)

p(x,t)
J(x, 1)

To uniquely determine the electric and magnetic fields we supplement the
Maxwell equations with constitutive relations. These relations are also known
as material equations, and describe the behavior of the material under the in-
fluence of the electric and magnetic fields. We introduce the electric permit-
tivity tensor £(x, o) = £(x)8°(x — o) and the magnetic permeability tensor
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wlx, o) = ,u(a:)53 (x — xy), such that they are constant in time, and inhomo-
geneous and anisotropic in space. The constitutive relations we impose are

D(x, 1)
B(x, 1)

e(x) - Ex, 1), (1.3a)
w(x) - H(x,1). (1.3b)

Our permittivity and permeability are anisotropic, but there are more general
constitutive relations in which the electric and magnetic fields are mixed by
the material. Constitutive relations (1.3) are valid for media which do neither
have temporal nor spatial memory. In such media it is not possible to extract
a Dirac delta from e(z, zp) and p(x, zp), and there is an additional convolu-
tion integral over all coordinates @, and also a time integral if there is a time
dependence.

The disorder is usually confined to some volume, and we consider the aver-
age of the permittivity and permeability over the volume as the host medium
in which the disorder resides, and write

ex) = e+de(x), (1.4a)
ux) = p+oulx). (1.4b)

Here € and p are the host permittivity and permeability tensors and de(x) and
O u(x) are the electric and magnetic disorder respectively. In many optical ex-
periments the magnetic disorder is negligible, but we keep track of it as it will
be relevant for this thesis. The ensemble average of the permittivity and per-
meability over all realizations of the disorder restores homogeneity;,

(e@)) = ¢ (1.5a)
(u@))) = p. (1.5b)

Isotropy is only restored when we also average over all possible orientations
of the inhomogeneities, and then the average permittivity and permeability
tensors of the host medium become proportional to the unit tensor. If we
have an ensemble of slabs all with pores running from the front interface to
the back interface, we can imagine that averaging over the realizations of the
disorder will not remove the anisotropy created by the pores.

Obtaining exact solutions to the Maxwell equations in media with arbitrary
anisotropy and disorder is a complicated matter. The components of the elec-
tromagnetic fields are not independent quantities, and several methods are
available to reduce the number of field components. It is well known that
equations (1.1b) and (1.1c) allow the introduction a magnetic vector potential
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A and an electric scalar potential ¢ according to

B = V«xA, (1.6a)
0A
E = 37 V. (1.6b)

Together with the constitutive relations (1.3) the potentials (1.6) fully specify
the four field vectors appearing in the Maxwell equations. The magnetic vec-
tor potential and electric scalar potential are not unique, and we can supply
them with an equation of constraint such as the Lorentz gauge V- A+0¢/0t =
0 or the Coulomb gauge V - A = 0 [54]. We observe that in media where there
are no free charges and no free currents Eqgs. (1.2) hold, and we can introduce
an electric vector potential W, and a magnetic scalar potential y, by

D = VxW, (1.7a)
ow

= —+Vy. 1.7b

ar VX (1.7b)

Also by means of W and y we can fully specify the four electromagnetic field
vectors, and these potentials are not unique either. The potentials W and y
can only be used in the absence of free charges and currents, but for a descrip-
tion of scattering of light this is not a problem.

The Maxwell equations give rise to an energy balance equation. Using the
absence of free charges and free currents (1.2) and constitutive relations (1.3),
the continuity equation for the energy density follows from the inner prod-
uct of H with (1.1c) subtracted from the inner product of E with (1.1d). The
energy density #m and energy density flux or Poynting vector Sep, of the
electromagnetic fields are identified by

1
Hoem > [E*-D+B*-H +c.c.], (1.8a)
Sem = ExH®+c.c.. (1.8b)

The energy density contains contributions of the permittivity and permeabil-
ity of the disordered medium, and therefore consists of a radiative and a ma-
terial contribution. The disorder term represents the interaction of the elec-
tromagnetic waves with the medium.

Very often we are not interested in the electric and magnetic fields them-
selves, but only in the conserved quantities in the problem at hand. For elas-
tic scattering of light the energy is the conserved quantity. There are many
polarization states of light which give rise to the same energy density and
energy density flux, and we can wonder if instead of the magnetic potential
vector and the electric scalar potential, there exists a single scalar wave field
which correctly predicts the energy density and energy density flux, but does
not necessarily predict the polarization.
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1.3 A history of scalar models for light

The acceptance of light as a wave phenomenon has had a long history, and
was refueled by the advent of quantum theory around 1900, with the intro-
duction of the photon to explain the quantization of the electromagnetic en-
ergy emitted by an oscillating electric system. We discuss classical electro-
magnetism, and therefore in this thesis light is a wave. Here we present two
key ideas in the development of the wave theory. Huygens advocated a wave
model for light [55], and stated the principle that each element of a wave sur-
face may be regarded as the center of a secondary disturbance which gives rise
to spherical wavelets, and the position of the wave surface at any later time is
the envelope of all such wavelets, which is now known as Huygens’ princi-
ple or Huygens’ construction [54]. More than a hundred years later Fresnel
improved on Huygens’ principle by allowing the wavelets to interfere, thus
accounting for diffraction, which naturally became known as the Huygens-
Fresnel principle.

The Huygens-Fresnel principle can be regarded as a special form of Kirch-
hoff’s integral theorem [54], which is the basis of Kirchhoff’s diffraction theory
for scalar waves diffracting through a hole in a screen. As long as the diffract-
ing objects are large compared to the wavelength, and the light is observed in
the far field, Kirchhoff’s diffraction theory works very well [54]. The simplest
model, used by Kirchhoff, to describe freely propagating waves at velocity v is
a scalar field which satisfies a wave equation

1 0%y(x, 1)
Ay(xz,t) - ———5— = 0. 1.9
v(x, 1) 2 op (1.9)
It is very convenient to Fourier transform the time coordinate of the wave
equation to frequency space, which yields the Helmholtz equation, which de-

scribes monochromatic waves of angular frequency o

LU2
Ay (@) + —u(x) = 0. (1.10)

The waves in Eq. (1.10) have wavelength A = k/(2rn) = w/(2nv), and k is the
wavenumber. The wavelength is the same for every propagation direction.
Even though the scalar wave equation has been studied for such a long time,
it is still actively studied, not only for light [56, 57].

The Helmholtz equation, Eq. (1.10), resembles the Schrodinger equation
for electrons if we map w?/v? — fiw/me. In condensed matter theory the ef-
fect of disorder on the conductivity of electrons has been studied intensively
in the 1980’s [58-62] and this analogy has been used when it was found that
interference effects survive for multiple scattered light in disordered media
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[22-26]. In isotropic media each component of the electromagnetic wave vec-
tor satisfies the Helmholtz equation (1.10), and it is tempting to replace the
electromagnetic field vector according to EE — v [63, 64], but this leads to a
wrong energy density for the electromagnetic waves.

For homogeneous isotropic media a mapping of electromagnetic fields on
a single complex scalar fields has been introduced in the 1950’s and it was
shown that both the time averaged energy density and energy density flux or
Poynting vector of quasi monochromatic natural light can be represented by a
single complex scalar field [65-67], and the scalar model describes diffraction
phenomena very well. In the 1990’s the model was reinvented and disorder
has since been added [68], resulting in a generalized radiative transfer equa-
tion incorporating interference and the microscopic scatterers. One of the
important contributions of the scalar model to the understanding of multiple
scattering of light in disordered media is a scattering delay correction to the
energy velocity of light due to frequency dependent scattering potentials. In
this thesis we improve on that model by incorporating the effects of polariza-
tion anisotropy. The main limitation of the scalar model to be introduced lies
in the fact that it does not predict the orientation of the electric and magnetic
field vectors themselves.

1.4 Overview of this thesis

This thesis presents a scalar model for electromagnetic waves in anisotropic
disordered media. We tried to keep each chapter as self-contained as possible,
at the cost of occasional repetition of earlier results.

In chapter 2 we introduce the mapping of the electromagnetic fields on a
scalar model, and study the amplitude of scalar waves in homogeneous and
in disordered anisotropic infinite media. From the Bethe-Salpeter equation,
which is related to the energy density, we derived a generalized Boltzmann
transport equation, incorporating interference effects and anisotropy. An ani-
sotropic radiative transfer equation is derived, and some ideas are presented
to numerically model the radiative transfer equation. To get a grasp of the ef-
fect of anisotropy we present some explicit examples. Appendix A contains the
derivation of the Ward identity in anisotropic media, used to establish energy
conservation in this chapter.

In chapter 3 we derive an anisotropic diffusion equation for infinite media
starting from the anisotropic radiative transfer equation. Some examples of
anisotropic diffusion are presented and potential dimensional cross overs are
studied. Interference corrections are added and we explore the location of
the transition to Anderson localization in anisotropic media, and find that in
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anisotropic media the transition occurs at larger mean free path. Appendix B
presents a justification of the self consistent radiance expansion used in this
chapter.

In chapter 4 we incorporate the effects of boundaries in the model, start-
ing from the Maxwell equations. Snell’s law and the Fresnel reflection and
transmission coefficients for planar waves in the anisotropic scalar model are
derived, and the Brewster angle is determined. For the energy density flux we
derive the reflectivity and transmissivity. Also for the radiance and the diffuse
energy density the conditions at the interface are established. The angle and
polarization averaged reflectivity for the diffuse energy density is related to
the reflectivity for the individual plane waves. The boundary conditions give
rise to a transport mean free path and an energy velocity, and both turn out
to be vector quantities. Green functions for the amplitude and the diffuse en-
ergy density are calculated. These Green functions are used to calculate the
angular redistribution of light by anisotropic disordered semi-infinite media
and slabs and also the bistatic coefficients, which describe angular resolved
reflection and transmission for disordered samples, are calculated. The en-
hanced backscattering cone is affected by the anisotropy.

Finally in chapter 5 we discuss the collection of all the obtained results and
implications for future experimental and theoretical studies of light in aniso-
tropic disordered media.
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Chapter 2

Anisotropic radiative transfer in
infinite media

We set up a theory for multiple scattering of scalar waves in
anisotropic disordered media, with anisotropy present in the
scatterers or in the host medium. We analytically derive a
radiative transfer equation valid in anisotropic host media,
and we present a Monte Carlo method for modeling the ani-
sotropic radiative transfer equation. Our radiative transfer
equation is able to model either the radiance of ordinary or of
extraordinary waves. In addition the well known relation be-
tween extinction mean free path and scattering cross section
is generalized to anisotropic media. Finally some examples
of disordered media illustrate the effect of anisotropy in the
radiative transfer equation.

2.1 Introduction

When we send a wave into some arbitrary material, the wave encounters in-
homogeneities from which it scatters. If there is not too much absorption in
the material, we can use the wave intensity to probe the internal structure of
the material by comparing it to the incident intensity. The potential applica-
tions of such a procedure are numerous. In biological tissue we could non-
invasively image the brain, look for cancer cells, or the orientation and defor-
mation of blood cells [5, 69-71]. We could use coda interferometry of seismic
waves to detect temporal changes in Earth’s crust or we can use electromag-
netic waves to diagnose the organic content of oil shales [72-74]. Whether
acoustic, electromagnetic, or seismic waves are used depends of course on
the setting of the problem. Often the propagation of waves through scatter-
ing materials is described extremely well by the radiative transfer equation
for an isotropic medium, supplied with some phase function of the scatterer
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[75]. The radiative transfer equation describes everything from ballistic prop-
agation to diffuse propagation, but can in general only be solved numer