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We calculate the low-frequency current noise for ac-biased mesoscopic chaotic cavities and diffusive wires.
Contrary to what happens for the admittance, the frequency dispersion in noise is determined not by the electric
response time �the RC time of the circuit�, but by the time that electrons need to diffuse through the structure
�dwell time or diffusion time�. We find that the derivative of the photon-assisted shot noise with respect to the
external ac frequency displays a maximum at the Thouless energy scale of the conductor. This dispersion
comes from the slow, charge-neutral fluctuations of the nonequilibrium electron distribution function inside the
structure. Our theoretical predictions can be verified with present experimental technology.
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I. INTRODUCTION

Charge neutrality in mesoscopic devices is enforced by
Coulomb interactions on a time scale ��RC� given by the
product of the resistance and capacitance scales. The typical
time ��D� for noninteracting electron motion is instead fixed
by either the dwell or diffusion time, depending on the trans-
parency of the interfaces between the system and the elec-
trodes. The most common experimental situation is �RC��D:
electrons, which would normally slowly diffuse, are pushed
to run by the electric fields that they are generating them-
selves by piling up charge. The consequence is that the typi-
cal response time of the device is �−1=�RC

−1 +�D
−1��RC

−1 . This
has been shown for the frequency dependence of both the
admittance1,2 and the noise3–6 in mesoscopic chaotic cavities
and diffusive wires. The inverse of the diffusion time appears
instead as the relevant energy scale for the voltage or tem-
perature dependence for both the conductance and the noise
in superconducting–normal-metal hybrid systems.7–13 In-
deed, in this case the energy dependence is due to interfer-
ence of electronic waves, which does not induce charge ac-
cumulation in the system. To our knowledge, in normal
metallic structures a dispersion on the inverse diffusion time
scale has been predicted so far only for the third moment of
current fluctuations5 and for the finite-frequency thermal
noise response to an oscillating heating power.14 An alterna-
tive and less investigated possibility is to study the low-
frequency current noise �S� as a function of the frequency �
of an external ac bias. The noise through a quantum point
contact was calculated a decade ago15 and later
measured.16,17 Since the quantum point contact is very short,
electron diffusion does not introduce any additional time
scale in the problem and the resulting frequency dispersion is
simply linear.15 More recently, the noise for an ac-biased
chaotic cavity has been considered18,19 in the limit of small
fields, eV / ���1 �V is the amplitude of the ac bias and e is
the electron change�. The authors of Ref. 18 found that the
noise disperse only on the � scale—that is, the combination
of the diffusion and the electric response time. This should
be contrasted with the result of Ref. 20 where the noise in a
diffusive wire was studied when the conductor was biased by

a short voltage pulse. Even if the dispersion of the noise is
not considered in that paper, the authors find that the ratio of
the diffusion time to the duration of the pulse may affect the
observed noise. More recently Shytov21 for the same system
and in the limit eV / ���1 found that the limiting values of
S for ��D�1 and ��D�1 do not coincide. These facts
indicate that an external-frequency dependence of the noise
on the scale of the diffusion time can be present, but at the
moment there exist no explicit predictions for this dispersion.

In this paper we obtain the complete external frequency
dependence of the photon-assisted noise in chaotic cavities
�the analytical expression �39� in the following� and in dif-
fusive wires �numerically�. We find that in general a disper-
sion on the scale of the diffusion time is present and, in
particular, that dS /d� shows a clear maximum for �
�1/�D. We show that this dispersion comes from the slow,
charge-neutral fluctuations of the nonequilibrium electron
distribution function inside the structure. same frequency re-
gion the admittance does not disperse due to the enforcement
of charge neutrality.

The plan of the paper is the following. In Sec. II we
discuss photon-assisted transport through a chaotic quantum
dot, first through a simple phenomenological model �Sec.
II A�, then using the microscopic Keldysh technique for the
current �Sec. II B� and the noise �Sec. II C�. In Sec. III we
consider photon-assisted transport in diffusive wires. We
start the discussion by considering Maxwell relaxation of
charge �Sec. III A� and then show how to evaluate numeri-
cally the photoassisted noise through the diffusive wire �Sec.
III B�. Section IV gives our conclusions.

II. CHAOTIC QUANTUM DOT

A. Simple model of charge transport

We consider a chaotic cavity �see Fig. 1� connected to two
metallic leads through two scatterers characterized by a set
of transparencies �Tn

k� where k takes the value 1 or 2. We
define the conductances Gk=GQ�nTn

k, the total conductance
G=G1G2 / �G1+G2�, and a dwell time �D=2��GQ / �G1

+G2��, where � is the level spacing of the cavity and GQ
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=e2 / �2�� �. We consider the case when the dwell time is
much shorter than the inelastic scattering time due to the
possible electron-electron or electron-phonon interaction. We
also assume that G�GQ, so that we can use semiclassical
theory to describe the electron transport and neglect Cou-
lomb blockade effects. The cavity is coupled capacitively to
the leads through the capacitances Ck and to a gate through
Cg. Three different time-dependent voltage biases are applied
to the gate and the two contacts �Vg, V1, and V2�. Clearly, the
current depends only on two voltage differences; we keep the
three voltages to simplify the notation. The potential differ-
ence between the two leads is harmonically oscillating at
frequency �, as shown in Fig. 1. Since the cavity resistance
is negligible with respect to the contact resistances, we as-
sume a uniform electric potential inside.

One can then define the typical charge relaxation time as
�RC=C� /G where C�=C1+C2+Cg. For the mesoscopic cav-
ity its linear dimension L is much larger than the Fermi
wavelength 	F. Therefore the time �RC is always much
shorter than the dwell time, since the ratio �RC /�D
�� /EC�1. Here EC=e2 /C� is the Coulomb energy and d
=2 or 3 is the dimensionality of the cavity �d=2 for a quan-
tum dot formed in a two-dimensional electron gas in a semi-
conductor nanostructure and d=3 for a metallic grain�. In-
deed, the mean-level spacing reads �=1/ �
dLd�, where 
d is
the density of states �
3	mkF and 
2	m�. The charging
energy can be estimated as EC	e2 /L. Therefore we find

�/EC 	 rs
	F

L
�d−1

� 1, �1�

where rs=1/ �kFaB�	1 is the conventional electron gas pa-
rameter, aB=�2 / �me2� being the Bohr radius.

We start the discussion by considering an elementary
model of charge transport, where diffusion and electric drift
are described classically. The charge Q in the cavity is re-
lated to the electric potential V of the cavity itself by the
relation

Q = �
k=1,2,g

Ck�V − Vk� . �2�

On the other hand, the continuity equation for charge Q reads

�tQ + I = 0, �3�

where the electron current leaking from the cavity can be
phenomenologically described as

I = Q/�D + �
k=1,2

Gk�V − Vk� . �4�

The first term of Eq. �4� stems from the charge diffusion
while the second is the standard Ohm’s law. For any given
time-dependent voltages Vk�t� the system of equations �2�
and �3� can be conveniently solved in terms of V���, the
Fourier transform of the cavity potential. We find

V��� =
�/�D

1 − i��
�

k=1,2,g
Vk��� � �
k

�D

�RC
+ �1 − i��D�

Ck

C�

 ,

�5�

where we defined 
k=Gk /G� for k=1 or 2, G�=G1+G2, and

g=0. When �RC��D, the response time �=�RC�D / ��RC

+�D� is simply given by �RC. For �RC��D and ���1 one
thus finds the very simple result

V��� = �
k


kVk��� , �6�

and

I1��� = − I2��� = G�
1
2�V1 − V2� . �7�

Charge neutrality is perfectly enforced for low-frequency
drive. In the following we will mainly consider this experi-
mentally relevant low-driving-frequency limit ��RC�1,
which will enable us to use the ��1/�RC response for V���.
The method developed in the following is not limited by this
condition, the extension to the case where � is not negligible
with respect to �RC is straightforward.

The admittance matrix at finite frequency can be evalu-
ated employing the same model. One finds that its frequency
dependence is similar to the cavity potential frequency de-
pendence. This simple approach, however, fails to describe
current fluctuations in the system—i.e., noise—which is the
primary interest of our study. To achieve this goal, we resort
to a general microscopic description of current fluctuations
in mesoscopic conductors that allows access to the full
counting statistics of charge transfer.22 Within this method
the low-frequency current noise can be evaluated as the sec-
ond moment of the number of transferred charges over the
long time interval t�max�� /eV ,1 /��.

B. Keldysh action approach to electron transport

Nonequilibrium transport through a chaotic cavity can be
described by a functional integral approach using a Keldysh
contour.23–25 One can define a generating function � that
depends on two counting fields �1 and �2, such that the cur-
rent and all higher moments averaged over a long time t0 can
be obtained by differentiating � �Refs. 22 and 26�:

FIG. 1. Scheme of the system. A chaotic cavity connected to the
electrodes through arbitrary coherent scatterers characterized by a
set of transparencies �Tn�.
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Ik��1,�2� = ie
��

��k
, Sk��1,�2� = e2�2�

��k
2 , �8�

where Ik and Sk are the low-frequency current and noise,
respectively. The generating function can be expressed
through the following functional integral:

t0���1,�2� = − ln�� DǦ� D�eiS�Ǧ,��
 , �9�

where the action S has the form

S�Ǧ,�� = Scon − 2��−1 Tr�i�tǦ� + S�. �10�

Here Scon describes the contacts11,27

Scon =
1

2i
�
n,k

Tr ln�1 +
1

4
Tn

�k���Ǧk,e
−i�̌Ǧei�̌� − 2�


and S� describes the capacitors

S� = �
−�

+�

�
k=1,2,g

2Ck

e2 ��̇+ − �̇k��̇−dt .

The functional integral is performed over two fields Ǧ�t1 , t2�
and �±�t�. The first is a 2�2 matrix and at mean-field level
coincides with the semiclassical Keldysh Green’s function
for electrons in the cavity. It is constrained by the condition

�
l
�

−�

+�

dtǦil�t1,t�Ǧlj�t,t2� = �ij��t1 − t2� . �11�

The trace and product operation in Eq. �10� includes summa-
tion over Keldysh indices and integration over time. In this

compact notation the normalization constrain reads Ǧ2=1.
The second field is the pair of real functions ��+�t� ,�−�t��.
They result from the Hubbard-Stratonovich decoupling of
the Coulomb interaction term, and their time derivatives
�̇±�t� /e=V±�t� present the “classical” and “quantum” fluctu-
ating electrostatic potentials in the cavity. These fields appear
in the action also in matrix form: �̌=�+�t�+�−�t��̌x, with �̌x

the Pauli matrix in Keldysh space.
The external time-dependent voltage drive Vk�t� and the

counting fields enter S through the Green function of the two

leads Ǧk:

Ǧk = ei�x�k/2Ǧ0ke
−i�x�k/2 �12�

and

Ǧ0k�t1,t2� = 
��t1 − t2� 2F�k��t1,t2�
0 − ��t1 − t2�

� . �13�

Here

F�k��t1,t2� = e−i�k�t1�Feq�t1 − t2�ei�k�t2� �14�

and

Feq�t� =� d�

2�
ei�t/�tanh
 �

2T
� =

T

i sinh��Tt/ � �
, �15�

where T is the temperature of the leads �kB=1�. The phase
�k�t� is related to voltage in contact k by the gauge relation
��̇k�t�=eVk�t�, and the function F�k��t1 , t2� is connected to
the nonequilibrium distribution function in the kth contact, as
f �k��t1 , t2�= �1−F�k��t1 , t2�� /2. Note that f �k��t1 , t2� is a gauge-
dependent quantity.

One should now calculate the current and noise starting
from expression �9�. We are considering the limit of large
contacts, GQ /G�1, such that mesoscopic fluctuations are
negligible. In this limit the electronic transport is then well
described by the saddle point approximation. At this level of
approximation we are also treating the interaction at the
mean-field level. It means that we fully account for the clas-
sical charge relaxation �screening�, but disregard other, more
subtle effects, related to the Coulomb interaction, like �i�
inelastic electron-electron collisions, defining the inelastic
time scale, and �ii� logarithmic renormalization of transmis-
sion coefficients Tn

�k� due to virtual elastic collisions. In zero-
dimensional metallic systems, which we consider, the impact
of effects �i� and �ii� on the current and noise is small by the
same parameter GQ /G�1. If needed, these effects can be
taken into account by considering Gaussian fluctuations of
the phases �± around the saddle point solution �see, for in-
stance, Refs. 4, 25, and 28�.

The saddle point condition on Eq. �10� leads to two set of
equations:

�S

�Ǧ
= 0 and

�S
��±

= 0, �16�

where the first derivative has to be performed maintaining
the normalization constraint �11�. The first is a kinetic equa-
tion for the electron distribution function inside the cavity,
and the second is the Poisson equation for the charge distri-
bution. It is instructive, first, to relate the least-action prin-
ciple to the elementary charge model discussed above and to
find the distribution function inside the cavity. Minimization

of action �10� with respect to Ǧ gives the following equation

that relates Ǧ to the current through the interfaces:

�
k

Ǐk + � �D��t1
+ �t2

�Ǧ = 0, �17�

where

Ǐk =
GQ

G�
�

n

Tn
�k��ei�̌Ǧke

−i�̌,Ǧ�

4 + Tn
�k���ei�̌Ǧke

−i�̌,Ǧ� − 2�
�18�

are the spectral currents found in Ref. 29. One can readily
verify by performing a derivative with respect to �k that at
the mean-field level the �k-dependent current is a trace of
expression �18�:
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Ik��1,�2� = ie
��

��k
=

eG�

GQ
Tr��̌xǏk�t,t��/2. �19�

The second set of equations are obtained by derivation with
respect to �±:

�

��±�t�
�Scon + S�� = 0. �20�

We begin by discussing the physical current that is simply
Ik for �1=�2=0. In this case Eq. �18� has a solution of the
form �13� and depends on a single function F�t1 , t2�. The
derivative with respect to �+ in Eq. �20� gives the condition
�̇−=0, which is solved by �−=0; i.e., only the classical volt-
age fluctuations are left. It is convenient now to introduce
new time variables t−= t2− t1 and t+= �t1+ t2� /2. Then Eq.
�17� takes the form of a kinetic equation

�D
�F

�t+
+ F = �

k=1,2

ke

i�+�t1�F�k�e−i�+�t2�. �21�

The distribution function F�t+ , t−� is a periodic function of t+,
which can be represented as the Fourier series

F�t+,t−� = �
n

ein�t+Fn�t−� , �22�

and its explicit expression in terms of the Fourier component
of F�k� comes from the solution of the kinetic equation �21�:

Fn�t−� =
�k


kFn
�k��t−�

1 + in��D
. �23�

Here

Fn
�k��t� = Feq�t�Jn�2Ak sin��t/2�� , �24�

where Ak=e�V0
�k�−V0� / ����; the equilibrium distribution

function Feq�t� is given by Eq. �15�; Jn are the Bessel func-
tions; V0

�k� are the amplitudes of the ac fields in the leads,
Vk�t�=V0

�k� sin��t�; and V0 is the amplitude of the electric

potential inside the cavity, V�t�= �̇+�t� /e=V0 sin��t�.
In order to make a connection with the classical descrip-

tion given by Eq. �3� we relate the distribution function F to
the charge in the cavity:

Q�t+� = − �2�e/��F�t+,t− → 0� . �25�

The kinetic equation �21� for t−→0 reduces then to the
continuity equation �3� for the total charge. This can be
shown by exploiting the identity

lim
t−→0

ei�+�t1�Feq�t1 − t2�e−i�+�t2� =
1

�
�̇+�t+� . �26�

The equation of motion for the charge is given by the
derivative with respect to �− in Eq. �20�. It is composed of
two terms. The first reads

�Scon

��−�t�
=

G�

GQ
�

k=1,2
Tr�Ǐk�t,t��̌x�

= − 2��−1 Tr��tǦ�t,t��̌x� =
2

e
Q̇�t� , �27�

where we have firstly used Eq. �17� and then the definition of
charge �25�. The second reads

�S�

��−�t�
= − 2 �

k=1,2,g

Ck

e
�V̇ − V̇k� . �28�

Combining Eqs. �27� and �28� we see that the saddle point
equation �20� fixes the charge Q�t� in accordance with rela-
tion �3�. Note that when the voltage time dependence �6� is
enforced, Q�t� vanishes identically, as can be verified by cal-
culating the limit t−→0 in Eq. �23�. On the other hand, the

energy distribution function F̃�t+ ,��=�dt−F̃�t− , t+�ei�t−/� var-
ies periodically in time and its dependence on the ac driving
frequency � is on the scale of the inverse diffusion time �D

−1.
When an electron enters the cavity, after a very short time
	�RC, the charge rearranges to keep the cavity neutral; the
distribution function, instead, will relax on a much longer
time given by �D. As it will be shown in the following sub-
section, zero-frequency noise probes the electronic distribu-
tion function �see Eq. �38� in the following� and it does de-
pend on the frequency � on the same scale.

C. Photon-assisted shot noise

In order to obtain the noise we need to calculate the first
derivative of the counting-field-dependent current Sk�t�
=−i� Ik�t� /�� for �1=�2=0. To obtain the noise, it is thus

sufficient to calculate the linear correction in � to Ǧ,

Ǧ = Ǧ0 − 2i�Ǧ1 + ¯ , �29�

and substitute this expression into Eq. �18�.11,12 The term Ǧ0
is given by Eq. �13� with the distribution function F given by
Eqs. �22� and �23�. In order to fulfill the normalization con-

dition �11� the correction Ǧ1 should anticommute with Ǧ0.
This condition can be fulfilled automatically by using the
parametrization proposed in Ref. 23:

i�Ǧ1 = 
1 F

0 − 1
�
 0 W

W� 0
�
1 F

0 − 1
� . �30�

For the boundary conditions �12� the phase �̌�t� on a cavity
acquires the �-dependent correction as well:

�̌�t� = �+�t� + ����t� + ���t��̌x� + ¯ . �31�

By defining �=�1−�2 we can calculate the noise as a deriva-
tive with respect to � and we are free to choose �1=
2� and
�2=−
1�. In this way W�=0 and ��=0. Then from Eqs. �17�
and �20� we obtain the system of coupled equations for W,
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i�1 + �D�t+
�W = R − � �

k=1,2

ke

i�+�t1�Fke
−i�+�t2����t1� − ��t2�� ,

�32�

and �,

Q̇1�t� = �C��̈�t�/e . �33�

Here the operator R reads

R = �
k

�k
k��1 − �k��F � F + Fk � Fk� + �k�F � Fk + Fk � F�� ,

�34�

and Q1�t� is the correction to the charge, given by

Q1�t+� = − �2�e/��W�t+,t− → 0� , �35�

where

�k = GQ/Gk�
n

Tn
�k��1 − Tn

�k�� �36�

are the Fano factors of the two junctions and with the circle
� we indicate a time convolution.

We now expand the �-dependent current �18� up to linear
in � terms in order to evaluate the noise: Ik���= Ik

�a�+ Ik
�b�

+ Ik
�c�, where

Ik
�a� =

�Gk

e
�Tr�W� − ��̇/�� ,

Ik
�b� =

i�Gk

2e
�k Tr�2 − F � Fk − Fk � F� ,

Ik
�c� = −

i�Gk

2e
�k�1 − �k�Tr��F − Fk� � �F − Fk�� . �37�

As we can see from this expansion one needs to know Tr W
only—i.e., W�t , t� averaged over one period in time—in or-
der to obtain the low-frequency noise. Since the phases ��t�
and �+�t� oscillate periodically in time around zero mean
value, it follows from the kinetic equation �32� and the rela-

tion �26�, that Tr W−��̇ /�=−iTr R; thus, the actual time de-
pendence of the phase ��t� is not important for evaluation of
the low-frequency noise. Substituting the expression for W
into the current expansion �37� one can relate the noise S

with distribution functions f�t1 , t2�= �1− F̃�t1 , t2�� /2 and

fk�t1 , t2�= �1− F̃k�t1 , t2�� /2:

S = GT�1 − 2�1
2� + 4�G
2�1 Tr

��f � �1 − f1� + f1 � �1 − f��

+ 2�G�1 − 2
2�1�Tr�f � �1 − f�� + �1 ↔ 2� . �38�

Here the terms in the first and second lines are the thermal
and partition noise due to contact resistances, while the third
line represents the noise of the chaotic cavity with open con-
tacts, which stems from the fluctuation of the distribution
function inside the dot. Evaluating the traces we finally ob-
tain

S = G�
n,l,r

���l + r�coth����l + r�/2T�
1 + �2�D

2 n2 �FJ�A1,A2�

+ F1J�A1,A1� + F2J�A2,A2�� + 2GT�1 − �1
2 − �2
1� ,

�39�

where

J�A1,A2� = Jn+l�A1�Jl�A1�Jr−n�− A2�Jr�− A2� ,

F1 = �
1 + �1
2 − F�/2,

F2 = �
2 + �2
1 − F�/2,

F = 
1
2 + �1
2
3 + �2
1

3, �40�

and the amplitudes are A1=
2A and A2=−
1A, with A
=e�V1

0−V2
0� / ��.

Expression �39� is the main result of this section. For
��D�1 it reduces to the result by Lesovik and Levitov15

with the effective Fano factor F appearing at the place of the
quantum point contact Fano factor. The photon-assisted noise
shot noise in a chaotic cavity in the limit of small A�1 has
been considered recently by Polianski, Samuelsson, and
Büttiker.19 They found that at A2 order there is no frequency
dispersion. One can recover this result, expanding the gen-
eral expression �39� up to second order in A. For all other
cases the frequency dispersion is present, as can be seen
from Fig. 2, where dS /d� is shown as a function of � for
small temperature T� ��. In particular, we find that dS /d�
displays a maximum for �	1/�D reminiscent of the reen-
trant behavior in superconductors. Expression �39� allows
also one to study the dependence of noise as a function of the
flux, as shown in Fig. 3. We found that oscillations are
present as in the quantum point contact results of Ref.15; the
main difference is that the form depends now on the driving
frequency. For ��D�1 the oscillations are slightly reduced.

FIG. 2. Frequency dependence of a differential photon-assisted
shot noise in the symmetric chaotic cavity �G1=G2� under fixed
flux A=e�V1

0−V2
0� / ����. The magnitude of dS /d� is normalized to

its value at �=0. Curve �1� A=1.0, �2� A=2.0, �3� A=3.0, �4� A
=4.0, and �5� A=5.0. For symmetric cavities the curves appear to be
independent of the transmission distribution of the contacts.
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III. DIFFUSIVE WIRE

A. Classical charge relaxation

We pass now to discuss the photon-assisted noise in a
diffusive wire. We characterize the wire by a length Lx in the
direction of the current, a diffusion coefficient D, and a con-
ductance G�GQ. These parameters define the Thouless en-
ergy of the wire, �Th= �D /L2, which gives the typical diffu-
sion time �D	 � /�Th through the structure. The wire is
connected to two leads which are kept at oscillating voltage
difference eV�t�=eV0 sin��t�. In order to observe a strong
nonequilibrium effect, we consider not too long samples,
where the diffusion time �D is much shorter than the energy
relaxation time �E in the system. At low temperature �E
stems primary from the inelastic electron-electron collisions.
It can be estimated as �E	�D /E�1/2
 for the case of quasi-
one-dimensional geometry �
 being a density of states per
spin� and �E	�G /GQ�� /E for the case of quasi-two-
dimensional film, where E=max�eV0 , ���.

Following the Section II A it is instructive to start the
discussion by considering the classical charge relaxation in
the diffusive wire. It is described by the set of coupled equa-
tions of the classical electrodynamics in the diffusive media
�see, e.g., Ref. 30�:

��r,t� =� U��r − r�����r�,t�dr�, �41�

�̇ + � · j = 0, �42�

j = − ��� − D�� . �43�

Here ��r , t� and j�r , t� are the charge and current densities,
��r , t� is the electrostatic potential, � is the conductivity, and
U��r � � is the �possibly screened by nearby gates� Coulomb
potential. The conductivity � of the wire is frequency inde-
pendent in the wide frequency range ��1/�tr, �tr being a
transport scattering time. It is related to the diffusion coeffi-
cient by the Einstein relation �=2e2
D �the factor of 2 is the
spin multiplicity�. It is worth mentioning that Eqs. �41�–�43�

are analogs of the previously discussed equations �2�–�4�.
One can solve Eqs. �42� and �41� in terms of the Fourier

transform �q�t� of the charge excitation as

��t + Dq2 + �q2U�q���q�t� = 0, �44�

where U�q� is the Coulomb potential form factor. Typically
the short diffusive wire can be made of a film with size Lx
�Ly and thickness d� �Lx ,Ly�, where the length scales Lx,y

are of the same order of magnitude, so that one effectively
has a two-dimensional metal. In this situation for the non-
screened Coulomb interaction we put U�q�=2� / �q�. It fol-
lows then from Eq. �44� that a charge fluctuation, spread over
the system size with a wave vector q	2� /Lx, will relax on
the typical time scale �−1=�Th+�M, where �M	�� /Lx is the
Maxwell relaxation rate. Taking into account that 

	m�kFd�, the definition for the sheet conductivity �� and
�Th, one estimates for a good metal that

�Th/�M 	
	F

2

Lxd
� 1, �45�

with 	F being the Fermi wavelength. Thus the charge relax-
ation time � is set by the Maxwell time, �	1/�M, playing
now the role of RC time, while the diffusion time �D drops
out from the problem. Then at the low-driving-frequency
limit ���1, the system is charge neutral, ��t�=0, and as
follows from Eq. �43� the admittance Y��� is frequency in-
dependent, Y���=G����Ly /Lx�. At the same time the elec-
tric field E=−�� is constant along the wire, so that

��x,t� = V0 sin��t��Lx − x�/Lx, �46�

where x is the coordinate in the current’s direction. This ex-
pression is the analog of the result �6� in the case of zero-
dimensional chaotic quantum dots.

B. Photon-assisted shot noise in diffusive wire

The photon-assisted shot noise in the diffusive wire in the
limit of large driving frequency, ��D�1, has been theoreti-
cally considered by Shytov.21 In this limiting case the noise
can be expressed in terms of the electron distribution func-
tions averaged over time and can be analytically evaluated
when eV / ���1. To obtain the noise for arbitrary values of
� we employ the same procedure used for a chaotic cavity,
taking into account the spatial dependence of the Green’s

function Ǧ.
We describe the wire by the following action:31

S�G,�� = 2i�
� dr Tr�1

4
D��Ĝ�2 − ��t + ie�̌�z,t��Ĝ� + S�,

�47�

where �̌=�++�−�̌x and �± are the “classical” and “quan-
tum” components of the electrostatic potential. The term S�

is the electromagnetic part of the action

FIG. 3. Flux dependence of the differential photon-assisted shot
noise in the symmetric chaotic cavity �G1=G2�. Curve �1� � /ETh

=0.0, �2� � /ETh=0.25, �3� � /ETh=0.5, and �4� � /ETh=1.0.
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S� = 2� dt�
q

�−q
+ 
 1

U�q�
+ 2
e2��q

−. �48�

The first term in this expression takes into account the elec-
tromagnetic energy, and the second one is the static com-
pressibility of the electron gas. The action �47� has to be
supplemented by the boundary conditions for the Green’s
function at the ends of the wire:

Ǧ�t1,t2��x=L = 
��t1 − t2� 2Feq�t1 − t2�
0 − ��t1 − t2�

�� �49�

and

Ǧ�t1,t2��x=0 = ei�̌x�/2
��t1 − t2� 2FL�t1,t2�
0 − ��t1 − t2�

�e−i�̌x�/2� .

�50�

Here the equilibrium distribution function Feq�t� is given by
Eq. �15�,

FL�t1,t2� = e−i��t1�Feq�t1 − t2�ei��t2�, �51�

and ��t�= �eV0 / ���cos��t�.
Minimizing the action �47� with respect to G one obtains

the Usadel equations

D�z�Ǧ�zǦ� + i�i�t − e�̌�z,t�,Ǧ� = 0. �52�

By considering the physical limit of this equation at �=0 and
integrating it over the time t−= t1− t2 one can rederive Eqs.
�42� and �43� with charge and current densities given by

��r,t� = − 2e
��F�t+,t− → 0,r� + e�+�r,t�� , �53�

j�r,t� = Tr��̌xǰ�r,t,t��/2, �54�

where we have defined the spectral matrix current

ǰ�r,t1,t2� =
��

e
�Ĝ�Ĝ� . �55�

By the same token, if one takes the saddle point of the action
�47� with respect to �−, the Poisson relation �41� is repro-
duced. Note that the appearance of the � term in the defini-
tion of the charge density stems from the fact that the gauge
div A=0 is now used, while the preceding definition of
charge �25� implied the gauge ��t�=0 inside the cavity.

To obtain the photon-assisted noise we have solved the
Usadel equation �52� numerically, using the charge-neutrality
condition �46�. To accomplish this program technically we
switch to the energy representation of �52�. Since the driving
is periodic, we can single out the t+ dependence for any

operator Ǎ:

Ǎ�t1,t2� = �
n

Ǎn�t−�ein�0t+. �56�

In the energy domain this implies that

Ǎ��1,�2� = �
n

A˜n��1�2����1 − �2 + n � �� , �57�

where A˜n��−n�� /2� is the Fourier transform of Ǎn�t−�:

Ǎn�� − n � �/2� = �
−�

+�

dtei�tǍn�t� . �58�

It is thus convenient to define the energy variable E, so that
�=E+k��, such that k is an integer and −�� /2�E

� �� /2. One can then represent Ǎ in a matrix form

Ǎnm�E� = A˜m−n�E + n�� . �59�

In this way the time convolution between two operators be-
comes a simple matrix product. In the matrix representation
the distribution function entering Eq. �49� for the right lead
�x=L� takes a diagonal form

FR�E�nm = �nm sgn�E + n � �� .

For the left lead at zero temperature it reads instead

FL�E�nm = − �nm + 2in−m �
l=−�

m

Jl�− A�Jm−n−l�A� ,

where A=eV0 / ��. In practical calculations it is enough to
restrict the matrix size to �n � �3A, since A gives a typical
number of multiphoton processes involved.

Following the ideas of the circuit theory,11,27 we solve Eq.
�52� by representing the wire as a chain of N−1�1 chaotic

cavities �where Ǧ is uniform� with N identical tunnel barriers
between them. This approach leads to a finite-difference ver-
sion of the Usadel equation:

�1

2
�Ǧk−1 + Ǧk+1� + i

�̌ − V̌k

N�N − 1��Th
,Ǧk
 = 0. �60�

The operators i�t� �̌ and V̌k have matrix representations

��̌�n,n = E + n� ,

V̌nm
k �E� = ieV0�N − k���n,m−1 − �n,m+1�/�2N� . �61�

Equation �60� can be efficiently solved by means of subse-
quent iterations. Then photon-assisted shot noise can be

FIG. 4. Frequency dependence of the differential photon-noise
for a diffusive wire for given values of A=eV0 / ��. Here �Th

= �D /L2 and the numerical calculation has been performed with ten
nodes. The magnitude of dS /d� is normalized to its value at �
=0. Curve �1� A=1.0, �2� A=2.0, �3� A=3.0, and �4� A=4.0.
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obtained by differentiating the �-dependent current,
S=−i� Ik /�� at �=0, where

Ik��� = �G/GQ�N Tr��Ǧk,Ǧk+1��̌x�/8 �62�

can be taken at any one of the N barriers due to the current
conservation.

Results for the differential noise dS /d� versus ac fre-
quency are shown in Fig. 4. We find that diffusion due to
impurities induces on the photon-assisted noise a similar fre-
quency dependence as the transmission through a chaotic
cavity. Again a maximum is present with the main difference
that the energy scale is set by the Thouless energy instead of
the inverse dwell time.

IV. CONCLUSIONS

In conclusion, we have shown that the frequency disper-
sion of the photon-assisted shot noise probes directly the
diffusion time in mesoscopic conductors. Our predictions can
be verified by an experiment analogous to that described, for
instance, in Ref. 17, where a chaotic cavity can be formed

between two quantum point contacts. By carefully choosing
the transparencies of the cavity �or the length of a diffusive
wire� one can match the Thouless energy �� /�D� in the range
of frequencies that have been already investigated. A Thou-
less energy of 10 �eV, which is typically realized in meso-
scopic conductors, corresponds to � /2�=2.4 GHz which is
a frequency readily accessible in experiments.
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