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Outline

1 General setting and background [FM, DFT,FT]:
Quantum systems with zero-range interactions;
The Thomas effect;
Approximation by regular potentials (Efimov effect).

2 Main results [CDFMT]: N + 1 fermions with masses 1 + m.
Case N = 2: critical mass m? for the stability.
Case N > 2: stability & instability conditions.

3 Conclusions and perspectives.
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General Setting & Background

Zero-Range Interactions

We want to give a rigorous meaning to the formal Schrödinger operator

H = −
N∑

i=1

1
2mi

∆i +
∑
i<j

µijδ(xi − xj),

for xi ∈ R3 and study its spectral properties.

(Physics) Motivations
Bose-Einstein condensation and cold Bose gases [Gross ‘61],
[Pitaevksii ‘61].
Ultra-cold Fermi gases at BEC/BCS crossover: unitary limit of an
approximating potential with range → 0 and scattering length →∞
[Castin, Werner ‘06].
Few-body Fermi systems in the unitary limit: Efimov (Thomas) effect
[Braaten, Hammer ‘06], [Castin et al ‘10].
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General Setting & Background

Symmetric vs. Self-Adjoint

A (closed) operator on a Hilbert space H (e.g., =L2(R3N)):

The domain D(A∗) of the adjoint A∗ is defined as
{φ ∈H | ∀ψ ∈ D(A), ∃ξ ∈H , (Aψ, φ) = (ψ, ξ)} ,

and A∗φ = ξ.
A symmetric if A = A∗ and self-adjoint if A = A∗ and D(A) = D(A∗).
In general D(A) ⊂ D(A∗) and if D(A) is enlarged then D(A∗) gets
smaller...in some cases one can find a s.a. extension.
Self-adjointness is crucial to define a dynamics (unitarity of e−iAt).

Example
K = −∆ with domain D(K ) = H2

0 (R3) ⊂ L2(R3):
D(K ∗) = H2(R3 \ {0}) ∩ H1(R3).
D(K ) ( D(K ∗) since functions in D(K ) has to vanish around {0}
whereas functions in D(K ∗) do not have to.
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General Setting & Background

Zero-Range Interactions (mathematical definition)

One would like to associate with H a self-adjoint operator on L2(R3N).
The δ-function is not a potential in the usual sense.
One could naively think of considering H0 = −

∑ 1
2mi

∆i on the
subspace {Ψ ∈ L2(R3N) | Ψ|xi=xj

= 0} but such an operator is not
s.a. but only symmetric =⇒ look for its s.a. extensions!

Example
Consider K = −∆ + µδ(x) on L2(R3): s.a. extensions of −∆ on H2

0 (R3).

One can classify the domains Dα of all s.a. extensions Kα, α ∈ R:

Dα =

{
Ψ ∈ H2(R3 \ {0}) | ∃q ∈ C,Ψ −→

|x|→0

q
|x|

+ αq + o(1)

}
,

KαΨ ' −∆
(

Ψ− q
|x|

)
.

The free Hamiltonian −∆ belongs to the family and −∆ = K∞.
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General Setting & Background

The STM Extensions

H = −
N∑

i=1

1
2mi

∆i +
∑
i<j

µijδ(xi − xj),

In analogy with the one-body case, one looks for extensions Hα,
α ∈ R, satisfying the boundary conditions

Ψ =
qij

|xi − xj |
+ αqij + o(1), as |xi − xj | → 0.

These are the so-called Skornyakov-Ter-Martirosyan (STM) extensions.
The STM extensions are labeled by a minimal set of parameters (in
general the s.a. extensions are labeled by operators!) and extend in a
natural way the two-body interaction.
In general the STM extensions are only symmetric!
One can find s.a. extensions of the STM extension, but in general the
so-obtained operators are unbounded from below!
This is what is usually known under the name of Thomas effect...
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General Setting & Background

The Thomas Effect

For any N ≥ 3 and any α ∈ R, any s.a. extension of Hα is unbounded
from below, i.e., the so-called Thomas effect (TE) occurs.
For 3 bosons [Faddeev, Minlos ‘62] and 3 different particles
[Melnikov, Minlos ‘91], ∃ a sequence of genuine three-body
bound states with energy → −∞.
The “Thomas” states are slowly decaying states but the singularity is
reached when the three particles get close together.
The Thomas effect is independent of the sign of α although for N = 1
there is a (single) bound state if and only if α < 0 (attractive
interaction).
Among all possible extensions of H (different from the STM ones),
there are some which do not exhibit the TE but the associated
boundary conditions are non-local, i.e., α is an integral operator.
What is the effect of the fermionic symmetry on the TE?
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General Setting & Background

Approximation by Regular Potentials

Replace µijδ(xi − xj) with Vε(xi − xj) for some regular Vε −→ δ.
If −∆i −∆j + V (xi − xj) admits a zero-energy resonance for i 6= j ,
then it can generate an effective attractive potential for the k−th
particle and create a sequence of bound states with energy −→ 0
(Efimov effect) [Simon, Klaus ‘79, Sigal ‘79].
The TE might be the natural counterpart of the Efimov effect due to
the scaling in ε [MC et al in progress]

Example (Albeverio et al ‘81)

Consider Kα on L2(R3) and pick Kε = −∆ + Vε(x) (V regular) with

Vε(x) =
λ(ε)

ε2
V (x/ε).

If in addition −∆ + V is positive and admits a zero-energy resonance,
then Kε −→ Kα in norm resolvent sense and α ∝ −λ′(0).
sgn(α) might be negative although Kε is a positive operator.
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General Setting & Background

Fermionic Symmetry vs. Thomas Effect

There can be no zero-range interaction between fermions of the same
species ⇐= ψ antisymmetric=⇒ ψ|xi=xj

= 0.

System of 2 species of fermions: N fermions of mass 1 + 1 of mass m.

Physics & Math Literature
2 + 1 [Efimov ‘72, Petrov ‘03]: ∃m?(2) ' 0.0735 s.t. the TE
occurs if m < m?(2) and the system is stable for m > m?(2).
3 + 1 [Castin et al ‘10]: if m?(2) < m < 0.0747, ∃ genuine
four-body bound states with energy → −∞.
2 + 1 [Shermatov ‘03, Minlos ‘10]: if m < m?(2), any STM
extension (restricted to l = 1) is not self-adjoint and any self-adjoint
extension is unbounded from below (TE).
N + 1 [Minlos ‘11]: if N > 5 and m sufficiently large, any STM
extension is self-adjoint and bounded from below (no TE).
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Main Results

Quadratic Form Approach (N + 1 Fermions)

We construct the quadratic form Fα associated with the STM
extension Hα trough a renormalization procedure: for any ψ ∈ D(Hα)

Fα[ψ] = (ψ,Hαψ) .

If Fα is closed then it defines a unique self-adjoint operator Hα.
If Fα is not closable (unbounded from below) then either Hα is not
self-adjoint or unbounded from below (TE).

D(Fα) =
{
ψ ∈ L2

f (R3N)
∣∣∣ ∃ξ ∈ D(Φλ

α), φλ = ψ − Gλξ ∈ H1
f (R3N)

}
,

Fα[ψ] := F0[φλ] + λ‖φλ‖2L2(R3N)
− λ ‖ψ‖2L2(R3N) + NΦλ

α [ξ] ,

F0[φ] = (φ,H0φ) (in the center of mass ref. frame) and, for any
λ > 0, Gλξ = (H0 + λ)−1 ∗ ξδ(xi − xj) (note that Gλξ /∈ H1(R3N)).
Φλ
α[ξ] acts on the “charge” ξ (ξ̂ ∈ H1/2(R3(N−1))).
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Main Results

Mass Threshold

Definition (Critical Mass m?(N))
We define m?(N) as the unique solution of Λ(m,N) = 1 with

Λ(m,N) = 2
π (N − 1)(m + 1)2

[
1√

m(m+2)
− arcsin

(
1

m+1

)]
.
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Main Results

Stability

Theorem (MC et al ‘12)
For any N ≥ 2 and m > m?(N), the quadratic form Fα is closed and
bounded from below. Moreover, if α ≥ 0, Fα ≥ 0, whereas, if α < 0,

Fα[ψ] ≥ − α2

4π4 (1− Λ(m,N))2 ‖ψ‖
2
L2 .

Corollary
For any N ≥ 2 and m > m?(N), any STM extension Hα is self-adjoint and
bounded from below.

Remarks
The infimum of Fα is reached on charges in the susbspace l = 1.
The lower bound is expected to be essentially optimal for N = 2.
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Main Results

Instability

Theorem (MC et al ‘12)
For any N ≥ 2 and m < m?(2), the quadratic form Fα is unbounded from
below for any α ∈ R (Thomas effect).

Corollary
For any N ≥ 2 and m < m?(2), any STM extension Hα can not be
self-adjoint and bounded from below.

Remarks
Both cases Hα non self-adjoint or Hα self-adjoint but unbounded
from below are a priori possible.
The case N > 2 is dealt with as N = 2 with N − 2 fermions “far away”.
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Main Results

N + 1 vs. 2+ 1

For N > 2 the results are only partial: unknown behavior for
m?(2) < m < m?(N).
One expects a different stability/instability threshold m̃?(N)>m?(2)
due to the occurence of N-body bound states.
The role of the antisymmetry must be subtle but crucial.
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Main Results

2+ 1

m?(2) is the sharp mass threshold for the Thomas effect.
For α < 0, a lower bound of the form

Fα[ψ] ≥ − Cα2

(1− Λ(m, 2))
‖ψ‖2L2

is expected to be optimal [MC et al in progress], i.e., ∃ a suitable
sequence of charges ξn such that Gλξn saturates the bound.
The continuous spectrum σac(Hα) is

(
−(2πα)2,∞

)
⇐= the bottom

of σac(Hα) is given by 2 particles in the bound state + 1 particle far
away.
If m is close enough to m?(2) the saturation of the bound implies the
existence of at least genuine three-body bound state of the STM
extension with energy below the continuous spectrum threshold.
As m→ m?(2) there is at least one bound state with energy → −∞.
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Main Results

2+ 1: Sketch of the Proof

Positivity (coerciveness) of the charge form Φλ
α for some λ > 0 implies

closedness of the complete form Fα.
One has the decomposition Φλ

α[ξ] = Φdiag
α,λ [ξ] + Φoff

λ [ξ] with

Φdiag
α,λ [ξ] =

∫
dp
[
α + 2π2

√
m(m+2)
(m+1)2 p2 + λ

] ∣∣ξ̂(p)
∣∣2,

Φoff
λ [ξ] =

∫
dsdt

ξ̂∗(s)ξ̂(t)

p2 + q2 + 2
m+1p · q + λ

.

Decomposition in spherical harmonics Ym
l (ϑ, ϕ) of Φλ

α +
diagonalization of Φoff

λ by Mellin transform =⇒ Φoff
λ can be negative

only for l odd and the worst case is l = 1.
Φoff
λ [ξ] ≥ −Λ(m, 2)Φdiag

α,λ [ξ] =⇒ lower bound

Φλ
α[ξ] ≥ (1− Λ(m, 2)) Φdiag

α,λ [ξ]

which yields the condition m > m?(2) and the lower bound on Fα:
Fα[ψ] ≥ −λ‖ψ‖2 + 2

[
2π (1− Λ)

√
λ+ α

]
‖ξ‖2.
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Perspectives

Perspectives

2+ 1

" Ground state energy for m > m?(2) [MC et al in progress].

% Estimate of the number of bound states as m→ m?(2).

" Approximation by regular potentials [Dell’Antonio,
Michelangeli in preparation].

% Thomas effect vs. Efimov effect.

N + 1

% Threshold shift for N > 2 (role of the antisymmetry).

% Behavior for large N and effective model for N →∞.
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