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QMC ↔ experiment: direct comparisions

density profile: universal correlations 

quasi2D trapped Bosons: Kosterlitz-Thouless ↔ BEC

density profile
coherence properties
superfluidity

disorder ?



Physics in two dimensions (2D)

Enhanced (quantum) fluctuations:
Absence of long-range order at finite temperture T

(Mermin, Wagner, Hohenberg,...theorem)

Bose-Einstein phase transition (BEC) only at T=0

Kosterlitz-Thouless phase transtion (KT) at Tc=πρs/2m2

ρs: superfluid mass density“topological phase transition”

Exception: Ideal Bose gas in 2D harmonic trap:
BEC transition at finite T no KT 
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critical number of Bosons, Nc, at finite T λ2=2π/mT

V. Bagnato, D. Kleppner,
 PRA 44, 7439 (1991)



Two-dimensional Ultracold Bosons in a harmonic trap:
Bose-Einstein Condensation (BEC) or
 Kosterlitz-Thouless transition (KT)?

gω ω: trap frequency
g: interaction constant
N: number of Bosons

x

y

basic model: N Bosons 
with short-ranged (hard-core) interaction in isotropic trap  

g ~(log na2)-1 for hard disks of diameter a

Certainly superfluid phase transition at finite T!

thermodynamic limit in 2D trap: with Nω2=constN→∞ and ω→0
for  temperature T=constmean extension RT of cloud: RT=(T/mω2)1/2



Bose-Einstein Condensation (BEC) or
 Kosterlitz-Thouless transition (KT)?

nl
<ψ+(r)ψ(r’)>=     Nnl φ*n(r)φn(r’) cos(lθrr’)Σ

Reduced 1-body density:

Superfluidity <=> non-classical moment of inertia: 

Inc<Icl=
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FIG. 3: Left : Densities ncλ
2 and n(0)λ2 vs. T/T 2d

BEC for
the quasi two-dimensional gas with N = 576 000. The in-
tersection of both curves leads to a transition temperature
TKT ! 0.70. Right : central curvature κ compared to the
groundstate Thomas–Fermi curvature, Eq. (4), with g = g̃
and with g corresponding to an ideal gas of distinguishable
particles. The central curvature changes slope at TKT.

linearly on g−1, is more sensitive to the detailed value of
the interaction than the transition temperature, which
decreases with the logarithm of g.

In Fig. 3, we plot the central density n(0)λ2 and also
the (central) curvature κ = −∂(n(r)λ2/∂(βmω2r2)|r=0.
The curvature of the Thomas–Fermi profile (in Eq. (4)) is
κ = π!2/(mg) with g = g̃ at very low temperature. The
curvature increases (the profile becomes narrower) with
T because particles spread out farther in the z-direction.
Above the critical temperature, however, the curvature
decreases (the profile becomes wider), as is natural for
a thermal gas, with κ ∝ n(0)λ2. The curvature plot
provides an intrinsic signature of the phase transition,
at a temperature T/T 2d

BEC # 0.70, which agrees nicely
with the temperature at which the central density passes
the critical value Eq. (2). We have also studied smaller
systems (with N = 2250, 9000, 36 000, and 144 000) at
unchanged values of T/T 2d

BEC and ω̃z = 0.55, but found
only very small variations in the density profiles. Our
value for the critical temperature, TKT # 0.70 T 2d

BEC vir-

tually agrees with the mean-field value T q2d
KT = 0.69 T 2d

BEC
of the Kosterlitz–Thouless transition in the quasi two-
dimensional trapped Bose gas [8].

From Fig. 1, we see that the density profile deviates
from the thermal distribution with a single Gaussian
component as soon as n(r)λ2 ! 1. The temperature de-
termination from the tails of the density profile therefore
suffers from a poor signal-to-noise ratio. Indeed, a direct
comparision of our data with the experimenatal density
profiles [9] showed that a proper temperature calibration
of the experimental data accounts for the difference be-
tween our transition temperature and the original exper-
imental value of Ref. [5]. Alternatively, the experimental
temperature in the high-temperature phase can be cal-
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FIG. 4: Left: Non-classical moment of inertia Inc/Icl vs.
T/T 2d

BEC for N = 9000 (crosses) and N = 144 000 (stars) com-
pared to the ansatz of Eq. (5) (squares). Right: Condensate
fraction for particle numbers ranging from N = 2250 (crosses)
to N = 144 000 (squares).

ibrated conveniently using quasi two-dimensional mean
field theory [8, 9].

The low-temperature phase below the Kosterlitz–
Thouless transition is a superfluid. For a homogeneous
system, the superfluid fraction can be probed through
the response to boundary conditions [10]. Likewise, a
trapped superfluid does not respond to an infinitely slow
rotation of a trap leading to a non-classical moment of
inertia, Inc, which is smaller than the classical value
Icl =

∫

dr r2n(r). The non-classical moment of inertia
can be computed from the diagonal elements of the den-
sity matrix [15]. In a homogeneous system, the ratio of
the non-classical moment to the classical moment equals
the normal fraction. In Fig. 4, we show that a superfluid
phase emerges below T # 0.70 T 2d

BEC, and that Inc/Icl re-
mains different from unity, independent on system size.

To interpret our data for the non-classical moment
of inertia, we observe that in an infinite homogeneous
system, at the Kosterlitz–Thouless transition, the su-
perfluid density develops a universal jump[16], ∆ρs =
2mTKT/(π!2), and the superfluid mass and the moment
of inertia are both discontinuous. In the trap, the spa-
tial structure smears out these discontinuities [6], but
in local-density approximation, as mentioned, the gas is
critical at the critical radius rc. Therefore, we expect
a normal phase beyond rc, and a superfluid for r < rc,
with a jump of the superfluid density taking place at this
radius and the superfluid density vanishing for r > rc.
For our parameters, the superfluid fraction at the criti-
cal radius is ρs(rc)/n(rc) = 2mT/(n(rc)π!2) # 0.5. We
can continue the superfluid density ρs(r) into the inner
region by a Thomas–Fermi profile:
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BEC: long-range order

T>TBEC: 
T<TBEC: T<TKT: 

T>TKT: Nnl~1, I=Icl

N00~N, Inc<Icl

Nnl~1,           I=Icl

N00~N1-η(T)/2, Inc<Icl

KT: algebraic order

BEC  =>

jump in Inc at Tc?



quasi 2D Bose gas: Experimental realisation

z
z x/y

ω
ωz

3D BEC + 1D optical lattice=> quasi 2D slices with
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Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Nature 441, 1118 (2006);
P. Krüger, Z. Hadzibabic, J. Dalibard, PRL 99, 040402 (2007).

relatively strong interaction   g⋍0.13

quasi 2d situation: 
chemical potential μ≲ωz

few excited states in z thermally occupied  T≲ωz

Boson number N ~ 104/slice



QMC simulations of Quasi-2D Bose gases 

M. H., W. Krauth, PRL 100, 190402 (2008)

Full 3D path-integral simulation in quasi 2D geometry

3D hard-core interaction (s-wave scattering length a)

quasi 2D scaling:    ωz/TBEC=0.55

Parameters of the simulation

2D interaction strength at T=0:    g=(8πωz)1/2a =0.13

Number of Bosons N=2 250 up to N=576 000 

Temperature range from T=0.5 TBEC to T=TBEC

based on Feynman’s path integral representation of the N-particle density matrix
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QMC density profiles: T<TKT 
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T=0.5 TBEC

Thomas-Fermi shape of the superfluid density
with effective quasi-2D interaction g



QMC superfluidity: non-classical moment of inertia 
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FIG. 3: Left : Densities ncλ
2 and n(0)λ2 vs. T/T 2d

BEC for
the quasi two-dimensional gas with N = 576 000. The in-
tersection of both curves leads to a transition temperature
TKT ! 0.70. Right : central curvature κ compared to the
groundstate Thomas–Fermi curvature, Eq. (4), with g = g̃
and with g corresponding to an ideal gas of distinguishable
particles. The central curvature changes slope at TKT.

linearly on g−1, is more sensitive to the detailed value of
the interaction than the transition temperature, which
decreases with the logarithm of g.

In Fig. 3, we plot the central density n(0)λ2 and also
the (central) curvature κ = −∂(n(r)λ2/∂(βmω2r2)|r=0.
The curvature of the Thomas–Fermi profile (in Eq. (4)) is
κ = π!2/(mg) with g = g̃ at very low temperature. The
curvature increases (the profile becomes narrower) with
T because particles spread out farther in the z-direction.
Above the critical temperature, however, the curvature
decreases (the profile becomes wider), as is natural for
a thermal gas, with κ ∝ n(0)λ2. The curvature plot
provides an intrinsic signature of the phase transition,
at a temperature T/T 2d

BEC # 0.70, which agrees nicely
with the temperature at which the central density passes
the critical value Eq. (2). We have also studied smaller
systems (with N = 2250, 9000, 36 000, and 144 000) at
unchanged values of T/T 2d

BEC and ω̃z = 0.55, but found
only very small variations in the density profiles. Our
value for the critical temperature, TKT # 0.70 T 2d

BEC vir-

tually agrees with the mean-field value T q2d
KT = 0.69 T 2d

BEC
of the Kosterlitz–Thouless transition in the quasi two-
dimensional trapped Bose gas [8].

From Fig. 1, we see that the density profile deviates
from the thermal distribution with a single Gaussian
component as soon as n(r)λ2 ! 1. The temperature de-
termination from the tails of the density profile therefore
suffers from a poor signal-to-noise ratio. Indeed, a direct
comparision of our data with the experimenatal density
profiles [9] showed that a proper temperature calibration
of the experimental data accounts for the difference be-
tween our transition temperature and the original exper-
imental value of Ref. [5]. Alternatively, the experimental
temperature in the high-temperature phase can be cal-
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FIG. 4: Left: Non-classical moment of inertia Inc/Icl vs.
T/T 2d

BEC for N = 9000 (crosses) and N = 144 000 (stars) com-
pared to the ansatz of Eq. (5) (squares). Right: Condensate
fraction for particle numbers ranging from N = 2250 (crosses)
to N = 144 000 (squares).

ibrated conveniently using quasi two-dimensional mean
field theory [8, 9].

The low-temperature phase below the Kosterlitz–
Thouless transition is a superfluid. For a homogeneous
system, the superfluid fraction can be probed through
the response to boundary conditions [10]. Likewise, a
trapped superfluid does not respond to an infinitely slow
rotation of a trap leading to a non-classical moment of
inertia, Inc, which is smaller than the classical value
Icl =

∫

dr r2n(r). The non-classical moment of inertia
can be computed from the diagonal elements of the den-
sity matrix [15]. In a homogeneous system, the ratio of
the non-classical moment to the classical moment equals
the normal fraction. In Fig. 4, we show that a superfluid
phase emerges below T # 0.70 T 2d

BEC, and that Inc/Icl re-
mains different from unity, independent on system size.

To interpret our data for the non-classical moment
of inertia, we observe that in an infinite homogeneous
system, at the Kosterlitz–Thouless transition, the su-
perfluid density develops a universal jump[16], ∆ρs =
2mTKT/(π!2), and the superfluid mass and the moment
of inertia are both discontinuous. In the trap, the spa-
tial structure smears out these discontinuities [6], but
in local-density approximation, as mentioned, the gas is
critical at the critical radius rc. Therefore, we expect
a normal phase beyond rc, and a superfluid for r < rc,
with a jump of the superfluid density taking place at this
radius and the superfluid density vanishing for r > rc.
For our parameters, the superfluid fraction at the criti-
cal radius is ρs(rc)/n(rc) = 2mT/(n(rc)π!2) # 0.5. We
can continue the superfluid density ρs(r) into the inner
region by a Thomas–Fermi profile:

ρs(r) =











mω2r2
c

(

1 − r2/r2
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/2g + 2mT/(π!2) for r ≤ rc

2mT/(π!2) for r → r−c
0 for r > rc

(5)

below TKT≃0.70 TBEC



QMC condensate fraction (I): BEC dominates... 
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QMC condensate fraction: (II) KT behaviour
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TKT≃0.70 TBECN0/N~N-η(T)/2 η(TKT)=1/4

TKT≃0.70 TBEC 

TKT≃0.74 TBEC 

TKT≃0.67 TBEC 



Fluctuation and correlation region 
M. H., M. Chevallier, W. Krauth, PRA 81, 043622 (2010)

{Correlation density

Phase space density profile n(r)λ2 close to TKT

 How to quantify 
correlations?

Can the local density 
approximation be used?

Quantitative comparisions with approximations based on classical field theory
(N. Prokof’ev, O. Ruebenacker, B. Svistunov, PRL 87, 270402 (2001)

L. Giorgetti, I. Carusotto, Y. Castin, PRA 76, 013613 (2007) 
R.N. Bisset, M.J. Davis, T.P. Simula, P.B. Blakien PRA 79, 033626 (2009))

strong
 finite size effects



Universal leading order corrections to mean-field:
homogeneous system

homogeneous 2D system: scale invariance of the phase space density

nλ2 is a function of Δ=-βμ and g

➪  ideal gas: nidλ2 = - log [1-exp(-Δ)]

➪  mean field: nmfλ2 = - log [1-exp(-Δmf)]

N. Prokof’ev, B. Svistunov PRA 66, 043608 (2002).

➪ correlation corrections: leading order by classical field theory

Δnλ2= (n-nmf)λ2 is a universal function of Δmf/g

function calculated and tabulated in

Δmf=Δ+gnmfλ2/πmean field «gap»: 



Quasi2D trapped system:
Local density approximation (LDA)

local density approximation (LDA) for the mean-field gap: 

Δmf(r)= Δmf(0)+βω2r2/2

provides mapping r ↔ Δmf
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Correlation density and Universality:
quasi2D trapped system

correlation density Δnλ2= (n-nmf)λ2  vs LDA-gap Δmf 
from many systems with different ωz, T, g

classical field approximation: N. Prokof’ev, B. Svistunov PRA 66, 043608 (2002).

} full QMC calculations
in quasi2D trap
M. H., M. Chevallier, W. Krauth, 
Phys. Rev. A 81, 043622 (2010)

Δnλ2= (n-nmf)λ2

Δmf /g



Finite size effects: Cross-over to BEC for small N

finite system: level 
spacing in trap: ω ω/(gT)

at TBEC:   ω/TBEC = π (6 N)-1/2

Cross-over to mean-field physics for   ω/TBEC > g/π
mean-field (with BEC) for   N < π4/(6 g2)



Theory (QMC) ↔ Experiment: density profile

Scale invariance in time-of-flight expansion in 2D
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FIG. 3: (Color online) Combination of the experimental and
theoretical results of Fig. 2. Error bars indicate the standard
deviation of the data. (a) Measured OD as a function of calcu-
lated OD, averaged over the data shown in Fig. 2. The dashed
line with a slope 1 is a guide to the eye. (b) Continuous lines:
QMC results for D as a function of αlocal = α−mω2r2/kBT
for the data shown in Fig. 2 (same color code). Black dashed
line: prediction of [8] for the uniform case. Dots: Measured
D, averaged over all experimental data shown in Fig. 2.

the density distributions. Whereas the central OD in
the four coldest experimental distributions is ∼ 1.0, the
QMC simulations systematically predict a central OD
∼ 1.8, i.e. a density of ∼ 55 µm−2. A global com-
parison between predicted and measured OD is shown
in Fig. 3a, where we performed an average over the 5
profiles of Fig. 2.

We now discuss several possible causes for this dis-
crepancy. A first possible source of error is the uncer-
tainty on the detectivity factor ξ. To estimate its in-
fluence, we have reprocessed the measured profile shown
in Fig. 2a, by choosing the lower (ξ = 0.21) and upper
(ξ = 0.29) values of the uncertainty interval for ξ. The
QMC results for the modified fit parameters are shown
with dash-dotted and dashed lines in Fig. 2a. Clearly,
the uncertainty on ξ does not account for the observed
deviation. Other possible ‘technical’ causes for this dis-
crepancy could be the imperfect resolution of the imag-
ing system and/or the atomic motion during the imag-
ing pulse. However, neither of them can account for the
difference between predicted and measured density pro-
files [24]. The most probable cause of this discrepancy is
the reduced absorption cross-section for large 2d atomic
densities, due to multiple scattering of the photons of the
probe laser beam. Although our optical densities (! 1)
do not exceed usual values for absorption imaging, they
correspond in this 2d geometry to a short mean distance
d between scatterers. For the densest clouds we find that
kLd is on the order of 1 (kL = 8 × 106 m−1), which can
significantly modify the photon scattering rate [18].

The trapped system of interest here can be related
to a uniform gas using the local density approximation
(LDA). Within LDA, the phase space density D(r) in
a trapping potential V (r) is given by D(r) = F (µ −
V (r), T ) where D = F (µ, T ) is the equation of state of
the uniform system. For the quasi-2d Bose gas, the va-
lidity of LDA has been accurately checked with QMC

simulations in [16]. To test the scale invariance of the
equation of state, we have plotted in Fig. 3b the phase
space density D as a function of the ratio αlocal ≡ α(r)
between µ −mω2r2/2 and kBT , using the same data as
in Fig. 2. The calculated functions D(α(r)) (continu-
ous lines) nicely superpose onto each other, confirming
the scale invariance in this low temperature region where
the excitation of the z motion does not play an impor-
tant role. Note that the central phase space densities
notably exceed the critical value for superfluid transition
(Dc % 8.0 for g̃ = 0.146 [19]), signaling the presence a
significant superfluid component. The QMC results con-
firm the prediction of [8] for the uniform 2d gas, which
was obtained using a classical field Monte Carlo method
(dashed line in Fig. 3b). The small corrections to the
results of [8] are due to two factors: (i) the presence of
residual excitations in the z-axis, and (ii) the finite value
of the interaction parameter g̃ [16]. Obviously the devia-
tion between experimental and numerical data that was
appearing in the density profiles of Fig. 2 also shows up
in the plot of D(α(r)) in Fig. 3b, and the experimental
values of D (dots) lie systematically below the predicted
ones in the high phase space region.

A simple way to circumvent the problem of imag-
ing high density regions is to take advantage of another
known scale invariance of the 2d Bose gas. This invari-
ance manifests itself in a 2d ballistic expansion after the
confinement in the xy plane has been suddenly released.
It follows from a hidden symmetry of the 2d Bose gas
with contact interactions V (r) = (!2g̃/m)δ(r) when it is
confined in an isotropic harmonic potential of frequency
ω [9]. Starting from an arbitrary initial equilibrium pro-
file neq(r), the density profile after a TOF duration t is
obtained by a scaling transform

n(r, t) = η2
t neq(ηtr) , ηt = (1 + ω2t2)−1/2 . (1)

This relation was predicted using the Bogoliubov approx-
imation in [20]. It can be explained in terms of the
SO(2,1) symmetry group and holds for interaction po-
tentials that satisfy V (λr) = V (r)/λ2 [9]. The 2d con-
tact potential belongs to this class of functions, although
strictly speaking it needs to be regularized at short dis-
tances to avoid ultraviolet divergences.

Experimentally, we initiate the 2d expansion by switch-
ing off the magnetic trap while keeping the optical po-
tential constant. The atom cloud thus expands in the xy
plane for an adjustable duration t after which we take
an image of the cloud. After a TOF duration t the cen-
tral density is divided by η−2

t . We explore TOF dura-
tions up to t = 14 ms for which the central density is
reduced by a factor η−2

t = 4, so that any artifact due to
multiple scattering of probe photons should be strongly
reduced (see Fig. 3a). We show in Fig. 4a a succession
of density profiles recorded for TOF durations varying
from 0 to 14 ms. Each profile is scaled by the factor ηt,

FIG. 3: (Color online) Combination of the experimental and
theoretical results of Fig. 2. Error bars indicate the standard
deviation of the data. (a) Measured OD as a function of calcu-
lated OD, averaged over the data shown in Fig. 2. The dashed
line with a slope 1 is a guide to the eye. (b) Continuous lines:
QMC results for D as a function of αlocal = α−mω2r2/kBT
for the data shown in Fig. 2 (same color code). Black dashed
line: prediction of [8] for the uniform case. Dots: Measured
D, averaged over all experimental data shown in Fig. 2.

QMC simulations systematically predict a central OD
∼ 1.8, i.e. a density of ∼ 55 µm−2. A global com-
parison between predicted and measured OD is shown
in Fig. 3a, where we performed an average over the 5
profiles of Fig. 2.

We now discuss several possible causes for this discrep-
ancy. A first possible source of error is the uncertainty
on the detectivity factor ξ. To estimate its influence, we
have reprocessed the measured profile shown in Fig. 2a,
by choosing the lower (ξ = 0.21) and upper (ξ = 0.29)
values of the uncertainty interval for ξ. The QMC re-
sults for the modified fit parameters are shown with dash-
dotted and dashed lines in Fig. 2a. Clearly, the uncer-
tainty on ξ does not account for the observed deviation.
Other ‘technical’ causes for this discrepancy could be the
imperfect resolution of the imaging system and/or the
atomic motion during the imaging pulse. However, nei-
ther of them can account for the difference between pre-
dicted and measured density profiles [19]. The most prob-
able cause of this discrepancy is the reduced absorption
cross-section for large 2d atomic densities, due to mul-
tiple scattering of the photons of the probe laser beam.
Although our optical densities (! 1) do not exceed usual
values for absorption imaging, they correspond in this 2d
geometry to a short mean distance d between scatterers.
For the densest clouds we find that kLd is on the order
of 1 (kL = 8 × 106 m−1), which can significantly modify
the photon scattering rate [20, 21].

The trapped system of interest here can be related
to a uniform gas using the local density approximation
(LDA). Within LDA, the phase space density D(r) in
a trapping potential V (r) is given by D(r) = F (µ −
V (r), T ) where D = F (µ, T ) is the equation of state of
the uniform system. For the quasi-2d Bose gas, the va-
lidity of LDA has been accurately checked with QMC
simulations in [17]. To test the scale invariance of the
equation of state, we have plotted in Fig. 3b the phase
space density D as a function of the ratio αlocal ≡ α(r)

between µ −mω2r2/2 and kBT , using the same data as
in Fig. 2. The calculated functions D(α(r)) (continu-
ous lines) nicely superpose onto each other, confirming
the scale invariance in this low temperature region where
the excitation of the z motion does not play an impor-
tant role. Note that the central phase space densities
notably exceed the critical value for superfluid transition
(Dc % 8.0 for g̃ = 0.146 [22]), signaling the presence of a
significant superfluid component. The QMC results con-
firm the prediction of [8] for the uniform 2d gas, which
was obtained using a classical field Monte Carlo method
(dashed line in Fig. 3b). The small corrections to the
results of [8] are due to two factors: (i) the presence of
residual excitations in the z-axis, and (ii) the finite value
of the interaction parameter g̃ [17]. Obviously the devia-
tion between experimental and numerical data that was
appearing in the density profiles of Fig. 2 also shows up
in the plot of D(α(r)) in Fig. 3b, and the experimental
values of D (dots) lie systematically below the predicted
ones in the high phase space region.

A simple way to circumvent the problem of imag-
ing high density regions is to take advantage of another
known scale invariance of the 2d Bose gas. This invari-
ance manifests itself in a 2d ballistic expansion after the
confinement in the xy plane has been suddenly released.
It follows from a hidden SO(2,1) symmetry of the 2d
Bose gas with contact interactions V (r) = (!2g̃/m)δ(r)
when it is confined in an isotropic harmonic potential of
frequency ω [9]. Starting from an arbitrary initial equi-
librium profile neq(r), the density profile after a TOF
duration t is obtained by a scaling transform

n(r, t) = η2
t neq(ηtr) , ηt = (1 + ω2t2)−1/2 . (1)

This relation was predicted within the Bogoliubov ap-
proximation in [23] and it holds exactly for interaction
potentials that satisfy V (λr) = V (r)/λ2 [9]. The 2d con-
tact potential belongs to this class of functions, although
strictly speaking it needs to be regularized at short dis-
tances to avoid ultraviolet divergences.

Experimentally, we initiate the 2d expansion by switch-
ing off the magnetic trap while keeping the optical po-
tential constant. The atom cloud thus expands in the xy
plane for an adjustable duration t after which we take
an image of the cloud. We explore TOF durations up
to t = 14 ms for which the central density is reduced by
a factor η−2

t = 4, so that artifacts due to multiple scat-
tering of probe photons should be strongly reduced (see
Fig. 3a). We show in Fig. 4a a succession of density pro-
files recorded for TOF durations varying from 0 to 14 ms.
Each profile has been rescaled to the initial in-situ distri-
bution according to the law (1), so that ideally all profiles
should be superimposed. In practice this superposition is
poor for short TOF durations and becomes better as the
clouds expand. All scaled profiles obtained for t ≥ 10 ms
coincide within their noise, showing that the detectivity is

44

(a) (b)

Sc
al

ed
op

ti
ca

ld
en

si
ty

r (µm) r (µm)
0 20 40 60
0

1

2

3

4

0 20 40 60
0

1

2

3

4

 

 

FIG. 4: (Color online) (a) Optical density profiles obtained
for a TOF duration t = 0 (black), 3 (red), 6 (green), 10 (blue),
12 (cyan), 14 (magenta) ms and rescaled to their in-situ value
according to (1). (b) Squares: Optical density profile obtained
by averaging the results of (a) for 10 ≤ t ≤ 14ms, yielding fit
parameters T = 94nK, α = 0.36 for ξ = 0.63. Lines: QMC
results for the same fit parameters (continuous), and for those
deduced assuming ξ = 0.47 (dashed red, T = 104nK, α =
0.39) and ξ = 0.79 (dash-dotted blue, T = 87 nK, α = 0.33).

so that ideally all profiles should be superimposed ac-
cording to (1). In practice this superposition is poor for
short TOF durations and becomes better as the clouds
expand. All scaled profiles obtained for t ≥ 10 ms co-
incide within their noise, showing that the detectivity
is constant. We find ξ = 0.63 (16), consistent with the
measured absorption line-width of the probe laser. More-
over, the agreement between these scaled profiles and the
calculated ones is indeed very satisfactory [Fig. 4b] [25].
Note that the scale invariance accessible with such 2d ex-
pansions is notably different from the properties revealed
in a 3d expansion of an initially quasi-2d gas, for which
all trapping potentials are switched off simultaneously.
In that case interactions are negligible during the TOF,
due to the fast expansion along the initially strongly con-
fined direction. This gives access to the quasi-coherent
core which is present at the center of the trap below the
Berezinskii–Kosterlitz–Thouless transition [3, 4, 21].

In conclusion we have studied the equilibrium density
profile of a trapped quasi-2d Bose gas. The discrepancy
between in-situ absorption images and numerical calcula-
tions suggests that multiple scattering of the probe pho-
tons reduces the absorption cross-section in high-density
regions[26]. To reveal the undistorted density distribu-
tion of the gas, we have taken advantage of its self-
similarity in a 2d expansion. The profiles measured after
this expansion are in good agreement with the QMC pre-
dictions. A natural extension of this work is the study
of the regime where the scale invariance breaks down
and energy-dependent corrections to g̃ become important
[22, 23].
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FIG. 4: (Color online) (a) Optical density profiles obtained
for a TOF duration t = 0 (black), 3 (red), 6 (green), 10 (blue),
12 (cyan), 14 (magenta) ms and rescaled to their in-situ value
according to (1). (b) Squares: Optical density profile obtained
by averaging the results of (a) for 10 ≤ t ≤ 14ms, yielding
fit parameters T = 94nK, α = 0.36 for ξ = 0.63. Lines:
QMC results for the same fit parameters (continuous, N =
42000), and for those deduced assuming ξ = 0.47 [dashed red,
(T (nK), α, N)= (104, 0.39, 57600)] and ξ = 0.79 [dash-dotted
blue, (87, 0.33, 32100)].

constant. We find ξ = 0.63 (16), consistent with the mea-
sured absorption line-width of the probe laser. Moreover,
the agreement between these scaled profiles and the cal-
culated ones is indeed very satisfactory (see Fig. 4b)[24].
Note that the scale invariance accessible with such 2d ex-
pansions is notably different from the properties revealed
in a 3d expansion of an initially quasi-2d gas, for which
all trapping potentials are switched off simultaneously.
In that case interactions are negligible during the TOF,
due to the fast expansion along the initially strongly con-
fined direction. This gives access to the quasi-coherent
core which is present at the center of the trap below the
Berezinskii–Kosterlitz–Thouless transition [3, 4, 25].

In conclusion we have studied the equilibrium density
profile of a trapped quasi-2d Bose gas. The discrepancy
between in-situ absorption images and numerical calcula-
tions suggests that multiple scattering of the probe pho-
tons reduces the absorption cross-section in high-density
regions [21]. To reveal the undistorted density distri-
bution of the gas, we have taken advantage of its self-
similarity in a 2d expansion. The profiles measured af-
ter this expansion are in good agreement with the QMC
predictions. Natural extensions of this work are the mea-
surement of other thermodynamical quantities from in-
situ images using the procedure proposed in [26], and
the study of the regime where the scale invariance breaks
down and energy-dependent corrections to g̃ become im-
portant [16, 27–30].
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critical phase space density ñc (see Methods). Results
at different g in the range of 0.05 to 0.26 are shown in
Fig. 3c-d and compared to the theoretical prediction of
ñc = ln(ξ/g) and µ̃c = (g/π) ln(ξµ/g) [22], where ξ = 380
and ξµ = 13.2 are determined from a classical-field Monte
Carlo (MC) calculation [8]. Our results show good agree-
ment with the theory, apart from potential systematic
error from the choice of the fit function.
Further comparison between profiles at different inter-

action strengths allows us to test the universality of 2D
Bose gases. Sufficiently close to the BKT critical point
with |µ̃ − µ̃c| < g, one expects the phase space density
shows a universal behavior [9],

ñ− ñc = H(
µ̃− µ̃c

g
), (3)

where H is a generic function. Here, density and chem-
ical potential are offset from the critical values ñc and
µ̃c, which remove the non-universal dependence on the
microscopic details of the interaction [9, 11].
To test the universality hypothesis, we rescale µ̃ to µ̃/g

and look for critical values ñc and µ̃c such that the equa-
tions of state at all values of g display a universal curve
in the phase transition regime. Indeed, we find that all
rescaled profiles can overlap and collapse into a single
curve in the range of |µ̃ − µ̃c|/g ≤ 2 (see Fig. 3a and
Methods), which contrasts the very different equations
of state ñ(µ̃) at various g shown in the inset of Fig. 3a.
Our result closely follows the classical-field and quantum
MC calculations [9, 10, 23], and the fitting parameters:
critical density ñc and chemical potential µ̃c show proper
dependence on g and are in fair agreement with the the-
ory prediction [8] (see Fig. 3c-d). We emphasize that
critical values determined from the density fluctuations
(see Fig. 3c-d) match well with those determined from
the universal behavior, indicating that universality is a
powerful tool to determine the critical point from a con-
tinuous and smooth density profile.
Further universal features near the phase transition

can be revealed in the growth of the quasi-condensate
(QC) density nq =

√
n2 − δn2 across the phase transition

[8, 9, 24]. As a measure of the non-thermal population
in a degenerate Bose gas, QC is predicted to be universal
near the critical point following [9],

ñq = Q(
µ̃− µ̃c

g
), (4)

where Q is a generic function and ñq = nqλ2
dB.

We employ both of our density and fluctuation mea-
surements to evaluate ñq at various g. Adopting µ̃c deter-
mined from the universal behavior of the density profile,
we immediately find that all measurements collapse to
a single curve in the range of |µ̃ − µ̃c|/g ≤ 2 (Fig. 3b).
The generic function Q we determined is in good agree-
ment with the classical-field [9] and quantum MC [10]
calculations with no fitting parameters. Both our density

FIG. 3: Universal behavior near the BKT critical
point. a, Rescaled density profiles ñ− ñc measured at vari-
ous coupling strengths, g = 0.05 (green triangles), 0.13 (blue
diamonds), 0.19 (red circles), and 0.26 (magenta squares).
Inset shows the original equation of state ñ(µ̃). b, scaled
quasi-condensate density ñq =

√
ñ2 − δñ2 at different inter-

action strengths. In both plots, MC calculations from Ref. [9]
(open circles) and Ref. [10] (a, open squares for g = 0.07
and open triangles for g = 0.14; b, open squares) are plotted
for comparison [23]. The shaded area marks the superfluid
regime and the solid line in b shows the superfluid phase
space density calculation [9]. c and d, critical values µ̃c and
ñc determined from the following methods: universal scaling
as shown in a (red squares), density fluctuation crossover (see
text, black circles), and MC calculation from Ref. [8] (solid
line). Error bars show the standard deviation of the measure-
ment.

and fluctuation measurements show an extended range of
universal behavior. This result suggests a wide critical
region in a 2D Bose gas near the BKT phase transition.

The generic functions we described in the previous
paragraphs offer new avenues to investigate the critical
behavior of the 2D gas. Following the framework of scale
invariance, we compare the dimensionless compressibil-
ity κ̃ = ∂ñ/∂µ̃ = F ′(µ̃) and the fluctuation δñ2 = G(µ̃)
extracted from the measurements at g = 0.05 and 0.26
(see Fig. 4). In the normal gas regime at low phase space
density (G(µ̃), F ′(µ̃) < 3), a simple equality G = F ′ is
observed. This result is consistent with the fluctuation-
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[8, 9, 24]. As a measure of the non-thermal population
in a degenerate Bose gas, QC is predicted to be universal
near the critical point following [9],

ñq = Q(
µ̃− µ̃c

g
), (4)

where Q is a generic function and ñq = nqλ2
dB.

We employ both of our density and fluctuation mea-
surements to evaluate ñq at various g. Adopting µ̃c deter-
mined from the universal behavior of the density profile,
we immediately find that all measurements collapse to
a single curve in the range of |µ̃ − µ̃c|/g ≤ 2 (Fig. 3b).
The generic function Q we determined is in good agree-
ment with the classical-field [9] and quantum MC [10]
calculations with no fitting parameters. Both our density

FIG. 3: Universal behavior near the BKT critical
point. a, Rescaled density profiles ñ− ñc measured at vari-
ous coupling strengths, g = 0.05 (green triangles), 0.13 (blue
diamonds), 0.19 (red circles), and 0.26 (magenta squares).
Inset shows the original equation of state ñ(µ̃). b, scaled
quasi-condensate density ñq =

√
ñ2 − δñ2 at different inter-

action strengths. In both plots, MC calculations from Ref. [9]
(open circles) and Ref. [10] (a, open squares for g = 0.07
and open triangles for g = 0.14; b, open squares) are plotted
for comparison [23]. The shaded area marks the superfluid
regime and the solid line in b shows the superfluid phase
space density calculation [9]. c and d, critical values µ̃c and
ñc determined from the following methods: universal scaling
as shown in a (red squares), density fluctuation crossover (see
text, black circles), and MC calculation from Ref. [8] (solid
line). Error bars show the standard deviation of the measure-
ment.

and fluctuation measurements show an extended range of
universal behavior. This result suggests a wide critical
region in a 2D Bose gas near the BKT phase transition.

The generic functions we described in the previous
paragraphs offer new avenues to investigate the critical
behavior of the 2D gas. Following the framework of scale
invariance, we compare the dimensionless compressibil-
ity κ̃ = ∂ñ/∂µ̃ = F ′(µ̃) and the fluctuation δñ2 = G(µ̃)
extracted from the measurements at g = 0.05 and 0.26
(see Fig. 4). In the normal gas regime at low phase space
density (G(µ̃), F ′(µ̃) < 3), a simple equality G = F ′ is
observed. This result is consistent with the fluctuation-



Theory (QMC) ↔ Experiment: Momentum profile n(k)
T. Plisson, B. Allard, M. H., G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel 

Phys. Rev. A 84, 061606(R) (2011)

3D Time of flight expansion (TOF):

ρ(t) = e−iHt/!ρ(t = 0)eiHt/!

• time evolution of the density operator

• strong confinement in z (quasi 2D)
⇒ large initial momentum in z
⇒ rapid expansion in z

• slow expansion for in-plane density x/y
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Theory (QMC) ↔ Experiment: Coherence properties

N/Nc = (T/Tc)-2

Characterization of 
Coherence (Peak around k=0):

Width of the peak: 
HWHM

Height of the peak:
Fraction of particles in k=0 peak: 

N0/N 

Kosterlitz-Thouless transition: NKT

mean field

QMC



Coherence properties:  Where is Kosterlitz-Thouless?

Infinite (homogeneous) system: 

nk ∼ k−[2−η(T )] for k → 0
with 1/4 ≤ η(T ) ≤ 2

Kosterlitz-Thouless transition at η=1/4

⇒ plot 

Low T-phase with algebraic order:

High T-phase normal:

s(k) = nkk2−1/4

nk ∼ 1
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Superfluid properties (LDA)

M. H., W. Krauth, PRL 100, 190402 (2008)

Local density approximation (LDA):

jump in the superfluid density ns

 where density is critical n(rc)=nc 

 KT:  nsλ2 =4  at nc

total density

superfluid density

jump of the superfluid 
density at rc

4

 moment of inertia I:  

classical:  Icl =
∫

dr r2ρ(r)

below Tc: only normal density   

I =
∫

dr r2ρn(r)

non-classical moment of Inertia (NCMI):  Icl − I =
∫

dr r2ρs(r)



Local superfluid probe: experiment
R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon, C. Weitenberg, and J. Dalibard,

Nature Physics 8, 645 (2012)
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Figure 2 | Evidence for a critical velocity. Two typical curves of the temperature after stirring the laser beam at varying velocities. a, In the superfluid
regime, we observe a critical velocity (here vc =0.87(9)mms−1), below which there is no dissipation. b, In the normal regime, the heating is quadratic in
the velocity. The fitted heating coefficients are κ = 18(3) nK smm−2 and κ = 26(3) nK smm−2 in a and b, respectively. The experimental parameters are
(N,T̄,µ,r)= (87,000,89 nK, kB×59 nK, 14.4 µm) and (38,000, 67 nK, kB×39 nK, 16.6 µm) for a and b, respectively, yielding µloc/kBT̄=0.36 and
µloc/kBT̄=0.04. The data points are the average of typically ten shots. The y error bars show the standard deviation. The x error bars denote the spread of
velocities along the size of the stirring beam (1/

√
e radius). The solid line is a fit to the data according to equation (1). The stirring time is 0.2 s for all data

points. Note that the three low-lying data points in a correspond to the completion of an odd number of half turns. For these data points, where we see a
downshift of the temperature by approximately 1.5 nK, we also observe a displacement of the centre of mass of the cloud by a few micrometres.
c,d, Calculated radial density distribution for the clouds in a and b, respectively. The dashed blue curve shows the superfluid density, the solid red curve
shows the normal density. The stirring beam potential is indicated by the grey shaded area (in arbitrary units). The densities are calculated via the local
density approximation from the prediction for an infinite uniform system16. The jump of the superfluid density from zero to a universal value of 4/λ2dB
(where λdB is the thermal de Broglie wavelength) is a prominent feature of the BKT transition. The normal density makes a corresponding jump to keep the
total density continuous.

is the 3D scattering length and lz = √
h̄/mωz . The energy h̄ωz

(kB×70 nK) is comparable to kBT andUint (∼ kB×40 nK at the trap
centre). Thanks to Bose statistics, which limits to typically 10% the
fractional atomic density in the axially excited states at the obstacle
position, our gas is well described by the quasi-2D fluid model (see
Supplementary material of ref. 14).

We stir the cloud with a laser beam which creates a repulsive
potential with height Vstir ≈ kB × 80 nK. This is at least twice
the local chemical potential µloc(r) = µ −V (r). The beam has a
Gaussian profile with a waist of w0 = 2.0(5) µm, which is larger
than the local healing length ξ = 1/

√
g̃ n (≈0.3 µm at the trap

centre), but small compared to the size of the cloud (full width
at half maximum ≈ 25 µm) (see Fig. 1). We stir for typically
tstir = 0.2 s at constant velocity v in a circle of radius r centred on
the cloud. The intensity of the stirring beam is ramped on and
off in ≈5ms without any significant additional heating. Once the
stirring beam is switched off, we let the cloud relax for 0.1 s and
measure the temperature Tf.

For each configuration (N , T , r), we repeat this experiment
for various v from 0 to 2mm s−1 and a fixed stirring time
tstir. We find two different regimes for the response and we
show an example of each in Fig. 2. In Fig. 2a, there is a clear
threshold behaviour with no discernable dissipation below a critical
velocity. In contrast, in Fig. 2b, the temperature increases without
a threshold. We identify these behaviours as the superfluid and
normal response, respectively. To model these data we choose for
a given configuration the fit function

Tf(v)=Tf,0 +κ ·tstir ·max[(v2 −v2c ),0] (1)

which describes the heating of a 2D superfluid in the presence of a
moving point-like defect15. In equation (1) the three fit parameters
are the temperature at zero velocity Tf,0, the heating coefficient
κ , and the critical velocity vc. In the normal state, the fit gives
vc ∼ 0 and the according quadratic heating stems from the linear
scaling of the drag force. In the absence of the stirring beam, there
is no significant heating and we measure the temperature Ti. The
presence of the stirring beam at zero velocity leads to a ‘background
heating’ Tf,0 −Ti ∼ 10 nK, which we attribute to photon scattering.
In the following, we use the mean temperature T̄ = (Ti +Tf,0)/2 to
characterize the cloud.

In Fig. 3, we summarize our data obtained for different
configurations (N , T̄ , r). We show in Fig. 3a the fitted critical
velocities versus the single parameter µloc(r)/kBT̄ . The relevance of
this parameter results from two points. First, because of the local
character of the excitation, the response of the fluid to the moving
perturbation is expected to be similar to that of a uniform gas with
the same temperature and the chemical potential µloc. Second, the
scale invariance of the weakly-interacting 2D Bose gas implies that
the thermodynamic properties do not depend separately on µ and
T , but only on the ratio µ/kBT (see refs 14,16,17). In particular,
this ratio is univocally related to the phase space density, and thus
characterizes the degree of degeneracy of the cloud.

Remarkably, the ensemble of our data for vc when plotted as a
function of µloc/kBT̄ shows a threshold between values compatible
with zero and clearly non-zero values. This threshold is located
at µloc/kBT̄ ≈ 0.24, above the prediction (µ/kBT )c = 0.15 for the
superfluid phase transition in a uniform system16 with g̃ = 0.093.
If we assume that the stirrer must stand entirely in the superfluid
core to yield a non-zero critical velocity, then the deviation can be

646 NATURE PHYSICS | VOL 8 | SEPTEMBER 2012 | www.nature.com/naturephysics

NATURE PHYSICS DOI: 10.1038/NPHYS2378 LETTERS

1

0
10

0

20

40

v c
 (

m
m

 s
–1

)
 (

nK
 s

 m
m

–2
)

κ

loc /kBT

r (µm)

v c
 (

m
m

 s
–1

)

20

µ

loc /kBTµ

0.0

0.5

1.0

–0.2 –0.1 0.0 0.1 0.2 0.3 0.4 0.5

–0.2 –0.1 0.0 0.1 0.2 0.3 0.4 0.5

a

b

Figure 3 | Superfluid behaviour across the BKT transition. a, The critical
velocities vc obtained from the curves as in Fig. 2 plotted versus the single
parameter µloc/kBT̄, which is the relevant quantity due to the scale
invariance of the weakly-interacting 2D Bose gas. Our data show a
threshold between critical velocities compatible with zero and clearly
non-zero critical velocities. It is located at µloc/kBT̄≈0.24 (dashed line),
somewhat above the prediction (µloc/kBT)c =0.15 for the BKT transition in
an infinite uniform system16 (the grey shaded area indicates the normal
state by this prediction). The inset to a shows the critical velocity plotted
versus the stirring radius r. Owing to the different atom numbers and
temperatures of the clouds, we can find superfluid or normal behaviour for
the same radius. b, The heating coefficient κ as a function of µloc/kBT̄ for
the normal data (red circles) and the superfluid data (blue circles). The red
solid line shows a fit of κ linear in the normal density, as expected from a
single-particle model. The blue dashed line shows an empirical fit quadratic
in the superfluid density. The calculation for the densities assumes
T̄=90nK and the densities are averaged over the size of the stirring beam.
The x error bars indicate the region of µloc/kBT̄ that is traced by the stirring
beam due to its size (using the 1/

√
e width of the beam) and due to the

‘background heating’. The y error bars are fitting errors.

attributed to the non-zero width of the stirring beam. The range
of µloc/kBT̄ corresponding to the extent of this beam is indicated
by the horizontal error bars in Fig. 3a. Note that the finite size
of our trapped atomic clouds might also shift the BKT transition,
but the effect is expected to be small (a few per cent) and in
the opposite direction16.

We limit the presented stirring radii to r ≥ 10 µm such that the
stirring frequenciesω=v/r for the relevant velocities v∼vc are well
below ωr . Indeed, smaller radii correspond to a larger centripetal
acceleration. This could lead to additional heating via the phonon
analog of synchrotron radiation, as observed in the formally similar
context of capillary waves generated by a rotating object18.

For a homogeneous system, the value of the critical velocity
is limited by two dissipation mechanisms, the excitation of
phonons or vortices. For a point-like obstacle15, phonon excitation
dominates and vc is equal to the speed of sound, given in
the zero-temperature limit by cs = h̄

√
g̃ n/m (≈1.6mm s−1 for

n = 50 atoms µm−2) (this situation is described by the celebrated
Landau criterion7). When the obstacle size w0 increases and

becomes comparable to ξ , dissipation via the nucleation of vortex–
antivortex pairs (vortex rings in 3D) becomes significant19–21.
The corresponding vc is then notably reduced with respect to
cs. In the limit of very large obstacles (w0 & ξ), an analytical
analysis of the superfluid flow stability yields vc ∼ h̄/mw0 ' cs
(see refs 22,23). With an obstacle size w0 ∼> ξ , our experimental
situation is intermediate between these two asymptotic regimes.
For a non-homogeneous system such as ours with the stirring
obstacle close to the border of the expected superfluid regime,
one can also excite surface modes24,25, which constitute a further
dissipation mechanism.

Our measured critical velocities are in the range 0.5–1.0mm s−1,
that is, vc/cs = 0.3–0.6. By contrast, previous experiments in 3D
clouds found lower fractions, vc/cs ∼ 0.1 (see ref. 9). The difference
may be due to the larger size of the obstacles that were used,
and to the average along the axis of the stirring beam of the
density distribution in the 3D gas26. The dominant dissipation
mechanism could be revealed, for example, by directly observing the
created vortex pairs as in ref. 12 or interferometrically detecting the
Cerenkov-like wave pattern for v > cs as in experiments with a non-
equilibrium2D superfluid of exciton–polariton quasi-particles27.

Figure 3b shows the fitted heating coefficients κ for the normal
(red circles) and superfluid data (blue circles). In the normal region,
we expect the heating to scale linearly with the normal density
nno (see ref. 10). Using the prediction of ref. 16 for n̄no (averaged
over the size of the stirring beam) we fit κ = a1 · n̄no and obtain
a1 ≈ 3×10−6 nK s. This value is in reasonable agreement with the
prediction of a model10 of a single particle with a thermal velocity
distribution of mean v̄ =√

πkBT/2m colliding with a moving hard
wall of width L= w0, yielding a1 = 16mLv̄/πNkB ∼ 6× 10−6 nK s
(for N = 65,000 and T = 90 nK). In particular our data nicely
reproduce the maximum of n̄no around the expected superfluid
transition point. In the superfluid case and v > vc, we empirically
fit a quadratic scaling of the heating with density κ = a2 ·n2SF and
find a2 = 8× 10−9 nK s µm2. In principle, one could develop a
more refined model to describe the superfluid region, by taking
into account the coexistence of the normal and superfluid states
via the sum of two heating terms. However, within the accuracy
of our data, we did not find any evidence for the need of such a
more refined description.

We have presented a direct proof of the superfluid character of a
trapped 2DBose gas. An interesting extension of our work would be
the study of superfluidity from the complementary point of view of
persistent currents, by adapting to 2D the pioneering experiments
performed in 3D toroidal traps28–30.
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Step-like behavior in the 
local critical velocity
as a function of the

 local chem. potential



Local superfluid density: QMC

 «local» moment of inertia I(r) 
from linear response to local field coupled to momentum density

 classical «local» moment of intertia Icl(r) from local total density

 non-classical «local» moment of intertia Incmi(r)=Icl(r)-I(r)
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Influence of disorder
B. Allard, T. Plisson, M. H., G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel 
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Summary-Outlook

Small systems with N < g-2 behave like a mean-field gas
with a BEC transition! 

Density profiles in experiments are quantitatively descrived by 
quasi2D mean-field + classical field correlations in LDA

Quasi2D show Kosterlitz-Thouless physics 

Coherence properties show no abrupt sign at 
the Kosterlitz-Thouless transition 

«Local» superfluid density shows sharp features
at the local critical density

Disorder potential suppresses coherence 

 Possible normal (insulator) phase at T=0?

 Metal-Insulator transition at finiteT?



Pair-correlation function and quasi-condensate

quasi 2D: interference effects due to z-excitations visible => g(0)<2 even in mean-field

strictly 2D mean-field: pair-correlation function g(0)=2 (bosonic bunching)



Quasi2D mean field local density approximation (LDA)

Determine mean-field eigenmodes in the confined z-directions

3D density in LDA:

radial dependence only parametrically through 
chemical potential:

ground state occupation in z:

depends only on local gap:



Schematic phase diagram in quasi 2D...

ω

g
KT 

BEC
ωz

quasi2D thermodynamic limit to simplify and define phases...
M. H., M. Chevallier, W. Krauth, EPL 82, 30001 (2008)N→∞,ω→0 with ωz/T,  Nω2, and g constant

semiclassical quasi2D density profile: 
discrete sum in z

Markus Holzmann et al.

interactions on the level of mean field, we obtain the
density profiles in the semiclassical approximation and
solve the self-consistent mean-field equations directly.
Remarkable agreement of the semiclassical density profiles
with the results of quantum Monte Carlo calculations
is obtained in the high-temperature normal phase down
to the Kosterlitz-Thouless temperature. The profiles
should be very convenient for calibrating the temperature
in experiments of quasi–two-dimensional Bose gases.
Comparison of experimental density profiles with quan-
tum Monte Carlo data has already removed the original
discrepancy of the Kosterlitz-Thouless temperature
between calculation and experiment [10].
We consider an anisotropic trap with oscillator frequen-

cies ω≡ ωx = ωy" ωz. At temperature T ∼ !ωz, the
motion is semiclassical in the coordinates x, y and in
the momenta !kx, !ky, whereas the quantization in
the z-direction is best described through the energy
levels ν!ωz (ν = 0, 1, . . .) of the corresponding harmonic
oscillator. Semiclassically, the number dN of particles per
phase-space element dkxdkydxdy in the energy level ν is
given by [12]

dN =
1

(2π)2
dkxdkydxdy

exp
[

β(!
2k2

2m + v(r)+ ν!ωz −µ)
]

− 1
, (1)

where β = 1/T , k2 = k2x+ k
2
y, and where v(r) is an

arbitrary two-dimensional potential energy (with
r2 = x2+ y2).
Equation (1) can be integrated over all momenta and

summed over all oscillator levels to obtain the two-
dimensional particle density

n(r) =
∑

ν

∫

∞

0

dk2

4π

1

exp
(

β(!
2k2

2m + v(r)+ ν!ωz −µ)
)

− 1
=

−
1

λ2

∞
∑

ν=0

ln{1− exp [β(µ− v(r)− ν!ωz)]}, (2)

where λ=
√

2π!2β/m is the thermal wavelength. The
potential v(r) can itself contain the interaction with
the density n(r), so that eq. (2) is in general a self-
consistency equation. The integral of n(r) over space yields
the equation of state, that is, the total number of particles
as a function of temperature and chemical potential.
Let us first consider the ideal gas, where the potential

energy v(r) =mω2r2/2 is due only to the trapping poten-
tial, so that the rhs of eq. (2) is independent of the density
n(r). We get

N = −
π

λ2

∞
∑

ν=0

∫

∞

0
d(r2) ln

[

1− eβ(µ−ν!ωz−mω
2r2/2)

]

=

T 2

!2ω2

∞
∑

ν=0

F2(−µβ+ νβ!ωz), (3)

where we have defined

Fs(x) =
∞
∑

n=1

e−nx

ns
.

The saturation number Nsat(T ) is the maximum
number of excited particles (reached at µ= 0) at a given
temperature. We have

Nq2dsat =
T 2

!2ω2

∞
∑

ν=0

F2(νβ!ωz). (4)

The above relation between the saturation number and the
temperature defines the dependence of the Bose-Einstein
condensation temperature on the particle number N . As
mentioned before, the strictly two-dimensional limit is
characterized by the limit β!ωz→∞ (the level spacing in
z is much larger than the temperature). In this limit, only
the first term in eq. (3) contributes. Using F2(0) = π2/6,
we find

N2dsat(T ) =
T 2

!2ω2
π2

6
⇔ T 2dBEC(N) =

√
6N!ω

π
. (5)

In the quasi–two-dimensional case, with finite β!ωz, the
occupation of the oscillator levels ν = 1, 2, . . . increases
the saturation number and therefore lowers the critical
temperature. It is convenient to express in units of T 2dBEC
both the temperature t= T/T 2dBEC and the oscillator
strength ω̃z = !ωz/T 2dBEC, and to write µ̃= βµ. Using
eq. (5), we may rewrite the equation of state, eq. (3),
as a relation between the temperature t, the chemical
potential µ̃, and the oscillator strength ω̃z,

t= f(t, µ̃, ω̃z), (6)

with

f(t, µ̃, ω̃z) =

(

6

π2

∞
∑

ν=0

F2 (−µ̃+ νω̃z/t)

)

−1/2

. (7)

Equation (6) is solved numerically by iterating tn+1 =
f(tn) from an arbitrary starting temperature t0 to the
fixed point. The critical temperature tBEC = T

q2d
BEC/T

2d
BEC

(as a function of ω̃z) of the quasi–two-dimensional ideal
Bose gas is the solution for µ̃= 0 (see fig. 1). The reduction
with respect to the strictly two-dimensional case is notable
for systems of experimental interest. For example, we
find tBEC = 0.78 for the experimental value ω̃z = 0.55 [5,8]
considered in the quantum Monte Carlo calculations [11].
We can expand eq. (7) for small and for large ω̃z and find

tBEC ∼















[

ζ(2)

ζ(3)

]1/3

ω̃1/3z −
1

6

ζ(2)

ζ(3)
ω̃z, for ω̃z" 1,

1−
1

2ζ(2)3/2
exp (−ω̃z) , for ω̃z) 1,

(8)

where we have used ζ(s)≡ Fs(0) (note that ζ(2) = π2/6
and ζ(3)* 1.202). The expansions are indicated in fig. 1.
They give the critical temperature to better than 1.2% for
all values of ω̃z (the low-ω̃z expansion is used for ω̃< 1.8
and the high-ω̃z expansion for ω̃> 1.8). The first term
in the small-ω̃z expansion of eq. (8) corresponds to the

three-dimensional gas. Indeed, tBEC ∼ [ζ(2)/ζ(3)]1/3ω̃
1/3
z

30001-p2

Thermal occupation of  excited states in z important for 
quantitative comparision between theory and experiment

3D inter-atomic collisions:  g3D=4πas/m 
s-wave scattering length as 

D. Petrov, M. H., G. Shlyapnikov, PRL 84, 2551 (2000)

g=(8πmωz)1/2as
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1

Z
〈R|e−βH |R′〉 (1)

R ≡ (r1, r2, . . . rN) (2)

〈R|e−βH |R′〉 ≡
∫

dR2 〈R|e−βH/2|R2〉〈R2|e−βH/2|R′〉 (3)

ρB(R,R′) =
1

ZB

1

N !

∑

P

(−1)|P |ρ(R, P (R′)) (4)

Veff (r, z) =
1

2
mωr2 +

1

2
mωzz

2 + 2g3Dn(r, z) (5)
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∫
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d2rΨ2D(r)|4 (7)
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∫
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1

ZB

1

N !

∑

P

(−1)|P |ρ(R, P (R′)) (4)

Veff (r, z) =
1

2
mωr2 +

1
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2 + 2g3Dn(r, z) (5)
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∫
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∫
dz|Ψ3D(r, z)|4 (6)

g3D
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∫
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Quasi2D mean field local density approximation (LDA)

Determine mean-field eigenmodes in the confined z-directions

simplification from quasi2D 
thermodynamic limit ➠ LDA

LDA: radial dependence only parametrically through 
chemical potential:

from mean-field potential:

ρ(R,R′) =
1

Z
〈R|e−βH |R′〉 (1)

R ≡ (r1, r2, . . . rN) (2)

〈R|e−βH |R′〉 ≡
∫

dR2 〈R|e−βH/2|R2〉〈R2|e−βH/2|R′〉 (3)

ρB(R,R′) =
1

ZB

1

N !

∑

P

(−1)|P |ρ(R, P (R′)) (4)

Veff (r, z) =
1

2
mωr2 +

1

2
mωzz

2 + 2g3Dn(r, z) (5)

1

numercial convergence test:

T=0.71 TBEC

mean-field finite size corrections
to LDA vanish rapidely

solve mean-field equations exactly 
for finite N (by QMC)

M. H., M. Chevallier, W. Krauth, 
Phys. Rev. A 81, 043622 (2010)
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Density profile in trap for weak interactions (g→0)

NIST parameters: g=0.02

phase space density profile
close to TKT

P. Cladé, C. Ryu, A. Ramanathan, 
K. Helmeron, W. D. Phillips, 
PRL 102, 170401 (2009).
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IV. FINITE-SIZE EFFECTS AND
BOSE–EINSTEIN CROSS-OVER

A. Central coherence

In the normal phase, the off-diagonal elements of
the single-particle density matrix remain short-ranged,
so that they can be described locally. From the self-
consistent eigenfunctions of the mean-field Schrödinger
equation, Eq. (12) and Eq. (13), we also obtain the off-
diagonal reduced single-body density matrix:

ñ(1)
mf (!r ;!r ′) = λ2lz

∑

j

Ψ∗

j(!r )Ψ̃j(!r ′)

exp (µ̃ − βεj) − 1
. (33)

In the local-density approximation, we can separate the
contributions of the different transverse modes, and we
obtain

ñ(1)
mf (!r ;!r ′) =

∑

ν

ñ(1)
mf,ν(r; r′)φ̃ν(z̃)φ̃ν(z̃′) (34)

with

ñ(1)
mf,ν(r; r′) =

∫

d2
k

(2π)2
λ2

Teik·(r−r
′)

eβ!2k2/2m+∆mf(r̃) − 1
. (35)

Here we have used that within the LDA, the density re-
mains constant on the scale λT, so that the mean-field
gaps at r̃ and r̃′ are the same.

At low densities, where the mean-field gap is large,
∆mf " 1, we can expand the Bose function in Eq. (35)
in powers of exp (−∆mf), and off-diagonal matrix ele-
ments rapidly vanish for distances larger than the ther-
mal wavelength λT. At higher densities, in the quantum-
degenerate regime, ∆mf # 1, many Gaussians con-
tribute, and coherence is maintained over larger dis-
tances. In the limit ∆mf → 0, we can expand the de-
nominator in Eq. (35), exp

[

β!2k2/2m + ∆mf

]

− 1 ≈
β!2k2/2m + ∆mf, and the off-diagonal density matrix
decays exponentially. In this regime, the local mean-field
coherence length is given by ξmf = λT/

√
4π∆mf.

In Fig. 6 and Fig. 7 we compare the normalized off-
diagonal coherence function in the center of the trap

c(r) =

∫

dz n(1)
3d (r, z; 0, 0)

∫

dz n(1)
3d (0, z; 0, 0)

(36)

from QMC calculations with LDA for the ENS and NIST
conditions. We see that for ñ ! ñf , as in the case of the
density profile, mean-field theory accurately describes the
single-particle coherence. However, it is evident that at
higher densities, ñ " ñf , where correlation effects for the
diagonal elements of the density matrix are important,
mean-field theory also fails to describe the off-diagonal
matrix elements.

To characterize the decay of the off-diagonal density
matrix in the fluctuation regime, ñ " ñf , we consider
a simple one-parameter model which neglects the mo-
mentum dependence of the self-energies in the ground
state of the confining potential. The single parameter of
the model, the effective local gap ∆(r̃), is chosen such
that it reproduces the local density of the QMC data.

The density matrix of this “gap”-model, ñ(1)
∆ (!r ;!r ′) =

∑

ν ñ(1)
∆,ν(r; r′)φ̃ν(z̃)φ̃ν(z̃′), is a straightforward general-

ization of mean-field theory, where in Eq. (35), we replace

∆ν =

{

∆ for ν = 0

∆mf otherwise
. (37)

To fix the gap ∆ of this model, we require that the diag-
onal elements of the density matrix reproduces the exact
density

ñ(1)
∆,0(r; r) = ñmf

0 (r̃) + ∆ñ(r̃). (38)
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FIG. 6: Off-diagonal coherence c(r) for ENS parameters with
t = 0.71 (main graph, ñ > ñf ) and t = 0.769 (inset, ñ < ñf )
compared to the mean-field prediction cmf(r) and the gap
model of Eq. (37). In the fluctuation regime, finite-size effects
for off-diagonal correlations are more pronounced than for the
density (see Fig. 1).

Outside the fluctuation regime the gap model reduces
to the mean-field limit. Inside the fluctuation regime,
where a direct comparison of the coherence with mean-
field theory is not very useful, the gap model provides
the basis to quantify off-diagonal correlations. It cannot
describe the build-up of quasi-long-range order at the
Kosterlitz–Thouless transition, but its correlation length
ξ∆ = λT /

√

4π∆(r̃) > ξmf bounds from below the true
correlation length in the normal phase. In Fig. 6, we
show that the gap model accounts for the increase of
the coherence length inside the fluctuation regime, ñ >
ñf for the ENS parameters. For smaller interactions, as
in the NIST experiment, finite-size effects qualitatively

9

change the off-diagonal elements of the density matrix
(see Fig. 7).
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FIG. 7: Off-diagonal coherence c(r) for NIST parameters with
t = 0.74 (main graph) and t = 0.769 (inset) in comparison
with the mean-field prediction, cmf(r), and the gap model,
c∆(r), defined in Eq. (37). At t = 0.769, the total central
density is ñ(0) ! 5.1 < ñf , and the system is outside the
fluctuation regime. At t = 0.74, ñ(0) ! 10.5 > ñf , and the
system is close to the Kosterlitz–Thouless transition, ∆mf/g̃ !
0.08. Strong finite-size effects are evident in the fluctuation
regime.

B. Density profile

Finite-size effects in the density profile are less dra-
matic than for the coherence (see Fig. 1). Within mean-
field theory, we have compared the density profiles of the
finite system directly with those in the thermodynamic
limit (LDA), using the finite N solution obtained by the
adapted QMC calculation described in Section II C. The
mean-field analysis indicates that correlation effects are
at the origin of the size-effects of the full QMC den-
sity profiles in Fig. 1, in particular, at small system size,
N = 1000.

C. Bose–Einstein cross-over

The finite-size effects in the coherence reflect the un-
derlying discrete mode structure of level spacing ∼ !ω.
Off-diagonal properties for ξ∆ ! lr are cut off by the
extension of the unperturbed ground-state wave func-
tion, lr = (mω/!)−1/2, and resemble those of a Bose-
condensed system with a significant ground-state occu-
pation. Whereas in the thermodynamic limit, the in-
teracting quasi-two-dimensional trapped Bose gas under-
goes a Kosterlitz–Thouless phase transition, the cross-
over to Bose–Einstein condensation sets in when ∆ ≈

β!ω. If this happens outside the fluctuation regime,
∆f

mf " ∆mf " β!ω, the Bose condensation will essen-
tially have mean-field character. Since the temperature
scale is given by !ω/T 2d

BEC = π/
√

6N , the discrete level
spacing is important for small system sizes, N " Nfs,
with

Nfs(∆mf) ≈
1

6

π2

∆2
mft

2
=

π2

6g̃2t2(∆mf/g̃)2
. (39)

For small g̃, close to T 2d
BEC where ∆mf is of order g̃, these

finite-size effects trigger Bose–Einstein condensation for
small N . In particular, for systems with N " Nfs(∆

f
mf) ≈

π4/(6g̃2), a cross-over to a mean-field-like Bose conden-
sation occurs[31], whereas for N ! Nfs(∆c

mf) ≈ 400g̃−2

Kosterlitz–Thouless-like behavior sets in (see inset of
Fig. 10). We notice that the finite-size scale Nfs ∝ 1/g2

diverges very rapidly with vanishing interactions, which
could make the cross-over experimentally observable.

For a finite system with N " Nfs(∆
f
mf), the condensate

wave function does not develop immediately a Thomas–
Fermi shape, but remains close to the Gaussian ground-
state wave function of the ideal gas with typical extension
lr = (mω/!)−1/2. Thus, for small condensate fraction
n0, deviations of the moment of inertia I of the trapped
gas from its classical value, Icl =

∫

d2
r r2n(r) ∼ Nl2T ,

are negligible, of order (Icl − I)/Icl ∼ n0l2r/l2T ∼ N−1/2.
Only for larger condensates with g̃N0 & 2π, the self-
interaction energy dominates the kinetic energy, and the
condensate wave function approaches the Thomas–Fermi
distribution of radius ∼ lT , resulting in a non-classical
value of the moment of inertia. In this low-temperature
regime, the system can be described by a condensate with
a temperature-dependent fluctuating phase [13]. There-
fore, for small systems, a non-classical moment of iner-
tia only occurs at lower temperatures than condensation,
roughly, at a condensate fraction n0 ! g̃.

For N " Nfs(∆
f
mf), the ideal-gas excitation energy

of the harmonic oscillator, !ω, dominates over the self-
interacting energy in the Gross-Pitaevskii functional; the
excitation energies closely resemble those of the ideal
trapped gas and the healing length is smaller than the
harmonic oscillator length. As has been discussed in
Ref. [21], there is no qualitative difference for the activa-
tion of vortices between interacting and non-interacting
systems of finite size. Therefore, a simple qualitative
analysis of the activation of vortices cannot distinguish
between Bose–Einstein and Kosterlitz–Thouless behav-
ior.

To illustrate the cross-over between the Bose–Einstein
regime at small N and the Kosterlitz–Thouless regime
at large N , we have calculated the condensate frac-
tion and condensate wave function for the ENS param-
eter in Fig. 8. To determine both quantities in inho-

mogeneous systems, n(1)
3d (%r ,%r ′) must be explicitly di-

agonalized, as the eigenfunctions of the single-particle
density matrix are not fixed by symmetry alone. In
quasi-two-dimensional systems, the full resolution of the

One-particle coherence: Finite size effects at T>TKT
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IV. FINITE-SIZE EFFECTS AND
BOSE–EINSTEIN CROSS-OVER

A. Central coherence

In the normal phase, the off-diagonal elements of
the single-particle density matrix remain short-ranged,
so that they can be described locally. From the self-
consistent eigenfunctions of the mean-field Schrödinger
equation, Eq. (12) and Eq. (13), we also obtain the off-
diagonal reduced single-body density matrix:

ñ(1)
mf (!r ;!r ′) = λ2lz

∑

j

Ψ∗

j(!r )Ψ̃j(!r ′)

exp (µ̃ − βεj) − 1
. (33)

In the local-density approximation, we can separate the
contributions of the different transverse modes, and we
obtain

ñ(1)
mf (!r ;!r ′) =

∑

ν

ñ(1)
mf,ν(r; r′)φ̃ν(z̃)φ̃ν(z̃′) (34)

with

ñ(1)
mf,ν(r; r′) =

∫

d2
k

(2π)2
λ2

Teik·(r−r
′)

eβ!2k2/2m+∆mf(r̃) − 1
. (35)

Here we have used that within the LDA, the density re-
mains constant on the scale λT, so that the mean-field
gaps at r̃ and r̃′ are the same.

At low densities, where the mean-field gap is large,
∆mf " 1, we can expand the Bose function in Eq. (35)
in powers of exp (−∆mf), and off-diagonal matrix ele-
ments rapidly vanish for distances larger than the ther-
mal wavelength λT. At higher densities, in the quantum-
degenerate regime, ∆mf # 1, many Gaussians con-
tribute, and coherence is maintained over larger dis-
tances. In the limit ∆mf → 0, we can expand the de-
nominator in Eq. (35), exp

[

β!2k2/2m + ∆mf

]

− 1 ≈
β!2k2/2m + ∆mf, and the off-diagonal density matrix
decays exponentially. In this regime, the local mean-field
coherence length is given by ξmf = λT/

√
4π∆mf.

In Fig. 6 and Fig. 7 we compare the normalized off-
diagonal coherence function in the center of the trap

c(r) =

∫

dz n(1)
3d (r, z; 0, 0)

∫

dz n(1)
3d (0, z; 0, 0)

(36)

from QMC calculations with LDA for the ENS and NIST
conditions. We see that for ñ ! ñf , as in the case of the
density profile, mean-field theory accurately describes the
single-particle coherence. However, it is evident that at
higher densities, ñ " ñf , where correlation effects for the
diagonal elements of the density matrix are important,
mean-field theory also fails to describe the off-diagonal
matrix elements.

To characterize the decay of the off-diagonal density
matrix in the fluctuation regime, ñ " ñf , we consider
a simple one-parameter model which neglects the mo-
mentum dependence of the self-energies in the ground
state of the confining potential. The single parameter of
the model, the effective local gap ∆(r̃), is chosen such
that it reproduces the local density of the QMC data.

The density matrix of this “gap”-model, ñ(1)
∆ (!r ;!r ′) =

∑

ν ñ(1)
∆,ν(r; r′)φ̃ν(z̃)φ̃ν(z̃′), is a straightforward general-

ization of mean-field theory, where in Eq. (35), we replace

∆ν =

{

∆ for ν = 0

∆mf otherwise
. (37)

To fix the gap ∆ of this model, we require that the diag-
onal elements of the density matrix reproduces the exact
density

ñ(1)
∆,0(r; r) = ñmf

0 (r̃) + ∆ñ(r̃). (38)
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FIG. 6: Off-diagonal coherence c(r) for ENS parameters with
t = 0.71 (main graph, ñ > ñf ) and t = 0.769 (inset, ñ < ñf )
compared to the mean-field prediction cmf(r) and the gap
model of Eq. (37). In the fluctuation regime, finite-size effects
for off-diagonal correlations are more pronounced than for the
density (see Fig. 1).

Outside the fluctuation regime the gap model reduces
to the mean-field limit. Inside the fluctuation regime,
where a direct comparison of the coherence with mean-
field theory is not very useful, the gap model provides
the basis to quantify off-diagonal correlations. It cannot
describe the build-up of quasi-long-range order at the
Kosterlitz–Thouless transition, but its correlation length
ξ∆ = λT /

√

4π∆(r̃) > ξmf bounds from below the true
correlation length in the normal phase. In Fig. 6, we
show that the gap model accounts for the increase of
the coherence length inside the fluctuation regime, ñ >
ñf for the ENS parameters. For smaller interactions, as
in the NIST experiment, finite-size effects qualitatively

Central coherence c(r):
one-body density matrix in the center of the trap

Size effects indicate Bose-condensation for small systems

ENS: g=0.13
NIST: g=0.02
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QMC density profiles: T>TKT (I)
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strong quasi 2D effects !
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040402 (2007); 
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Theory (QMC) ↔ Experiment: direct comparision

S.P. Rath, T. Yefsah, K.J. Günter, M. Cheneau, R. Desbuquois, M.H., W. Krauth, J. Dalibard, 
Phys. Rev. A 82, 013609 (2010) 22
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FIG. 1: (Color online) (a) Potential V along the vertical di-
rection z created by the magnetic trap and the laser beam.
(b-c) Side view of the cloud before (b) and after (c) depump-
ing atoms in the side wells. The horizontal stripes are due to
diffraction. (d) Top view in-situ image yielding fit parameters
T = 132 nK and α = 0.29 (for ξ = 0.25).

axis, leading to g̃ = 0.146 (6), and ωx/2π = 21.0(5)Hz
and ωy/2π = 18.8(5)Hz in the horizontal plane. For
convenience we define ω = (ωxωy)1/2 = 2π × 19.9 Hz.

The dipole potential is ramped up in 1.5 s and it
cuts out a plane of atoms in the center of the original
cloud, while the remaining atoms reside in the side wells
[Fig. 1b]. We depump these unwanted atoms to a non-
detected state (F = 1) with a 35 ms laser pulse tuned
to the F = 2 ↔ F ′ = 2 transition to the 52P3/2 excited
state, masking the central plane of atoms [Fig. 1c]. The
atoms are held in the combined trap during 5 s in the
presence of the rf which controls the final temperature.

We probe the spatial density distribution in the xy
plane using absorption imaging of a resonant probe laser
beam propagating along the vertical axis. The mea-
surement provides a map of the optical density (OD)
of the atomic cloud, defined as the natural logarithm of
the ratio between incident and transmitted light intensi-
ties. Neglecting multiple scattering of photons, one has
OD(r) = σn(r), where σ is the absorption cross-section.
Absorption imaging can be performed in the presence of
the trap magnetic field (in-situ measurement), or after
a TOF expansion in the xy plane. A typical in-situ im-
age is shown in Fig. 1d. From each image we generate
a radial density profile OD(r) by averaging over the az-
imuthal angle while accounting for the residual ellipticity
in the xy plane.

We determine µ and T by fitting the profile OD(r)
with the mean-field Hartree-Fock (MFHF) prediction,
which reads for a strictly 2d gas (see e.g. [12]): D =
− ln

(
1− eα−g̃D/π

)
. Since our highest temperatures (∼

150 nK) are comparable to !ωz/kB = 170nK, the gas is
only quasi-2d [13–15] and we take into account correc-
tions to D(α) due to the residual excitation of the atom
motion in the z direction [5, 13, 14]. We restrict the fit-
ting domain to simultaneously fulfill two conditions: (i)
the phase space density in the axial ground state must
be lower than 2.5, so that beyond-mean-field corrections
are negligible [13]; (ii) the optical density of the cloud
must be lower than 0.2 to avoid distortions due to multi-

0 40 80

0

1

2

 

 

0 30 60

0.1

1

 

 

0 40 80

0

1

2

 

 

 

 

 

 

 

 

(a) (b)

O
pt

ic
al

de
ns

it
y

O
D

(r
)

r (µm) r (µm)

FIG. 2: (Color online) (a) Dots: Measured in-situ profile
OD(r). For ξ = 0.25 the fit with MFHF theory yields T =
126 (6)nK, α = 0.34 (9), where uncertainties represent stan-
dard deviations obtained by fitting individual images. Con-
tinuous line: corresponding QMC simulation with N = 73900
atoms (inset: same data in log plot). Upper (dash-dotted)
and lower (dashed) lines: QMC results obtained assuming
ξ = 0.21 [fit parameters (T (nK), α, N)=(130, 0.39, 96300)]
and ξ = 0.29 (122, 0.29, 57900), respectively. (b) Set of mea-
sured density profiles (dots) and corresponding QMC results
(lines) for other evaporation ramps. From bottom to top:
(T (nK), α, N)=(87, 0.49, 54100) [black], (109, 0.39, 63800)
[red], (142, 0.28, 78400) [blue], (153, 0.23, 79900) [magenta].
Each experimental profile in (a) and (b) is an average of 9
images.

ple scattering of probe photons (see below). Because the
spatial density enters non-linearly in the relation between
D and α, the fitting procedure can also provide a value
of the detection efficiency ξ, defined as the ratio between
the actual absorption cross-section and the ideal one ex-
pected for monochromatic probe light in the absence of
stray fields. For all images corresponding to a given TOF
duration we extract a single value of ξ from the fit. For
in-situ images we find the small value ξ = 0.25 (4), which
accounts for the strong reduction of the absorption cross-
section due to the magnetic field of the trap. With this
correction factor, an optical density of 0.1 corresponds to
a density n % 3.0 µm−2.

Our path-integral QMC simulations are performed in
the canonical ensemble in 3d continuum space, for the
same geometry as the experiments. They take into ac-
count the residual excitation along the strongly confined
direction z [5, 16]. Pair interactions are described by a
3d pseudo-potential [17]. All thermodynamic properties
of the gas are obtained to high precision and without
systematic errors. The chemical potential associated to
a given atomic distribution is obtained from a fit of the
wings of the distribution with the MFHF prediction, as
for experimental data.

We now compare our experimental and numerical re-
sults, first confronting the measured in-situ optical den-
sities with theoretical profiles calculated for the same µ
and T . As illustrated in Fig. 2 (a-b), the wings of the
calculated and measured profiles nearly coincide. How-
ever there is a clear discrepancy in the central part of

FIG. 1: (Color online) (a) Potential V along the vertical di-
rection z created by the magnetic trap and the laser beam.
(b-c) Side view of the cloud before (b) and after (c) depump-
ing atoms in the side wells. The horizontal stripes are due to
diffraction. (d) Top view in-situ image yielding fit parameters
T = 132 nK and α = 0.29 (for ξ = 0.25).

convenience we define ω = (ωxωy)1/2 = 2π × 19.9 Hz.
The dipole potential is ramped up in 1.5 s and it

cuts out a plane of atoms in the center of the original
cloud, while the remaining atoms reside in the side wells
(Fig. 1b). We depump these unwanted atoms to a non-
detected state (F = 1) with a 35 ms laser pulse tuned to
the F = 2 ↔ F ′ = 2 transition of the D2 line, masking
the central plane of atoms (Fig. 1c). The atoms are held
in the combined trap during 5 s in the presence of the rf
which controls the final temperature.

We probe the spatial density distribution in the xy
plane using absorption imaging of a resonant probe laser
beam propagating along the vertical axis. The mea-
surement provides a map of the optical density (OD)
of the atomic cloud, defined as the natural logarithm of
the ratio between incident and transmitted light intensi-
ties. Neglecting multiple scattering of photons, one has
OD(r) = σn(r), where σ is the absorption cross-section.
Absorption imaging can be performed in the presence of
the trap magnetic field (in-situ measurement), or after
a TOF expansion in the xy plane. A typical in-situ im-
age is shown in Fig. 1d. From each image we generate
a radial density profile OD(r) by averaging over the az-
imuthal angle while accounting for the residual ellipticity
in the xy plane.

We determine µ and T by fitting the profile OD(r)
with the mean-field Hartree-Fock (MFHF) prediction,
which reads for a strictly 2d gas (see e.g. [12]): D =
− ln

(
1− eα−g̃D/π

)
. Since our highest temperatures (∼

150 nK) are comparable to !ωz/kB = 170nK, the gas
is only quasi-2d [13–15] and we take into account cor-
rections to D(α) due to the residual excitation of the
atom motion in the z direction [5, 13, 14]. We restrict
the fitting domain to simultaneously fulfill two condi-
tions: (i) the phase space density in the axial ground
state must be lower than 2.5, so that beyond-mean-field
corrections are negligible [13, 16]; (ii) the optical density
of the cloud must be lower than 0.2 to exclude distortions
due to multiple scattering of probe photons (see below).
Because the spatial density enters non-linearly in the re-
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FIG. 1: (Color online) (a) Potential V along the vertical di-
rection z created by the magnetic trap and the laser beam.
(b-c) Side view of the cloud before (b) and after (c) depump-
ing atoms in the side wells. The horizontal stripes are due to
diffraction. (d) Top view in-situ image yielding fit parameters
T = 132 nK and α = 0.29 (for ξ = 0.25).

axis, leading to g̃ = 0.146 (6), and ωx/2π = 21.0(5)Hz
and ωy/2π = 18.8(5)Hz in the horizontal plane. For
convenience we define ω = (ωxωy)1/2 = 2π × 19.9 Hz.

The dipole potential is ramped up in 1.5 s and it
cuts out a plane of atoms in the center of the original
cloud, while the remaining atoms reside in the side wells
[Fig. 1b]. We depump these unwanted atoms to a non-
detected state (F = 1) with a 35 ms laser pulse tuned
to the F = 2 ↔ F ′ = 2 transition to the 52P3/2 excited
state, masking the central plane of atoms [Fig. 1c]. The
atoms are held in the combined trap during 5 s in the
presence of the rf which controls the final temperature.

We probe the spatial density distribution in the xy
plane using absorption imaging of a resonant probe laser
beam propagating along the vertical axis. The mea-
surement provides a map of the optical density (OD)
of the atomic cloud, defined as the natural logarithm of
the ratio between incident and transmitted light intensi-
ties. Neglecting multiple scattering of photons, one has
OD(r) = σn(r), where σ is the absorption cross-section.
Absorption imaging can be performed in the presence of
the trap magnetic field (in-situ measurement), or after
a TOF expansion in the xy plane. A typical in-situ im-
age is shown in Fig. 1d. From each image we generate
a radial density profile OD(r) by averaging over the az-
imuthal angle while accounting for the residual ellipticity
in the xy plane.

We determine µ and T by fitting the profile OD(r)
with the mean-field Hartree-Fock (MFHF) prediction,
which reads for a strictly 2d gas (see e.g. [12]): D =
− ln

(
1− eα−g̃D/π

)
. Since our highest temperatures (∼

150 nK) are comparable to !ωz/kB = 170nK, the gas is
only quasi-2d [13–15] and we take into account correc-
tions to D(α) due to the residual excitation of the atom
motion in the z direction [5, 13, 14]. We restrict the fit-
ting domain to simultaneously fulfill two conditions: (i)
the phase space density in the axial ground state must
be lower than 2.5, so that beyond-mean-field corrections
are negligible [13]; (ii) the optical density of the cloud
must be lower than 0.2 to avoid distortions due to multi-
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FIG. 2: (Color online) (a) Dots: Measured in-situ profile
OD(r). For ξ = 0.25 the fit with MFHF theory yields T =
126 (6)nK, α = 0.34 (9), where uncertainties represent stan-
dard deviations obtained by fitting individual images. Con-
tinuous line: corresponding QMC simulation with N = 73900
atoms (inset: same data in log plot). Upper (dash-dotted)
and lower (dashed) lines: QMC results obtained assuming
ξ = 0.21 [fit parameters (T (nK), α, N)=(130, 0.39, 96300)]
and ξ = 0.29 (122, 0.29, 57900), respectively. (b) Set of mea-
sured density profiles (dots) and corresponding QMC results
(lines) for other evaporation ramps. From bottom to top:
(T (nK), α, N)=(87, 0.49, 54100) [black], (109, 0.39, 63800)
[red], (142, 0.28, 78400) [blue], (153, 0.23, 79900) [magenta].
Each experimental profile in (a) and (b) is an average of 9
images.

ple scattering of probe photons (see below). Because the
spatial density enters non-linearly in the relation between
D and α, the fitting procedure can also provide a value
of the detection efficiency ξ, defined as the ratio between
the actual absorption cross-section and the ideal one ex-
pected for monochromatic probe light in the absence of
stray fields. For all images corresponding to a given TOF
duration we extract a single value of ξ from the fit. For
in-situ images we find the small value ξ = 0.25 (4), which
accounts for the strong reduction of the absorption cross-
section due to the magnetic field of the trap. With this
correction factor, an optical density of 0.1 corresponds to
a density n % 3.0 µm−2.

Our path-integral QMC simulations are performed in
the canonical ensemble in 3d continuum space, for the
same geometry as the experiments. They take into ac-
count the residual excitation along the strongly confined
direction z [5, 16]. Pair interactions are described by a
3d pseudo-potential [17]. All thermodynamic properties
of the gas are obtained to high precision and without
systematic errors. The chemical potential associated to
a given atomic distribution is obtained from a fit of the
wings of the distribution with the MFHF prediction, as
for experimental data.

We now compare our experimental and numerical re-
sults, first confronting the measured in-situ optical den-
sities with theoretical profiles calculated for the same µ
and T . As illustrated in Fig. 2 (a-b), the wings of the
calculated and measured profiles nearly coincide. How-
ever there is a clear discrepancy in the central part of

FIG. 2: (Color online) (a) Dots: Measured in-situ profile
OD(r). For ξ = 0.25 the fit with MFHF theory yields T =
126 (6)nK, α = 0.34 (9), where uncertainties represent stan-
dard deviations obtained by fitting individual images. Con-
tinuous line: corresponding QMC simulation with N = 73900
atoms (inset: same data in log plot). Upper (dash-dotted)
and lower (dashed) lines: QMC results obtained assuming
ξ = 0.21 [fit parameters (T (nK), α, N)=(130, 0.39, 96300)]
and ξ = 0.29 (122, 0.29, 57900), respectively. (b) Set of mea-
sured density profiles (dots) and corresponding QMC results
(lines) for rf evaporation parameters. From bottom to top:
(T (nK), α, N)=(87, 0.49, 54100) [black], (109, 0.39, 63800)
[red], (142, 0.28, 78400) [blue], (153, 0.23, 79900) [magenta].
Each experimental profile in (a) and (b) is an average of 9
images.

lation between D and α, the fitting procedure can also
provide a value of the detection efficiency ξ, defined as
the ratio between the actual absorption cross-section and
the ideal one expected for monochromatic probe light in
the absence of stray fields. For all images corresponding
to a given TOF duration we extract a single value of ξ
from the fit. For in-situ images we find the small value
ξ = 0.25 (4), which accounts for the strong reduction of
the absorption cross-section due to the magnetic field of
the trap. With this correction factor, an optical density
of 0.1 corresponds to a density n % 3.0 µm−2.

Our path-integral QMC simulations are performed in
the canonical ensemble in 3d continuum space, for the
same geometry as the experiments. They take into ac-
count residual excitations along the strongly confined di-
rection z [5, 17]. Pair interactions are described by a 3d
pseudo-potential [18]. All thermodynamic properties of
the gas are obtained to high precision and without sys-
tematic errors. The chemical potential associated to a
given atomic distribution is obtained from a fit of the
wings of the distribution with the MFHF prediction, as
for experimental data.

We now compare our experimental and numerical re-
sults, first confronting the measured in-situ optical den-
sities with theoretical profiles calculated for the same µ
and T . As illustrated in Fig. 2 (a-b), the wings of the
calculated and measured profiles nearly coincide. How-
ever there is a clear discrepancy in the central part of
the density distributions. Whereas the central OD in
the four coldest experimental distributions is ∼ 1.0, the
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FIG. 1: (Color online) (a) Potential V along the vertical di-
rection z created by the magnetic trap and the laser beam.
(b-c) Side view of the cloud before (b) and after (c) depump-
ing atoms in the side wells. The horizontal stripes are due to
diffraction. (d) Top view in-situ image yielding fit parameters
T = 132 nK and α = 0.29 (for ξ = 0.25).

axis, leading to g̃ = 0.146 (6), and ωx/2π = 21.0(5)Hz
and ωy/2π = 18.8(5)Hz in the horizontal plane. For
convenience we define ω = (ωxωy)1/2 = 2π × 19.9 Hz.

The dipole potential is ramped up in 1.5 s and it
cuts out a plane of atoms in the center of the original
cloud, while the remaining atoms reside in the side wells
[Fig. 1b]. We depump these unwanted atoms to a non-
detected state (F = 1) with a 35 ms laser pulse tuned
to the F = 2 ↔ F ′ = 2 transition to the 52P3/2 excited
state, masking the central plane of atoms [Fig. 1c]. The
atoms are held in the combined trap during 5 s in the
presence of the rf which controls the final temperature.

We probe the spatial density distribution in the xy
plane using absorption imaging of a resonant probe laser
beam propagating along the vertical axis. The mea-
surement provides a map of the optical density (OD)
of the atomic cloud, defined as the natural logarithm of
the ratio between incident and transmitted light intensi-
ties. Neglecting multiple scattering of photons, one has
OD(r) = σn(r), where σ is the absorption cross-section.
Absorption imaging can be performed in the presence of
the trap magnetic field (in-situ measurement), or after
a TOF expansion in the xy plane. A typical in-situ im-
age is shown in Fig. 1d. From each image we generate
a radial density profile OD(r) by averaging over the az-
imuthal angle while accounting for the residual ellipticity
in the xy plane.

We determine µ and T by fitting the profile OD(r)
with the mean-field Hartree-Fock (MFHF) prediction,
which reads for a strictly 2d gas (see e.g. [12]): D =
− ln

(
1− eα−g̃D/π

)
. Since our highest temperatures (∼

150 nK) are comparable to !ωz/kB = 170nK, the gas is
only quasi-2d [13–15] and we take into account correc-
tions to D(α) due to the residual excitation of the atom
motion in the z direction [5, 13, 14]. We restrict the fit-
ting domain to simultaneously fulfill two conditions: (i)
the phase space density in the axial ground state must
be lower than 2.5, so that beyond-mean-field corrections
are negligible [13]; (ii) the optical density of the cloud
must be lower than 0.2 to avoid distortions due to multi-
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FIG. 2: (Color online) (a) Dots: Measured in-situ profile
OD(r). For ξ = 0.25 the fit with MFHF theory yields T =
126 (6)nK, α = 0.34 (9), where uncertainties represent stan-
dard deviations obtained by fitting individual images. Con-
tinuous line: corresponding QMC simulation with N = 73900
atoms (inset: same data in log plot). Upper (dash-dotted)
and lower (dashed) lines: QMC results obtained assuming
ξ = 0.21 [fit parameters (T (nK), α, N)=(130, 0.39, 96300)]
and ξ = 0.29 (122, 0.29, 57900), respectively. (b) Set of mea-
sured density profiles (dots) and corresponding QMC results
(lines) for other evaporation ramps. From bottom to top:
(T (nK), α, N)=(87, 0.49, 54100) [black], (109, 0.39, 63800)
[red], (142, 0.28, 78400) [blue], (153, 0.23, 79900) [magenta].
Each experimental profile in (a) and (b) is an average of 9
images.

ple scattering of probe photons (see below). Because the
spatial density enters non-linearly in the relation between
D and α, the fitting procedure can also provide a value
of the detection efficiency ξ, defined as the ratio between
the actual absorption cross-section and the ideal one ex-
pected for monochromatic probe light in the absence of
stray fields. For all images corresponding to a given TOF
duration we extract a single value of ξ from the fit. For
in-situ images we find the small value ξ = 0.25 (4), which
accounts for the strong reduction of the absorption cross-
section due to the magnetic field of the trap. With this
correction factor, an optical density of 0.1 corresponds to
a density n % 3.0 µm−2.

Our path-integral QMC simulations are performed in
the canonical ensemble in 3d continuum space, for the
same geometry as the experiments. They take into ac-
count the residual excitation along the strongly confined
direction z [5, 16]. Pair interactions are described by a
3d pseudo-potential [17]. All thermodynamic properties
of the gas are obtained to high precision and without
systematic errors. The chemical potential associated to
a given atomic distribution is obtained from a fit of the
wings of the distribution with the MFHF prediction, as
for experimental data.

We now compare our experimental and numerical re-
sults, first confronting the measured in-situ optical den-
sities with theoretical profiles calculated for the same µ
and T . As illustrated in Fig. 2 (a-b), the wings of the
calculated and measured profiles nearly coincide. How-
ever there is a clear discrepancy in the central part of

FIG. 1: (Color online) (a) Potential V along the vertical di-
rection z created by the magnetic trap and the laser beam.
(b-c) Side view of the cloud before (b) and after (c) depump-
ing atoms in the side wells. The horizontal stripes are due to
diffraction. (d) Top view in-situ image yielding fit parameters
T = 132 nK and α = 0.29 (for ξ = 0.25).

convenience we define ω = (ωxωy)1/2 = 2π × 19.9 Hz.
The dipole potential is ramped up in 1.5 s and it

cuts out a plane of atoms in the center of the original
cloud, while the remaining atoms reside in the side wells
(Fig. 1b). We depump these unwanted atoms to a non-
detected state (F = 1) with a 35 ms laser pulse tuned to
the F = 2 ↔ F ′ = 2 transition of the D2 line, masking
the central plane of atoms (Fig. 1c). The atoms are held
in the combined trap during 5 s in the presence of the rf
which controls the final temperature.

We probe the spatial density distribution in the xy
plane using absorption imaging of a resonant probe laser
beam propagating along the vertical axis. The mea-
surement provides a map of the optical density (OD)
of the atomic cloud, defined as the natural logarithm of
the ratio between incident and transmitted light intensi-
ties. Neglecting multiple scattering of photons, one has
OD(r) = σn(r), where σ is the absorption cross-section.
Absorption imaging can be performed in the presence of
the trap magnetic field (in-situ measurement), or after
a TOF expansion in the xy plane. A typical in-situ im-
age is shown in Fig. 1d. From each image we generate
a radial density profile OD(r) by averaging over the az-
imuthal angle while accounting for the residual ellipticity
in the xy plane.

We determine µ and T by fitting the profile OD(r)
with the mean-field Hartree-Fock (MFHF) prediction,
which reads for a strictly 2d gas (see e.g. [12]): D =
− ln

(
1− eα−g̃D/π

)
. Since our highest temperatures (∼

150 nK) are comparable to !ωz/kB = 170nK, the gas
is only quasi-2d [13–15] and we take into account cor-
rections to D(α) due to the residual excitation of the
atom motion in the z direction [5, 13, 14]. We restrict
the fitting domain to simultaneously fulfill two condi-
tions: (i) the phase space density in the axial ground
state must be lower than 2.5, so that beyond-mean-field
corrections are negligible [13, 16]; (ii) the optical density
of the cloud must be lower than 0.2 to exclude distortions
due to multiple scattering of probe photons (see below).
Because the spatial density enters non-linearly in the re-
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FIG. 1: (Color online) (a) Potential V along the vertical di-
rection z created by the magnetic trap and the laser beam.
(b-c) Side view of the cloud before (b) and after (c) depump-
ing atoms in the side wells. The horizontal stripes are due to
diffraction. (d) Top view in-situ image yielding fit parameters
T = 132 nK and α = 0.29 (for ξ = 0.25).

axis, leading to g̃ = 0.146 (6), and ωx/2π = 21.0(5)Hz
and ωy/2π = 18.8(5)Hz in the horizontal plane. For
convenience we define ω = (ωxωy)1/2 = 2π × 19.9 Hz.

The dipole potential is ramped up in 1.5 s and it
cuts out a plane of atoms in the center of the original
cloud, while the remaining atoms reside in the side wells
[Fig. 1b]. We depump these unwanted atoms to a non-
detected state (F = 1) with a 35 ms laser pulse tuned
to the F = 2 ↔ F ′ = 2 transition to the 52P3/2 excited
state, masking the central plane of atoms [Fig. 1c]. The
atoms are held in the combined trap during 5 s in the
presence of the rf which controls the final temperature.

We probe the spatial density distribution in the xy
plane using absorption imaging of a resonant probe laser
beam propagating along the vertical axis. The mea-
surement provides a map of the optical density (OD)
of the atomic cloud, defined as the natural logarithm of
the ratio between incident and transmitted light intensi-
ties. Neglecting multiple scattering of photons, one has
OD(r) = σn(r), where σ is the absorption cross-section.
Absorption imaging can be performed in the presence of
the trap magnetic field (in-situ measurement), or after
a TOF expansion in the xy plane. A typical in-situ im-
age is shown in Fig. 1d. From each image we generate
a radial density profile OD(r) by averaging over the az-
imuthal angle while accounting for the residual ellipticity
in the xy plane.

We determine µ and T by fitting the profile OD(r)
with the mean-field Hartree-Fock (MFHF) prediction,
which reads for a strictly 2d gas (see e.g. [12]): D =
− ln

(
1− eα−g̃D/π

)
. Since our highest temperatures (∼

150 nK) are comparable to !ωz/kB = 170nK, the gas is
only quasi-2d [13–15] and we take into account correc-
tions to D(α) due to the residual excitation of the atom
motion in the z direction [5, 13, 14]. We restrict the fit-
ting domain to simultaneously fulfill two conditions: (i)
the phase space density in the axial ground state must
be lower than 2.5, so that beyond-mean-field corrections
are negligible [13]; (ii) the optical density of the cloud
must be lower than 0.2 to avoid distortions due to multi-
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FIG. 2: (Color online) (a) Dots: Measured in-situ profile
OD(r). For ξ = 0.25 the fit with MFHF theory yields T =
126 (6)nK, α = 0.34 (9), where uncertainties represent stan-
dard deviations obtained by fitting individual images. Con-
tinuous line: corresponding QMC simulation with N = 73900
atoms (inset: same data in log plot). Upper (dash-dotted)
and lower (dashed) lines: QMC results obtained assuming
ξ = 0.21 [fit parameters (T (nK), α, N)=(130, 0.39, 96300)]
and ξ = 0.29 (122, 0.29, 57900), respectively. (b) Set of mea-
sured density profiles (dots) and corresponding QMC results
(lines) for other evaporation ramps. From bottom to top:
(T (nK), α, N)=(87, 0.49, 54100) [black], (109, 0.39, 63800)
[red], (142, 0.28, 78400) [blue], (153, 0.23, 79900) [magenta].
Each experimental profile in (a) and (b) is an average of 9
images.

ple scattering of probe photons (see below). Because the
spatial density enters non-linearly in the relation between
D and α, the fitting procedure can also provide a value
of the detection efficiency ξ, defined as the ratio between
the actual absorption cross-section and the ideal one ex-
pected for monochromatic probe light in the absence of
stray fields. For all images corresponding to a given TOF
duration we extract a single value of ξ from the fit. For
in-situ images we find the small value ξ = 0.25 (4), which
accounts for the strong reduction of the absorption cross-
section due to the magnetic field of the trap. With this
correction factor, an optical density of 0.1 corresponds to
a density n % 3.0 µm−2.

Our path-integral QMC simulations are performed in
the canonical ensemble in 3d continuum space, for the
same geometry as the experiments. They take into ac-
count the residual excitation along the strongly confined
direction z [5, 16]. Pair interactions are described by a
3d pseudo-potential [17]. All thermodynamic properties
of the gas are obtained to high precision and without
systematic errors. The chemical potential associated to
a given atomic distribution is obtained from a fit of the
wings of the distribution with the MFHF prediction, as
for experimental data.

We now compare our experimental and numerical re-
sults, first confronting the measured in-situ optical den-
sities with theoretical profiles calculated for the same µ
and T . As illustrated in Fig. 2 (a-b), the wings of the
calculated and measured profiles nearly coincide. How-
ever there is a clear discrepancy in the central part of

FIG. 2: (Color online) (a) Dots: Measured in-situ profile
OD(r). For ξ = 0.25 the fit with MFHF theory yields T =
126 (6)nK, α = 0.34 (9), where uncertainties represent stan-
dard deviations obtained by fitting individual images. Con-
tinuous line: corresponding QMC simulation with N = 73900
atoms (inset: same data in log plot). Upper (dash-dotted)
and lower (dashed) lines: QMC results obtained assuming
ξ = 0.21 [fit parameters (T (nK), α, N)=(130, 0.39, 96300)]
and ξ = 0.29 (122, 0.29, 57900), respectively. (b) Set of mea-
sured density profiles (dots) and corresponding QMC results
(lines) for rf evaporation parameters. From bottom to top:
(T (nK), α, N)=(87, 0.49, 54100) [black], (109, 0.39, 63800)
[red], (142, 0.28, 78400) [blue], (153, 0.23, 79900) [magenta].
Each experimental profile in (a) and (b) is an average of 9
images.

lation between D and α, the fitting procedure can also
provide a value of the detection efficiency ξ, defined as
the ratio between the actual absorption cross-section and
the ideal one expected for monochromatic probe light in
the absence of stray fields. For all images corresponding
to a given TOF duration we extract a single value of ξ
from the fit. For in-situ images we find the small value
ξ = 0.25 (4), which accounts for the strong reduction of
the absorption cross-section due to the magnetic field of
the trap. With this correction factor, an optical density
of 0.1 corresponds to a density n % 3.0 µm−2.

Our path-integral QMC simulations are performed in
the canonical ensemble in 3d continuum space, for the
same geometry as the experiments. They take into ac-
count residual excitations along the strongly confined di-
rection z [5, 17]. Pair interactions are described by a 3d
pseudo-potential [18]. All thermodynamic properties of
the gas are obtained to high precision and without sys-
tematic errors. The chemical potential associated to a
given atomic distribution is obtained from a fit of the
wings of the distribution with the MFHF prediction, as
for experimental data.

We now compare our experimental and numerical re-
sults, first confronting the measured in-situ optical den-
sities with theoretical profiles calculated for the same µ
and T . As illustrated in Fig. 2 (a-b), the wings of the
calculated and measured profiles nearly coincide. How-
ever there is a clear discrepancy in the central part of
the density distributions. Whereas the central OD in
the four coldest experimental distributions is ∼ 1.0, the
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FIG. 3: (Color online) Combination of the experimental and
theoretical results of Fig. 2. Error bars indicate the standard
deviation of the data. (a) Measured OD as a function of calcu-
lated OD, averaged over the data shown in Fig. 2. The dashed
line with a slope 1 is a guide to the eye. (b) Continuous lines:
QMC results for D as a function of αlocal = α−mω2r2/kBT
for the data shown in Fig. 2 (same color code). Black dashed
line: prediction of [8] for the uniform case. Dots: Measured
D, averaged over all experimental data shown in Fig. 2.

the density distributions. Whereas the central OD in
the four coldest experimental distributions is ∼ 1.0, the
QMC simulations systematically predict a central OD
∼ 1.8, i.e. a density of ∼ 55 µm−2. A global com-
parison between predicted and measured OD is shown
in Fig. 3a, where we performed an average over the 5
profiles of Fig. 2.

We now discuss several possible causes for this dis-
crepancy. A first possible source of error is the uncer-
tainty on the detectivity factor ξ. To estimate its in-
fluence, we have reprocessed the measured profile shown
in Fig. 2a, by choosing the lower (ξ = 0.21) and upper
(ξ = 0.29) values of the uncertainty interval for ξ. The
QMC results for the modified fit parameters are shown
with dash-dotted and dashed lines in Fig. 2a. Clearly,
the uncertainty on ξ does not account for the observed
deviation. Other possible ‘technical’ causes for this dis-
crepancy could be the imperfect resolution of the imag-
ing system and/or the atomic motion during the imag-
ing pulse. However, neither of them can account for the
difference between predicted and measured density pro-
files [24]. The most probable cause of this discrepancy is
the reduced absorption cross-section for large 2d atomic
densities, due to multiple scattering of the photons of the
probe laser beam. Although our optical densities (! 1)
do not exceed usual values for absorption imaging, they
correspond in this 2d geometry to a short mean distance
d between scatterers. For the densest clouds we find that
kLd is on the order of 1 (kL = 8 × 106 m−1), which can
significantly modify the photon scattering rate [18].

The trapped system of interest here can be related
to a uniform gas using the local density approximation
(LDA). Within LDA, the phase space density D(r) in
a trapping potential V (r) is given by D(r) = F (µ −
V (r), T ) where D = F (µ, T ) is the equation of state of
the uniform system. For the quasi-2d Bose gas, the va-
lidity of LDA has been accurately checked with QMC

simulations in [16]. To test the scale invariance of the
equation of state, we have plotted in Fig. 3b the phase
space density D as a function of the ratio αlocal ≡ α(r)
between µ −mω2r2/2 and kBT , using the same data as
in Fig. 2. The calculated functions D(α(r)) (continu-
ous lines) nicely superpose onto each other, confirming
the scale invariance in this low temperature region where
the excitation of the z motion does not play an impor-
tant role. Note that the central phase space densities
notably exceed the critical value for superfluid transition
(Dc % 8.0 for g̃ = 0.146 [19]), signaling the presence a
significant superfluid component. The QMC results con-
firm the prediction of [8] for the uniform 2d gas, which
was obtained using a classical field Monte Carlo method
(dashed line in Fig. 3b). The small corrections to the
results of [8] are due to two factors: (i) the presence of
residual excitations in the z-axis, and (ii) the finite value
of the interaction parameter g̃ [16]. Obviously the devia-
tion between experimental and numerical data that was
appearing in the density profiles of Fig. 2 also shows up
in the plot of D(α(r)) in Fig. 3b, and the experimental
values of D (dots) lie systematically below the predicted
ones in the high phase space region.

A simple way to circumvent the problem of imag-
ing high density regions is to take advantage of another
known scale invariance of the 2d Bose gas. This invari-
ance manifests itself in a 2d ballistic expansion after the
confinement in the xy plane has been suddenly released.
It follows from a hidden symmetry of the 2d Bose gas
with contact interactions V (r) = (!2g̃/m)δ(r) when it is
confined in an isotropic harmonic potential of frequency
ω [9]. Starting from an arbitrary initial equilibrium pro-
file neq(r), the density profile after a TOF duration t is
obtained by a scaling transform

n(r, t) = η2
t neq(ηtr) , ηt = (1 + ω2t2)−1/2 . (1)

This relation was predicted using the Bogoliubov approx-
imation in [20]. It can be explained in terms of the
SO(2,1) symmetry group and holds for interaction po-
tentials that satisfy V (λr) = V (r)/λ2 [9]. The 2d con-
tact potential belongs to this class of functions, although
strictly speaking it needs to be regularized at short dis-
tances to avoid ultraviolet divergences.

Experimentally, we initiate the 2d expansion by switch-
ing off the magnetic trap while keeping the optical po-
tential constant. The atom cloud thus expands in the xy
plane for an adjustable duration t after which we take
an image of the cloud. After a TOF duration t the cen-
tral density is divided by η−2

t . We explore TOF dura-
tions up to t = 14 ms for which the central density is
reduced by a factor η−2

t = 4, so that any artifact due to
multiple scattering of probe photons should be strongly
reduced (see Fig. 3a). We show in Fig. 4a a succession
of density profiles recorded for TOF durations varying
from 0 to 14 ms. Each profile is scaled by the factor ηt,

FIG. 3: (Color online) Combination of the experimental and
theoretical results of Fig. 2. Error bars indicate the standard
deviation of the data. (a) Measured OD as a function of calcu-
lated OD, averaged over the data shown in Fig. 2. The dashed
line with a slope 1 is a guide to the eye. (b) Continuous lines:
QMC results for D as a function of αlocal = α−mω2r2/kBT
for the data shown in Fig. 2 (same color code). Black dashed
line: prediction of [8] for the uniform case. Dots: Measured
D, averaged over all experimental data shown in Fig. 2.

QMC simulations systematically predict a central OD
∼ 1.8, i.e. a density of ∼ 55 µm−2. A global com-
parison between predicted and measured OD is shown
in Fig. 3a, where we performed an average over the 5
profiles of Fig. 2.

We now discuss several possible causes for this discrep-
ancy. A first possible source of error is the uncertainty
on the detectivity factor ξ. To estimate its influence, we
have reprocessed the measured profile shown in Fig. 2a,
by choosing the lower (ξ = 0.21) and upper (ξ = 0.29)
values of the uncertainty interval for ξ. The QMC re-
sults for the modified fit parameters are shown with dash-
dotted and dashed lines in Fig. 2a. Clearly, the uncer-
tainty on ξ does not account for the observed deviation.
Other ‘technical’ causes for this discrepancy could be the
imperfect resolution of the imaging system and/or the
atomic motion during the imaging pulse. However, nei-
ther of them can account for the difference between pre-
dicted and measured density profiles [19]. The most prob-
able cause of this discrepancy is the reduced absorption
cross-section for large 2d atomic densities, due to mul-
tiple scattering of the photons of the probe laser beam.
Although our optical densities (! 1) do not exceed usual
values for absorption imaging, they correspond in this 2d
geometry to a short mean distance d between scatterers.
For the densest clouds we find that kLd is on the order
of 1 (kL = 8 × 106 m−1), which can significantly modify
the photon scattering rate [20, 21].

The trapped system of interest here can be related
to a uniform gas using the local density approximation
(LDA). Within LDA, the phase space density D(r) in
a trapping potential V (r) is given by D(r) = F (µ −
V (r), T ) where D = F (µ, T ) is the equation of state of
the uniform system. For the quasi-2d Bose gas, the va-
lidity of LDA has been accurately checked with QMC
simulations in [17]. To test the scale invariance of the
equation of state, we have plotted in Fig. 3b the phase
space density D as a function of the ratio αlocal ≡ α(r)

between µ −mω2r2/2 and kBT , using the same data as
in Fig. 2. The calculated functions D(α(r)) (continu-
ous lines) nicely superpose onto each other, confirming
the scale invariance in this low temperature region where
the excitation of the z motion does not play an impor-
tant role. Note that the central phase space densities
notably exceed the critical value for superfluid transition
(Dc % 8.0 for g̃ = 0.146 [22]), signaling the presence of a
significant superfluid component. The QMC results con-
firm the prediction of [8] for the uniform 2d gas, which
was obtained using a classical field Monte Carlo method
(dashed line in Fig. 3b). The small corrections to the
results of [8] are due to two factors: (i) the presence of
residual excitations in the z-axis, and (ii) the finite value
of the interaction parameter g̃ [17]. Obviously the devia-
tion between experimental and numerical data that was
appearing in the density profiles of Fig. 2 also shows up
in the plot of D(α(r)) in Fig. 3b, and the experimental
values of D (dots) lie systematically below the predicted
ones in the high phase space region.

A simple way to circumvent the problem of imag-
ing high density regions is to take advantage of another
known scale invariance of the 2d Bose gas. This invari-
ance manifests itself in a 2d ballistic expansion after the
confinement in the xy plane has been suddenly released.
It follows from a hidden SO(2,1) symmetry of the 2d
Bose gas with contact interactions V (r) = (!2g̃/m)δ(r)
when it is confined in an isotropic harmonic potential of
frequency ω [9]. Starting from an arbitrary initial equi-
librium profile neq(r), the density profile after a TOF
duration t is obtained by a scaling transform

n(r, t) = η2
t neq(ηtr) , ηt = (1 + ω2t2)−1/2 . (1)

This relation was predicted within the Bogoliubov ap-
proximation in [23] and it holds exactly for interaction
potentials that satisfy V (λr) = V (r)/λ2 [9]. The 2d con-
tact potential belongs to this class of functions, although
strictly speaking it needs to be regularized at short dis-
tances to avoid ultraviolet divergences.

Experimentally, we initiate the 2d expansion by switch-
ing off the magnetic trap while keeping the optical po-
tential constant. The atom cloud thus expands in the xy
plane for an adjustable duration t after which we take
an image of the cloud. We explore TOF durations up
to t = 14 ms for which the central density is reduced by
a factor η−2

t = 4, so that artifacts due to multiple scat-
tering of probe photons should be strongly reduced (see
Fig. 3a). We show in Fig. 4a a succession of density pro-
files recorded for TOF durations varying from 0 to 14 ms.
Each profile has been rescaled to the initial in-situ distri-
bution according to the law (1), so that ideally all profiles
should be superimposed. In practice this superposition is
poor for short TOF durations and becomes better as the
clouds expand. All scaled profiles obtained for t ≥ 10 ms
coincide within their noise, showing that the detectivity is

Theory (QMC) ↔ Experiment: 

discrepancy of in-situ densities due to multiple scattering

non-linear relation between OD 
and density

 EOS: phase-space density D=nλ as 
a function of α=βμ in LDA



Ultracold Bosons in a 2D harmonic trap:
Schematic Phase Diagram

ω

g
KT ?

BEC
or(and)

N. Prokof’ef, O. Ruebenacker, B. Svistunov,
 PRL 87, 270402 (2001)

V. Bagnato, D. Kleppner,
 PRA 44, 7439 (1991)

TBEC =
√

6N

π
ω (1)

TKT ↔ nλ2 = log
380
g

(2)

TBEC = 0 (3)

TKT = 0 (4)

ωz/ω ≈ 300 (5)

N0

N
∼ N−η/2, η(TKT ) = 0.25 (6)

T > TKT (7)

T < TKT (8)

TKT = TBEC

[
1 +

3g

π3

(
ln

380
g

)2
]−1/2

(9)

1

M. H., G. Baym, J.-P. Blaizot, 
F. Laloë, PNAS 104, 1476 (2007)

g ~(log na2)-1 interaction for hard disks of diameter a

ω: trap frequency
N: number of Bosons


