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quasi2D trapped Bosons: Kosterlitz-Thouless <> BEC
density profile: universal correlations

QMC < experiment: direct comparisions

density profile
coherence properties
superfluidity

@ disorder?




[ Physics in two dimensions (2D)

@ Enhanced (quantum) fluctuations:
= Absence of long-range order at finite temperture T

=== Bose-Einstein phase transition (BEC) only at T=0

@ Kosterlitz-Thouless phase transtion (KT) at Tc=TTps/2m?

“topological phase transition”  ps:superfluid mass density

@ Exception: ldeal Bose gas in 2D harmonic trap:
BEC transition at finite T no KT
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Two-dimensional Ultracold Bosons in a harmonic trap:
Bose-Einstein Condensation (BEC) or
Kosterlitz- Thouless transition (KT)?

\_

basic model: N Bosons
with short-ranged (hard-core) interaction in isotropic trap

) Ww: trap frequency
y 0 O%é g:interaction constant

:' 000 N: number of Bosons

X g ~(log na?)"! for hard disks of diameter a

thermodynamic limit in 2D trap: ~ N— 00 and w—0with Nw?=const

mean extension Rt of cloud: R1=(T/mw?)'2 for temperature T=const

# Certainly superfluid phase transition at finite T!




Bose-Einstein Condensation (BEC) or
Kosterlitz-Thouless transition (KT)?

\_

Superfluidity <=> non-classical moment of inertia:
[he<l= de’ TQn(T) ]ump in lhcatT?

BEC => Reduced |-body density:

<PH(R)P(F)>= Z Nat @°n(F)Pn(r) cos(1:r)

BEC: long-range order KT:algebraic order
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T>Teec: Nu~|, I=lg T>Tkr: Na~l, 1=l

T<Tgec: Noo~N, lhc<Iq T<Tkr: Noo~N!'-nMV2 [, <]
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[quasi 2D Bose gas: Experimental realisationJ

Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier; J. Dalibard, Nature 441, | | I8 (2006);
P. Kruger, Z. Hadzibabic, |. Dalibard, PRL 99, 040402 (2007).
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3D BEC + D optical lattice=> quasi 2D slices with ), /w ~~ 300

relatively strong interaction g=0.13 Boson number N ~ [0%/slice

4 : : p
o chemical potential p=w;,

quasi 2d situation:

o few excited states in z thermally occupied T=w;,
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[ QMC simulations of Quasi-2D Bose gases J

M. H.,W. Krauth, PRL 100, 190402 (2008)

based on Feynman’s path integral representation of the N-particle density matrix

1
p(R,R) = E<Rye—ﬂHyR'> (Rle™|R’) = / dR; (Rle™ /% Ry) (Role /2 |R)
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Full 3D path-integral simulation in quasi 2D geometry
3D hard-core interaction (s-wave scattering length a)
2D interaction strength at T=0: g=(8TTWw;)"?a =0.13
quasi 2D scaling:  wW2/Tgec=0.55

Number of Bosons N=2 250 up to N=576 000

Temperature range from T=0.5 Tgec to T=Tgec
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nomas-Fermi shape of the superfluid density

with effective quasi-2D interaction g



[ QMC superfluidity: non-classical moment of inertiaj

N=9000 @
N=144 000

4 )
moment of inertia differs from classical value

| o<lo= f dr an(r)
below  Tk71=0.70 Tgec




strong finite-size effects !
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QMC condensate fraction: (ll) KT behaviour

-

No/N~N-n(1)/2 N(Tkr)=1/4 Tkr=0.70 Tgec

condensate fraction vs 1/N and fit for algebraic decay
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M. H., M. Chevallier, W. Krauth, PRA 81, 043622 (2010)

Phase space density profile n(r)A? close to TkT

strong
finite size effects(.5

Correlation density {
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density n
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N=100,000 —
10,000 -+

Can the local density ol prn ek o

approximation be used!?
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Sk ~ »1/2
position r = rf

Quantitative comparisions with approximations based on classical field theory
(N. Prokof’ev, O. Ruebenacker, B. Svistunov, PRL 87,270402 (2001)
L. Giorgetti, |. Carusotto,Y. Castin, PRA 76,013613 (2007)
R.N. Bisset, M.J. Davis, T.P. Simula, PB. Blakien PRA 79, 033626 (2009))




@ homogeneous 2D system: scale invariance of the phase space density

nA? is a function of A=-Bu and g
> ideal gas: nidA? = - log [1-exp(-A)]

> mean field: NmiA?2 = - log [1-exp(-Ami)]

mean field «gap»:  Ap=A+gnm\2/TT

> correlation corrections: leading order by classical field theory

ANAZ= (n-nmf)A? is a universal function of Ang

function calculated and tabulated in N.Prokof’ev, B. Svistunov PRA 66, 043608 (2002).




local density approximation (LDA) for the mean-field gap:

7(density profile at T=0.71 ) (fdens&ty p:c'oBﬁIe2 2272 )
: unction of Bw?r

Ari(r)= Ams(0)+Bw2r2/2

provides mapping r <> An¢

T T T T T T I T
0 02 04 06 08 1 12 14 0 02
e~ 172
position 7 = rf
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10 Equation of state (EOS)

nA2 as function of Ams
from T=0.71 density profile

density n




correlation density AnA?= (n-nn)A? vs LDA-gap A
from many systems with different W, T, g

ANAZ= (N-Nmf) A2
classical field approximation: N. Prokof’ey, B. Svistunov PRA 66, 043608 (2002).

class.-field interpolation ——
(w,it.2)=(0550710.13) ~

((loégg?o_;?ofi{ ) full QMC calculations

((l).gg,g.gg,g.gg) g in quasi2D trap
-
(0.82,0.07,0.07) M. H., M. Chevallier,W. Krauth,

Phys. Rev.A 81,043622 (2010)
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correlation density A n

fluctuation region : mean-field
v £ .




class.-field interpolation ——
(w,1.2)=(0550.710.13) ~
(1.64.0570.14) ~
(0.820.570.14 =
(1.64057007) ©
(0.82057007) =

fluctuation region : mean-field
v > .

correlation density A n

0 . 0.2 0.3
Alllf‘/g’

finite system: level < >

. = -1/2
spacing in trap: W w/(gT) at Teec: W/Teec =TT (6 N)

Cross-over to mean-field physics for W/ Tgec > g/TT
mean-field (with BEC) for N < 11%/(6 g?)




Theory (QMC) < Experiment: density profile

Scale invariance in time-of-flight expansion in 2D

S.P. Rath, T.Yefsah, K.J. Gunter, M. Cheneau, R. Desbuquois, M.H.,W. Krauth, |. Dalibard,
Phys. Rev.A 82,013609 (2010)

- J

density profile after 2D time-of- 9 o 2,2\—1/2
flight given by scaling transform n(r, t) — Tl ne(l(ntr) ; e = (1 + wt )
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QMC and experiment
in good agreement!
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FIG. 4: (Color online) (a) Optical density profiles obtained
for a TOF duration t = 0 (black), 3 (red), 6 (green), 10 (blue),
12 (cyan), 14 (magenta) ms and rescaled to their in-situ value
according to (1). (b) Squares: Optical density profile obtained
by averaging the results of (a) for 10 < ¢ < 14 ms, yielding
fit parameters T = 94nK, a = 0.36 for £ = 0.63. Lines:
QMC results for the same fit parameters (continuous, N =
42000), and for those deduced assuming £ = 0.47 [dashed red,
(T (nK), a, N)= (104, 0.39,57600)] and & = 0.79 [dash-dotted
blue, (87,0.33, 32100)].




Measurement of Critical Densities/ Temperature
and Universality

Scaled quasi-
condensate density
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C.-L. Hung, X. Zhang, N. Gemelke , and C. Chin,
Nature (London) 470, 236 (2011)

FIG. 3: Universal behavior near the BKT critical
point. a, Rescaled density profiles n — n. measured at vari-
ous coupling strengths, g = 0.05 (green triangles), 0.13 (blue
diamonds), 0.19 (red circles), and 0.26 (magenta squares).
Inset shows the original equation of state n(f). b, scaled
quasi-condensate density ny = vn? — dn? at different inter-
action strengths. In both plots, MC calculations from Ref. [9]
(open circles) and Ref. [10] (a, open squares for g = 0.07
and open triangles for g = 0.14; b, open squares) are plotted
for comparison [23]. The shaded area marks the superfluid
regime and the solid line in b shows the superfluid phase
space density calculation [9]. ¢ and d, critical values fi. and
n. determined from the following methods: universal scaling
as shown in a (red squares), density fluctuation crossover (see
text, black circles), and MC calculation from Ref. [8] (solid
line). Error bars show the standard deviation of the measure-
ment.




[Theory (QMC) < Experiment: Momentum profile n(k)j

n(k) .

mean field

10p

§~A

0.0

3.0,
2.0t

T. Plisson, B.Allard, M. H., G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel
Phys. Rev.A 84,061606(R) (2011)
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«——QMC

N/Nc=174 @ |
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0.0
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N/Nc = 1.18

N/Nc = 1.13

N/Nc = 1.02

3D Time of flight expansion (TOF):

* time evolution of the density operator

p(t) _ e—th/hp(t _ O)eth/h

* strong confinement in z (quasi 2D)

= large initial momentum in z
= rapid expansion in z

* slow expansion for in-plane density x/y

2 2
*  + D
HTOF% E pm pzy
)

2m

= TOF density = momentum dist., n(k),

for long TOF-time t




[ Theory (QMC) < Experiment: Coherence properties j

Kosterlitz-Thouless transition: Nkt

Characterization of —
Coherence (Peak around k=0): "5 77| .« > (@) F-* =

mean field 13.

Width of the peak:
HWHM

Height of the peak:

Fraction of particles in k=0 peak:
No/N

—rq-ﬂ‘“

0.6 0.8 1.0 12 1.4 16 1.8
N/Nc

N/Nc = (T/T)2




[ Coherence properties: Where is Kosterlitz-Thouless!? j

Infinite (homogeneous) system:

Low T-phase with algebraic order: 71 ~ k_[Q_n(T)] for k — 0
with 1/4 < 5(T) < 2
High T-phase normal:  nj ~ 1

Kosterlitz-Thouless transition at N=1/4

= plot s(k) = npk?~1/4
s(k) for finite trapped system:  _o}

N=60k t=0.75




jump in the superfluid density ns
where density is critical n(rc)=nc

KT: n:A2=4 at n.

\_

L
1/2 4
zZ
jump of the superfluid
density at rc

oy

moment of inertia I:

superfluid density

classical: 1 :/drrzp(r)

below T.: only normal density

I = [ drr?p, |
/ % pn(T) 0 1 r81/2

non-classical moment of Inertia (NCMI): I, — I = /dr 7205 (T)  M.H.W Krauth, PRL 100, 190402 (2008)




R. Desbuquois, L. Chomaz, T.Yefsah, J. Léonard, |. Beugnon, C.WVeitenberg, and ]. Dalibard,
Nature Physics 8, 645 (2012)

Step-like behavior in the
local critical velocity
as a function of the
local chem. potential
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Figure 2 | Evidence for a critical velocity. Two typical curves of the temperature after stirring the laser beam at varying velocities. a, In the superfluid
regime, we observe a critical velocity (here vc = 0.87(9) mms~"), below which there is no dissipation. b, In the normal regime, the heating is quadratic in
the velocity. The fitted heating coefficients are x =18(3) nK s mm~2 and « = 26(3) nK smm~2 in a and b, respectively. The experimental parameters are
(N, T, r)=(87,000,89 nK, kg x 59 nK, 14.4 um) and (38,000, 67 nK, kg x 39 nK, 16.6 um) for a and b, respectively, yielding Wioc/kg T=0.36 and
Wioc/kg T =0.04. The data points are the average of typically ten shots. The y error bars show the standard deviation. The x error bars denote the spread of
velocities along the size of the stirring beam (1/4/e radius). The solid line is a fit to the data according to equation (1). The stirring time is 0.2 s for all data
points. Note that the three low-lying data points in a correspond to the completion of an odd number of half turns. For these data points, where we see a
downshift of the temperature by approximately 1.5 nK, we also observe a displacement of the centre of mass of the cloud by a few micrometres.
c,d, Calculated radial density distribution for the clouds in a and b, respectively. The dashed blue curve shows the superfluid density, the solid red curve
shows the normal density. The stirring beam potential is indicated by the grey shaded area (in arbitrary units). The densities are calculated via the local
density approximation from the prediction for an infinite uniform system'®. The jump of the superfluid density from zero to a universal value of 4//\§B

(where Agg is the thermal de Broglie wavelength) is a prominent feature of the BKT transition. The normal density makes a corresponding jump to keep the
total density continuous.




«local» moment of inertia I(r)
from linear response to local field coupled to momentum density

classical «local» moment of intertia lc(r) from local total density

non-classical «local» moment of intertia lnemi(r)=lc(r)-1(r)

R —— —————
«local» superfluid density
from Inemi(r)= ns(r) r?

NCMI I (r)=I,;-I (N=70000, g=0.147, o,/0,=185.5, t=0.606)
8000 Io(r)=I(r)-I 1(r)=pi rhog(r)r® dr =
I 1l(r =pi rho(gyp r, dr ==

7000 I, ér)= ®*n, r, dr
- gnﬁ=pi*4 r’dr
6000 [
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B.Allard, T. Plisson, M. H., G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel
Phys. Rev.A 85,033602 (2012)

adiabatic ramping of correlated disorder potential (speckle)

supression of peak density No observed

1.2

08 12 1.6 2.0
N/N¢

2.2 2.6 3.0
Entropy per particle S [kg]




( Summary-Outlook

Quasi2D show Kosterlitz-Thouless physics

Density profiles in experiments are quantitatively descrived by
quasi2D mean-field + classical field correlations in LDA

Small systems with N < g2 behave like a mean-field gas
with a BEC transition!

Coherence properties show no abrupt sign at
the Kosterlitz-Thouless transition

«Local» superfluid density shows sharp features
at the local critical density

Disorder potential suppresses coherence

Possible normal (insulator) phase at T=0?

Metal-Insulator transition at finiteT?




strictly 2D mean-field: pair-correlation function g(0)=2 (bosonic bunching)

quasi 2D: interference effects due to z-excitations visible => g(0)<2 even in mean-field

10 A

CFT
| N=100.000 -
Z:"(r’y‘\‘l') - S
N=100000 ~ | =075

fluctuation region i mean-field

riA 1

FIG. 9: Central pair correlations, g(r) = n'*(r,0)/In{r)n(0)].

of the quasi-two-dimensional trapped Bose gas at tvinpvmt ure mf’

T = Tite (main figure) and T = 0.75 Tige (inset) for N =

100,000 atoms (ENS parameters), together with the predic- FIG. 10: Quasi-condensate density nge obtained by QMC

tion of the mean-field gap model, ga(r) = ny’ (r,0)/n(r)n(0), from the renormalized pair-correlation function at 77 =

and the short-range improved mean-field model, y.4(r)ga(r). 0.71 11-;?( and T = 0.75 'I'é‘é(‘ (see Fig. 9) for ENS parame-
ters, plotted as a function of A,,s. and compared to classical-
field simulations [12]. The inset shows the boundary of the

region with strong finite-size effects (see Eq. (39)).

g




Determine mean-field eigenmodes in the confined z-directions

3D density in LDA: 745 (7. 2) ZO (7, 2)7i " (F)

~mf

(1) = —log [1 — exp ((7

radial dependence only parametrically through
chemical potential:

ground state occupation in z: AT (7) = —log (1 - Q—A'“[(F))

depends only on local gap:




-
3D inter-atomic collisions: g3p=4TTas/m

s-wave scattering length as

g0 [ o
5 /d r/dz\\lng(r,z)]
* quasi 2D

B2 [ dzloo(=)* [ drwap(o))!
—

KT g=(8TTmw;)'"%a;

L D. Petrov, M. H., G. Shlyapnikov, PRL 84,2551 (2000)

~

! quasi2D thermodynamic limit to simplify and define phases...

N—’OO,UJ—’O with (DZ/T, N(L)Z, and g constant M. H., M. Chevallier, W. Krauth, EPL 82, 30001 (2008)
semiclassical quasi2D density proFIe

discrete sum in z Z > dk? 1
4m exp ( fj (r) + vhw, —p)) — 1

Thermal occupation of excited states in z important for
quantitative comparision between theory and experiment




@ Determine mean-field eigenmodes in the confined z-directions

. 1 1
from mean-field potential: Vv, ,;(r, 2) = §mwr2 + §mwzz2 + 2g3pn(r, z)
® S|mpI|ﬁcat|on.fro.m.qua5|2D i (i Z‘Bi(’.’* £)AmE ()
thermodynamic limit ™ LDA 7
M. H., M. Chevallier, W. Krauth, T e . __ o g
Phys. Rev.A S\I/?Of;622 (E?)UIO) n," () = —log [1 — exp (i1(7) — €,(F)/t)]

LDA: radial dependence only parametrically through L
chemical potential: HA |

: - an-field N=1000 (QMF) -
@ numercial convergence test: 6 { T e ficld No10000 (OMF) -

mean-field N=1Mio (QMF) ——

54 ™My DA e
solve mean-field equations exactly %,
for finite N (by QMC) =
R
o

* 27 T=0.71 Tgec
1 ]

mean-field finite size corrections 0 | | | | |
to LDA vanish rapidely 0 02 04 06 08 1

position p=r[31/2




‘ ;lm[‘f‘A;!
-log(g)+6 1 /

-log(g)+3

mean-field gas -~

Mg

position r

FIG. 5: Schematic density profile of a strictly two-dimensional
trapped Bose gas at Tkt for g — 0. For 7 > /g, n coincides
. . ) rre2d (e i . y i .
with the ideal gas at T3¢ (inset. the classical Boltzmann dis-

re/e

tribution ¢ is given for comparison). In the fluctuation
regime, for ¥ < 1.25,/g. mean-field and correlation effects be-
come important. The density diverges as ~ log(1/g). vet the

correlation contribution An remains finite,

-

NIST parameters: g=0.02 )

P. Cladé, C. Ryu,A. Ramanathan,
K. Helmeron,W. D. Phillips,
PRL 102, 170401 (2009). )

~

phase space density profile
close to Tkt

N=100 000 —
10 000 ---
1000 -

/
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1 gaussian
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B [dz néz)(fr,z;0,0)
[dz n:()il) (0,2;0,0)

Central coherence c(r):
one-body density matrix in the center of the trap

c(r)

—
[E—

E c(r)

b N=640000 I 3
08 4%

0.6
04 -

o
%0

0.6

o
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04

(@]
central coherence c(r) f;\
N—

(@]
central coherence c¢(r) ’1\
N—

<
b

0.2

0

O 200 LOOOEODBHL - X X
0 5
position /A N | ST g:OOZ position /Ay

0
ENS‘ g_o‘ I 3 FIG. 7: Off-diagonal coherence c(r) for NIST parameters with
FIG. 6: Off-diagonal coherence c¢(r) for ENS parameters with t = 0.74 (main graph) and ¢ = 0.769 (inset) in comparison
t = 0.71 (main graph, 7 > fif) and t = 0.769 (inset, 7 < 7if) with the mean—'ﬁeld prediction, cm¢(r), and the gap model,
compared to the mean-field prediction cy¢(r) and the gap ca(r), defined in Eq. (37). At t = 0.769, the total central
model of Eq. (37). In the fluctuation regime, finite-size effects density is 7(0) ~ 5.1 < 7y, and the system is outside the

. . fl i ime. At t = 0.74, n ~ 10. n h
for off-diagonal correlations are more pronounced than for the uctuation regime. At t O 74, 7(0) 0-5 > T and the
. . system is close to the Kosterlitz—Thouless transition, An¢/g ~
density (see Fig. 1).

0.08. Strong finite-size effects are evident in the fluctuation
regime.




QMC density profiles: T>Tkr (1)

=1.0 Tgec

density profile in z

| T=0
ideal 2d | QMC

wi/ 2 4

Z

J
strong quasi 2D effects !

quantitative agreement with experiment:

P. Kruger, Z. Hadzibabic, |. Dalibard, PRL 99,
040402 (2007);

Z. Hadzibabic, P. Kruger, M. Cheneau, S. P. Rath, J.

Dalibard, New Journal of Phys. 10,045006 (2008).




Theory (QMC) < Experiment: direct comparision

S.P.Rath, T.Yefsah, K.J. Glinter, M. Cheneau, R. Desbuquois, M.H.,W. Krauth, . Dalibard,
Phys. Rev.A 82,013609 (2010)

FIG. 1: (Color online) (a) Potential V' along the vertical di-
rection z created by the magnetic trap and the laser beam.
(b-c) Side view of the cloud before (b) and after (c) depump-
ing atoms in the side wells. The horizontal stripes are due to
diffraction. (d) Top view in-situ image yielding fit parameters
T = 132nK and o = 0.29 (for £ = 0.25).

here: x=pu

linear relation between
optical density OD and density
assumed!

in-situ density measurements

(b)

Optical density OD(r)

40 | 40
7 (um) r (1m)

FIG. 2: (Color online) (a) Dots: Measured in-situ profile
OD(r). For & = 0.25 the fit with MFHF theory yields T' =
126 (6) nK, o = 0.34(9), where uncertainties represent stan-
dard deviations obtained by fitting individual images. Con-
tinuous line: corresponding QMC simulation with N = 73900
atoms (inset: same data in log plot). Upper (dash-dotted)
and lower (dashed) lines: QMC results obtained assuming
¢ = 0.21 [fit parameters (T (nK), o, N)=(130,0.39,96300)]
and £ = 0.29 (122,0.29,57900), respectively. (b) Set of mea-
sured density profiles (dots) and corresponding QMC results
(lines) for rf evaporation parameters. From bottom to top:
(T (nK),a, N)=(87,0.49,54100) [black], (109,0.39,63800)
[red], (142, 0.28,78400) [blue|, (153, 0.23,79900) [magental].
Each experimental profile in (a) and (b) is an average of 9
images.




Theory (QMC) < Experiment:

discrepancy of in-situ densities due to multiple scattering

non-linear relation between OD EOS: phase-space density D=nA as
and density a function of x=Bp in LDA

. Oéloczla,l
0.0 0.5

FIG. 3: (Color online) Combination of the experimental and
theoretical results of Fig. 2. Error bars indicate the standard
deviation of the data. (a) Measured OD as a function of calcu-
lated OD, averaged over the data shown in Fig. 2. The dashed
line with a slope 1 is a guide to the eye. (b) Continuous lines:
QMC results for D as a function of aioeal = o — mw?r?/kgT
for the data shown in Fig. 2 (same color code). Black dashed
line: prediction of [8] for the uniform case. Dots: Measured
D, averaged over all experimental data shown in Fig. 2.
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Ww: trap frequency T = Tomer |14 _g <ln—>
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